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Abstract— This paper proposes an Adaptive Learning Model
Predictive Control strategy for uncertain constrained linear
systems performing iterative tasks. The additive uncertainty
is modeled as the sum of a bounded process noise and an
unknown constant offset. As new data becomes available, the
proposed algorithm iteratively adapts the believed domain of
the unknown offset after each iteration. An MPC strategy
robust to all feasible offsets is employed in order to guarantee
recursive feasibility. We show that the adaptation of the feasible
offset domain reduces conservatism of the proposed strategy,
compared to classical robust MPC strategies. As a result, the
controller performance improves. Performance is measured
in terms of following trajectories with lower associated costs
at each iteration. Numerical simulations highlight the main
advantages of the proposed approach.

I. INTRODUCTION

Model Predictive Control (MPC) has established itself as a
promising tool for dealing with constrained, and possibly un-
certain, systems [1]–[3]. Challenges in MPC design include
presence of disturbances and/or unknown model parameters.
Disturbances can be handled by means of robust or chance
constraints, and such methods are generally well understood
[4]–[8]. In this paper, we are looking into methods for ad-
dressing the second challenge posed by model uncertainties.

If the actual model of a system is unknown, adaptive
control strategies have been applied for meeting control
objectives and ensuring system stability. Literature on un-
constrained adaptive control is vast and not the subject of the
current paper. Adaptive control for constrained systems has
mainly focused on improving performance with the adapted
models, while the constraints are satisfied robustly for all
possible model realizations and for the worst disturbance
bounds [9], [10]. In [11], [12] a Finite Impulse Response
system model is considered for real time adaptation, but this
can be restrictive as it is applicable only for asymptotically
stable systems. In [13], a state space based Linear Parameter
Varying model has been proposed for adaptive MPC with
robust constraints. The method modifies the feasible set of
states using set translations and scaling [14]. However, this
assumes the existence of a unique stabilizing feedback gain
matrix for all possible parametric uncertainties, which is
potentially a harsh assumption. In [15]–[17], data driven
approaches for learning and adapting system uncertainties
are presented with predictive control algorithms, but they do
not provide any guarantees of recursive feasibility or stability.

In this paper, we tackle the simple, yet insightful problem
of regulating a constrained system in presence of additive
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model uncertainties. We use a model uncertainty adaptation
algorithm inspired by [12], and extend it for systems per-
forming an iterative task. Although control design for sys-
tems performing repetitive tasks has been studied [18]–[20],
real-time model adaptation, while guaranteeing satisfaction
of state-input constraints, have not yet been addressed thor-
oughly in literature.

We consider linear time invariant systems represented by
a state-space model with known matrices. The system is
subject to bounded additive uncertainty, which consists of:
(i) a zero mean process noise, that belongs to a known
convex set, and (ii) an unknown, but constant offset. Given
an initial estimate of the offset domain, we iteratively refine
it, using a set membership based method [12], as new data
becomes available. In order to design an MPC controller with
the unknown offset, we make sure the constraints on states
and inputs are robustly satisfied for all feasible offsets at a
time instant. Here a “feasible offset” is an offset belonging to
the current estimation of the offset domain. As the feasible
offset domain is updated with data iteratively, we obtain
an iterative adaptation in the MPC algorithm. Moreover, to
further improve control performance from one iteration to the
next iteration, we use the Learning MPC (LMPC) framework
[20] to construct the MPC terminal constraints and terminal
cost.

The main contributions of this paper are summarized as:

• We introduce adaptation of additive uncertainty in a
robust MPC algorithm, for Linear Time Invariant sys-
tems performing iterative tasks. We ensure recursive
feasibility and robust stability of the resulting controller.

• We show that model adaptation iteratively relaxes the
bounds of the imposed state/input constraints, as more
data is collected over time. Due to this relaxation, the
optimal control problem in a new iteration can lower
the incurred cost further, thus iteratively reducing the
conservatism in the algorithm.

• We demonstrate performance improvement with our
adaptive algorithm, by comparing numerical simulation
results to the results of [21].

This paper is organized as follows: Section II introduces
the problem setup. Section III formulates the Adaptive Learn-
ing Model Predictive Control (ALMPC) algorithm basics,
outlining the control policy and the solved finite horizon
robust optimal control problem, which iteratively improves
using LMPC strategy. We also elaborate the main idea of
recursive uncertainty adaptation in this section. Properties of
the proposed ALMPC algorithm are explained in Section IV,
where we also prove recursive feasibility and robust stabil-
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ity of the control algorithm. Section V presents numerical
simulations and comparisons, and Section VI concludes the
paper and outlines possible future extensions.

II. PROBLEM STATEMENT

Given an initial state xS , we consider uncertain linear
time-invariant systems of the form

xt+1 = Axt +But + Eθa + wt, x0 = xS , (1)

where xt ∈ Rnx is the state at time t, ut ∈ Rnu is the
input, and A and B are known system matrices. At each
time step t, the system is affected by a random process noise
wt ∈W ⊂ Rnw , which is considered to have a zero mean. In
this paper, W is assumed to be a compact convex polytope.
We also consider the presence of a constant offset θa ∈ Rp,
which affects the state dynamics through the known matrix
E ∈ Rnx×p. We consider constraints of the form

Fxt +Gut ≤ f, (2)

which must be satisfied for all uncertainty realizations wt ∈
W. The matrices F ∈ Rnf×nx , G ∈ Rnf×nu and f ∈ Rnf

are assumed known. Throughout the paper, we assume that
system (1) performs the same task repeatedly. Each task
execution is referred to as iteration. At each jth iteration,
the performance of the jth realized closed loop trajectory is
quantified with the iteration cost

V (j) =

∞∑
t=0

`(x
(j)
t , u

(j)
t ) (3)

where x(j)t and u(j)t denote the realized system state and the
control input at time t, respectively, and ` : Rnx×Rnu → R+

is a positive definite stage cost.
Our goal is to design a controller that, at each iteration j,

solves the infinite horizon robust optimal control problem:

V (j),?(xS) =

min
u
(j)
0 ,u

(j)
1 (·),...

∑
t≥0

`
(
x̄
(j)
t , u

(j)
t

(
x̄
(j)
t

))
s.t. x

(j)
t+1 = Ax

(j)
t +Bu

(j)
t (x

(j)
t ) + Eθa + w

(j)
t ,

Fx
(j)
t +Gu

(j)
t ≤ f, ∀w

(j)
t ∈W,

x
(j)
0 = xS , t = 0, 1, . . . ,

(4)
where θa is the constant offset present in the system and
x̄
(j)
t denotes the disturbance-free nominal state. Notice that

(4) minimizes the nominal cost. We point out that, as system
(1) is uncertain, the optimal control problem (4) consists of
finding [u

(j)
0 , u

(j)
1 (·), u(j)2 (·), . . .], where u(j)t : Rnx 3 x(j)t 7→

u
(j)
t = u

(j)
t (x

(j)
t ) ∈ Rnu are state feedback policies. It is

important to note that in practical applications, each iteration
has a finite time duration. However, it is common in literature
to adopt an infinite time formulation at each iteration, for the
sake of simplicity [20], as done in this paper.

In this paper, we try to compute a solution to the infinite
time optimal control problem (4), by solving a finite time
constrained optimal control problem. Moreover, we assume

that offset θa in (4) is not known exactly. Therefore, we
propose a parameter estimation framework to refine our
knowledge of θa and thus, improve controller performance.
We also guarantee recursive constraint satisfaction for all
possible offsets.

III. ADAPTIVE LEARNING MPC

We design a finite horizon MPC controller in an attempt
to solve (4) for regulating (1) to the origin. The key idea is to
use data to learn the unknown offset θa, while exploiting the
iterative nature of the problem to improve the performance
at the next iteration. In particular:

1) The knowledge of the potential domain of offset θa
is refined in every iteration, using a set membership
based approach [11], [12], giving rise to an Adaptive
MPC algorithm. Due to this uncertainty adaptation,
and resulting constraint relaxation, the optimal control
problem in a new iteration can lower the incurred cost
further, thus iteratively reducing conservatism.

2) We combine the above uncertainty adaptation with a
technique called Learning Model Predictive Control
(LMPC) [20], to design an Adaptive Learning MPC
(ALMPC) controller, whose performance improves it-
eratively by learning the terminal cost and terminal
constraint in the MPC algorithm.

In the following sections, we present the detailed mathe-
matical formulations to achieve steps (1) and (2).

A. Estimating θa
We characterize the knowledge of the offset θa by its

domain Θ, called the Feasible Parameter Set, which we
estimate from previous system data. This is initially chosen
as a polytope Θ(0), and it is assumed that θa ∈ Θ(0) for all
times. The set is then updated at the end of each iteration
after gathering input-output data for all time steps. For the
jth iteration, the updated Feasible Parameter Set, denoted by
Θ(j), is given by

Θ(j) = {θ ∈ Rp : x
(i)
t −Ax

(i)
t−1 −Bu

(i)
t−1 − Eθ ∈W

∀i ∈ [0, . . . , j − 1],∀t ≥ 0}. (5)

It is clear from (5) that as iterations go on, new data is
progressively added to improve the knowledge of Θ, without
discarding previous information. Knowledge from all previ-
ous iterations is included in Θ(j). Thus, updated Feasible
Parameter Sets are obtained with intersection operations on
polytopes, and so Θ(j+1) ⊆ Θ(j).

B. MPC Problem

In this section, we present the proposed ALMPC algo-
rithm.

Control Policy Approximation: We consider affine state
feedback policies of the form [22], [23]

u
(j)
t (xt) = K

(
x
(j)
t − x̄

(j)
t

)
+ v

(j)
t , (6)

where K ∈ Rnu×nx is a fixed feedback gain same for all
iterations j. x̄(j)t is the nominal state and v(j)t is an auxiliary



control input. The parametrization (6) allows us to decouple
the state dynamics (1) into a nominal state s(j)t ≡ x̄

(j)
t and

an error state e(j)t = x
(j)
t − s

(j)
t , whose respective dynamics

are given by

s
(j)
t+1 = As

(j)
t +Bv

(j)
t , s

(j)
0 = xS , j = 0, 1, . . . (7a)

e
(j)
t+1 = Ψe

(j)
t + Eθa + wt, e

(j)
0 = 0, j = 0, 1, . . . , (7b)

where Ψ := (A+BK). Above, the state s(j)t is uncertainty-
free, while the error state contains both the process noise as
well as the (unknown) offset θa.

Reformulation of Constraints: The constraints (2) on
states and inputs, defined in (4), can be reformulated in terms
of nominal and error states using (7). Hence, substituting (7)
in (4), we can derive the corresponding constraints on the
nominal states as

Fs
(j)
t +Gv

(j)
t + (F +GK)e

(j)
t ≤ f, (8)

where error state e(j)t follows the dynamics (7b). Now, we
need to ensure that constraints (8) are satisfied ∀w(j)

t ∈ W,
in presence of the unknown offset θa. Therefore, (8) are
imposed for all models in the Feasible Parameter Set, i.e.
∀θ ∈ Θ(j) and for all t ≥ 0, in the jth iteration. Thus, we
modify considered error state dynamics (7b) as

e
(j)
t+1 = Ψe

(j)
t + d

(j)
t , e

(j)
0 = 0, j = 0, 1, . . . , (9)

where d(j)t = {d : d = w + Eθ, ∀w ∈ W, ∀θ ∈ Θ(j), and
ensure

Fs
(j)
t +Gv

(j)
t + (F +GK)e

(j)
t ≤ f, ∀d

(j)
t ∈W⊕ EΘ(j).

Tractable Reformulation: We now solve the following
finite horizon robust optimal control problem at each time
step t of iteration j

V ALMPC,j
t→t+N (s

(j)
t ) =

min
v
(j)

t|t ,...,v
(j)

t+N−1|t

t+N−1∑
k=t

`
(
s
(j)
k|t, v

(j)
k|t

)
+ P (j−1)(s

(j)
t+N |t)

s.t. s
(j)
k+1|t = As

(j)
k|t +Bv

(j)
k|t ,

Fs
(j)
k|t +Gv

(j)
k|t ≤ f − h

(j)
s ,

s
(j)
t|t = s

(j)
t , s

(j)
t+N |t ∈ CS

(j−1),

k = t, . . . , t+N − 1,
(10)

where h
(j)
s = max

et∈E(j)
Φet, Φ = (F + GK), and the set

E(j) is assumed to be the minimal robust positive invariant
set for the error in (9), for iteration j [23, Definition 3.4].
Terminal constraint CS(j−1), and the terminal cost P (j−1)(·)
are discussed in details next. As Θ(j) is updated using (5),
the set E(j) alters after every iteration. Therefore, the solved
MPC problem (10) is adaptive in nature. Upon solving (10),
the controller applies

u
(j)
t (x

(j)
t ) = K(x

(j)
t − s

(j)
t ) + v

(j),?
t|t (11)

to the system (1), where v
(j),?
t|t is the first input from the

optimal input sequence of (10).

Now we discuss the component of Learning in this
adaptive MPC algorithm, which corresponds to an iterative
performance improvement, i.e. decrease of closed loop cost
from iteration to iteration.

Construction of Terminal Conditions: In (10) the nominal
terminal state is constrained into the control invariant safe
set CS(j−1), and the terminal cost is denoted by P (j−1)(·).
These are borrowed from Learning MPC for deterministic
systems [20], whose main idea we revisit next. At iteration
j, let the vectors

v(j) = [v
(j)
0 , v

(j)
1 , ..., v

(j)
t , ...], (12a)

s(j) = [s
(j)
0 , s

(j)
1 , ..., s

(j)
t , ...], (12b)

denote the nominal input and state of system (7a). To exploit
the iterative nature of the control design, we define the
sampled Safe Set SS(j) at iteration j as

SS(j) =

 ⋃
i∈M(j)

∞⋃
t=0

s
(i)
t

 , (13)

where M (j) ⊆ {0, . . . , j} is the set of indices associated
with successful iterations, i.e.,

M (j) =
{
k ∈ [0, j] : lim

t→∞
s
(k)
t = 0

}
.

In other words, SS(j) is the collection of all nominal state
trajectories up to iteration j that have converged to the origin.
We define the convex Safe Set as

CS(j) = conv(SS(j)). (14)

Now, at time t of the jth iteration, the cost-to-go associated
with the closed loop trajectory (12b) and input sequence
(12a) is defined as

V
(j)
t→∞(s

(j)
t ) =

∞∑
k=0

`(s
(j)
t+k, v

(j)
t+k),

where `(·, ·) is the stage cost of problem (10). We define the
barycentric function

P (j)(s) =

{
p(j),∗(s) if s ∈ CS(j)

+∞ else
, (15)

where

p(j),∗(s) = min
λt≥0,∀t∈[0,∞)

j∑
k=0

∞∑
t=0

λ
(k)
t V

(k)
t→∞(s

(k)
t )

s.t.
j∑

k=0

∞∑
t=0

λ
(k)
t = 1,

j∑
k=0

∞∑
t=0

λ
(k)
t s

(k)
t = s,

where s(k)t is the nominal state at time t of the kth iteration,
as defined in (12b). The function P (j)(·) assigns to every
point in CS(j) the minimum cost-to-go along the trajectories
in CS(j). Therefore this choice of terminal cost in (10)
guarantees that at each iteration, the iteration cost is non-
increasing [20, Theorem 2].



Intuitively, the function P (j)(.) quantifies the performance
of the closed loop trajectories in the previous iterations. This
information from the previous iteration data is exploited to
guarantee iterative performance improvement and therefore,
the algorithm has a “learning property”.

Algorithm 1 Adaptive Learning MPC

1: Start with iteration j. Set t = 0; initialize Feasible
Parameter Set Θ(j) and compute initial minimal robust
positive invariant set E(j) using algorithm in [23, Chap-
ter 3].

2: Compute v(j),?t|t from (10) and apply v(j)t = v
(j),?
t|t to the

system.
3: Set t = t + 1, and return to step 2 until the end of jth

iteration.
4: At the end of jth iteration, set the convex hull of the

nominal states’ as the convex safe set, CS(j) for next
iteration [20].

5: Update Θ(j) using (5). Set j = j + 1. Return to step 1.

We formulate an optimal control problem to find a feasible
trajectory which can be used to initialize the ALMPC. We
make the following assumption for our system:

Assumption 1: We assume we are given an initial state
and input sequence (s(0),v(0)) that satisfies the constraints
(7a) and Fs(0)t +Gv

(0)
t ≤ f −maxe∈E(0){Φe} for all t ≥ 0,

where E(0) is the minimal robust positive invariant set for
(9) in the first iteration.

Remark 1: Since the system (7a) is linear and the con-
straints are convex, every convex combination of the trajec-
tories in the sampled safe set SS(j) is a feasible trajectory,
which steers the system to the origin. Therefore CS(j) is a
control invariant set for (7a) [24]. This is required for proving
recursive feasibility of MPC problem (10) in closed loop with
controller (11) [24, Theorem 1].

Remark 2: The decoupling of the state dynamics in (7)
is a linear change of coordinates, and is not necessary to
implement the proposed strategy. Indeed, it is possible to
reformulate the controller in the coordinate frame of system
(1). In particular, using standard set theory tools [3, Chaper
10], one could tighten the constraints (2) and the terminal
set CS (14) to guarantee robustness against all disturbance
realizations.

IV. PROPERTIES OF ADAPTATION

In this section we discuss the properties and associated
advantages of model uncertainty adaptation (5), namely:
(i) decreasing constraint tightening, and (ii) convergence
guarantees.

A. Decreased Constraint Tightening

It is evident that in (10), the constraints on the nominal
state s are tightened based on the size of the set E(j). The
set E(j) ⊂ Rnx the minimal robust positive invariant set for
the error dynamics (9) in iteration j, which is defined as [23,

Eq. 3.23]

E(j) =

∞⊕
i=0

Ψi(W⊕ EΘ(j)), (17)

which satisfies the condition that, for all e(j)0 ∈ E(j), we have
e
(j)
t (wt−1, θ) ∈ E(j) for all wt−1 = [w0, . . . , wt−1] ∈ W,

for all θ ∈ Θ(j) and all t ≥ 1.
Lemma 1: The minimal robust positive invariant set E(j),

is monotonically decreasing with respect to iterations. That
is, for successive iterations of the system, it follows the
property E(j+1) ⊆ E(j).

Proof: New cuts are added to the Feasible Parameter
Set polytope Θ(j) according to (5) to obtain Θ(j+1) at the
next iteration. Namely, from (5), we have that

Θ(j+1) = Θ(j) ∩ {θ ∈ Rp : x
(j+1)
t −Ax(j+1)

t−1 −Bu(j+1)
t−1

− Eθ ∈W,∀t ≥ 0}.

Therefore, Θ(j+1) ⊆ Θ(j). So from (17) we get

E(j+1) =

∞⊕
i=0

Ψi(W⊕EΘ(j+1)) ⊆
∞⊕
i=0

Ψi(W⊕EΘ(j)).

(18)

This shows that E(j+1) ⊆ E(j), and concludes the proof.
The decreasing size of the minimal robust positive invariant
set E(j), clearly reduces constraint tightening in (10) for
nominal states. That indicates a less conservative algorithm
as more data becomes available. Now we prove recursive
feasibility of the resulting ALMPC algorithm, for which
Lemma 1 is a sufficient condition along with terminal
constraints given by convex safe set CS .

Theorem 1: Now consider system (1) in closed loop with
the ALMPC (10) and (11). Let Assumption 1 and (18) hold.
Then ALMPC (10), (11) is feasible for all times t ≥ 0 and
all iterations j ≥ 1.

Proof: As shown in Lemma 1, E(j+1) ⊆ E(j), this
implies that

max
e∈E(j+1)

Φe ≤ max
e∈E(j)

Φe. (19)

Consequently, if a realized trajectory at iteration j robustly
satisfies input and state constraints,

Fs
(j)
k|t +Gv

(j)
k|t ≤ f − h

(j)
s , h(j)s = max

∀et∈E(j)
Φet, (20)

then this trajectory would also robustly satisfy state and input
constraints at the next iteration

Fs
(j+1)
k|t +Gv

(j+1)
k|t ≤ f − h(j+1)

s , h(j+1)
s = max

∀et∈E(j+1)
Φet.

(21)
This implies that at each jth, iteration the first j−1 iterations
robustly satisfy state and input constraints for system (1) and
the disturbance (W⊕EΘ(j)). Therefore, using the fact from
Remark 1 and [24, Theorem 1], the ALMPC is recursively
feasible at each jth iteration.



B. Convergence Guarantees

In this section we first show that system (1) in closed
loop with the controller (11), guarantees convergence to a
neighborhood of the origin. Then, we show that the adaptive
strategy allows at each iteration to shrink the guaranteed
region of convergence around the origin.

Theorem 2: Consider system (1) in closed loop with the
ALMPC (10) and (11). Let Assumption 1 hold. Then the
closed-loop system (1), (11) converges asymptotically to the
set Ej for every iteration j ≥ 1 and all w ∈ W, i.e x(j)t →
E(j) as t→∞.

Proof: The proof is based on [24, Theorem 1]: We
have that limt→∞ s

(j)
t = 0, ∀j ≥ 1 [24]. Finally, from

the definition of et = x
(j)
t − s

(j)
t we have limt→∞ x

(j)
t =

limt→∞(s
(j)
t + e

(j)
t ) = limt→∞ e

(j)
t ∈ E(j), ∀j ≥ 1, which

concludes the proof.
Now, from (18), we know E(j+1) ⊆ E(j). Hence, the

ALMPC delivers improved guarantees of the region of
convergence iteratively, as a consequence of update (5).

V. SIMULATION RESULTS

In this section we compare the results of our ALMPC
algorithm in Algorithm 1 with the Robust Learning MPC
(RLMPC) presented in [21]. For numerical simulations, we
apply both ALMPC and RLMPC algorithms to compute
feasible solutions to the following iterative infinite horizon
optimal control problem

V (j),?(xS) = min
u
(j)
0 ,u

(j)
1 (·),...

∑
t≥0

∥∥∥x̄(j)t ∥∥∥
1

+ 10
∥∥∥u(j)t ∥∥∥

1

s.t.

x
(j)
t+1 =

[
1.2 1.5
0 1.3

]
x
(j)
t +

[
0
1

]
u
(j)
t (x

(j)
t )

+

[
1 0
0 1

] [
0.01
0.05

]
+ w

(j)
t ,−10

−10
−1

 ≤ [x(j)t
u
(j)
t

]
≤

10
10
1

 , ∀w(j)
t ∈W,

x
(j)
0 = xS , t = 0, 1, . . . ,

(22)
where wt ∈ W = {w ∈ R2 : ||w||∞ ≤ 0.8}. The initial
Feasible Parameter Set is defined as

Θ(0) = {θ ∈ R2 :

[
−0.2
−0.1

]
≤ θ ≤

[
0.2
0.1

]
}. (23)

The true offset parameter is θa = [0.01, 0.05]>. The matrix
E ∈ R2×2 is picked as the identity matrix. We solve the
above optimization problem for arbitrarily chosen initial state
xS = [−5.6, 1.29]>. The ALMPC in (10), (11), and the
RLMPC [21] are implemented with a control horizon of N =
3, and the feedback gain K in (11) is chosen to be the optimal
LQR gain for system (7a) with parameters Q = I and R =
10.

In the case of RLMPC, the domain set for the unknown
offset is kept constant throughout as Θ(0). Contrarily, the

ALMPC algorithm proposed in this paper, shrinks the do-
main of the offset set with (5). This adaptation lowers the
degree of constraint tightening over iterations due to (18).

A. Uncertainty Adaptation in ALMPC

We illustrate the adaptation of additive uncertainty in
this section. Feasible Parameter Set is adapted after every
iteration according to (5) after being initialized as (23). This
is seen from Fig. 1. It is clearly observed from Fig. 1 that the
additive offset uncertainty is shrunk with every iteration. The
true offset, which is picked solely for simulation purposes,
is marked by ? and is always inside the Feasible Parameter
Set for all iterations. This underscores the fact that the
robustification of the MPC problem (10) for all feasible
offsets in the Feasible Parameter Set, also captures the
dynamics with the true offset.

Fig. 1: Adaptation of Feasible Parameter Set

As a consequence of the above uncertainty adaptation,
the size of the minimal robust positive invariant set E(j)
shrinks as in (18). This is highlighted in Fig. 2. Whereas for
RLMPC, the size of the minimal robust positive invariant set
for dynamics (9) is constant. This keeps the same magnitude
of constraint tightening throughout all iterations in (10).

Fig. 2: Adaptation of Minimal Robust Positive Invariant Set



B. Performance Gain Over RLMPC

In this section we compare the results of the ALMPC
algorithm with RLMPC [21] to illustrate the performance
improvement as a result of uncertainty adaptation, and thus,
minimal robust positive invariant set adaptations as shown in
Fig. 1 and Fig. 2. We quantify this performance gain with
two quantifiers:
• Trajectories with enhanced exploration of state space
• Lower iteration costs
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Fig. 3 shows the comparison of final system trajectories
with both the algorithms. It is observed that the ALMPC
algorithm generates a converged trajectory farther away from
the initialized one, highlighting better exploration property.
On the other hand, the RLMPC algorithm trajectory stays
relatively closer to the initialized path, as it overestimates
potential uncertainties by not adapting them.

To prove that this aforementioned exploration advantage
does not come at the penalty of additional iteration costs, we
compare the iteration costs of the two algorithms in Fig. 4.

The ALMPC algorithm results in lower iteration costs, again
proving the advantage of uncertainty adaptation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we successfully merged an additive uncer-
tainty adaptation methodology with the LMPC framework, to
formulate the ALMPC algorithm. We proved that with every
iteration, if the uncertainty is learned and thus shrunk, the
amount of constraint tightening is lowered for nominal states.
We have conclusively shown with numerical simulations, that
the ALMPC framework, compared to RLMPC [21], explores
better trajectories with lower iteration costs as uncertainty is
recursively adapted. Thus, ALMPC is shown to have im-
proved performance over RLMPC. We also proved recursive
feasibility and robust stability of the ALMPC algorithm.

In future extensions of this work, we aim to solve an
iterative stochastic MPC problem with model uncertainty
adaptation. The inherent uncertainty adaptation algorithm in
presence of constraints, can also be exploited in systems as
[25], [26] for obtaining better performance. Finally, we also
wish to deal with time varying uncertainties in state-space,
building on the work of [27].
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