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Modeling and Analysis of Cascading Failures in
Interdependent Cyber-Physical Systems

Yingrui Zhang and Osman Yağan

Abstract—Integrated cyber-physical systems (CPSs), such as
the smart-grid, are increasingly becoming the underpinning
technology for major industries. A major concern regarding
such systems are the seemingly unexpected large scale failures,
which are often attributed to a small initial shock getting
escalated due to intricate dependencies within and across the
individual (e.g., cyber and physical) counterparts of the system.
In this paper, we develop a novel interdependent system model
to capture this phenomenon, also known as cascading failures.
Our framework consists of two networks that have inherently
different characteristics governing their intra-dependency: i) a
cyber-network where a node is deemed to be functional as long
as it belongs to the largest connected (i.e., giant) component; and
ii) a physical network where nodes are given an initial flow and
a capacity, and failure of a node results with redistribution of its
flow to the remaining nodes, upon which further failures might
take place due to overloading (i.e., the flow of a node exceeding
its capacity). Furthermore, it is assumed that these two networks
are inter-dependent. For simplicity, we consider a one-to-one
interdependency model where every node in the cyber-network
is dependent upon and supports a single node in the physical
network, and vice versa. We provide a thorough analysis of the
dynamics of cascading failures in this interdependent system ini-
tiated with a random attack. The system robustness is quantified
as the surviving fraction of nodes at the end of cascading failures,
and is derived in terms of all network parameters involved (e.g.,
degree distribution, load/capacity distribution, failure size, etc.).
Analytic results are supported through an extensive numerical
study. Among other things, these results demonstrate the ability
of our model to capture the unexpected nature of large-scale
failures, and provide insights on improving system robustness.

I. INTRODUCTION

Today’s worldwide network infrastructure consists of a web
of interacting cyber-networks (e.g., the Internet) and physi-
cal systems (e.g., the power grid). Integrated cyber-physical
systems (CPSs) are increasingly becoming the underpinning
technology for major industries. The smart grid is an archety-
pal example of a CPS where the power grid network and the
communication network for its operational control are coupled
together; the grid depends on the communication network for
its control, and the communication network depends on the
grid for power. While this coupling with a communication
network brings unprecedented improvements and functionality
to the power grid, it has been observed [33] that such inter-
dependent systems tend to be fragile against failures, natural
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hazards, and attacks. For instance, in the event of an attack
or random failures in an interdependent system, the failures in
one of the networks can cause failures of the dependent nodes
in the other network and vice versa. This process may continue
in a recursive manner, triggering a cascade of failures that can
potentially collapse an entire system. In fact, the cascading
effect of even a partial Internet blackout could disrupt major
national infrastructure networks involving Internet services,
power grids, and financial markets [6]. For example, it was
shown [28] that the electrical blackout that affected much of
Italy on 28 September 2003 had started with the shutdown
of a power station, which led to failures in the Internet
communication network, which in turn caused the breakdown
of more stations, and so on.

With interdependent systems becoming an integral part of
our daily lives, a fundamental question arises as to how we
can design an interdependent system in a robust manner.
Towards this end, a major focus has to be put on understanding
their vulnerabilities, and in particular the root cause of the
seemingly unexpected but large scale cascading failures. These
events are often attributed to a small initial shock getting
escalated due to the intricate dependencies within and across
the individual (e.g., cyber and physical) counterparts of the
system. Therefore, a good understanding of the robustness of
many real-worlds systems passes through an accurate charac-
terization and modeling of these inherent dependencies.

Traditional studies in network science fall short in char-
acterizing the robustness of interdependent networks since
the focus has mainly been on single networks in isolation;
i.e., networks that do not interact with, or depend on any
other network. Despite some recent research activity aimed
at studying interdependent networks [6], [8], [13], [18], [26],
[40], very few consider engineering aspects of inter-dependent
networks and very little is known as to how such systems
can be designed to have maximum robustness under certain
design constraints; see [9], [31], [37], [39] for rare exceptions.
The current literature is also lacking interdependent system
models that capture fundamental differences between physical
and cyber networks, and enable studying robustness of systems
that integrate networks with inherently different behavior. For
example, it would be expected that the functionality of the
physical subsystem is primarily governed by the physical
flows and capacities associated with its components, whereas
system-wide connectivity would be the prominent requirement
for maintaining functionality in the cyber network. There is
thus a need to develop new approaches for modeling and
analyzing cascading failures in interdependent cyber-physical
systems.
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In this paper, we develop a model that will help understand
how failures would propagate in an interdependent system that
constitutes physical and cyber networks. This requires char-
acterization of intra-dependency models for each constituent
network as well as an inter-dependency model describing the
spread of failures across networks; see Section II-A for details.
As already mentioned, the main drawback of the current
literature on interdependent networks is that the focus has
almost exclusively been on percolation-based failure models,
where a node can function only if it belongs to the largest
connected (i.e., giant) component in the networks. While
suitable for cyber or communication networks, such models
are not appropriate for networks carrying physical flows; e.g.,
in power grid, islanding is a commonly used strategy for
preventing cascades [14].

Our interdependent system model consists of i) a cyber-
network where a node is assumed to be functional as long as
it belongs to the largest connected (i.e., giant) component; and
ii) a physical network where nodes are given an initial flow
and a capacity, and failure of a node results with redistribution
of its flow to the remaining nodes, upon which further failures
might take place due to overloading (i.e., the flow of a node
exceeding its capacity). For simplicity, we consider a one-to-
one interdependency model where every node in the cyber-
network is dependent upon and supports a single node in the
physical network, and vice versa. Thus, a node in the cyber-
network (resp. physical network) will continue to function if
and only if its support in the physical network (resp. cyber-
network) is functional and it belongs to the largest connected
subgraph of the cyber-network (resp. its capacity is larger than
its current flow); see Section II for a detailed description of
the system model.

We provide a thorough analysis of the dynamics of cascad-
ing failures in this interdependent system, where failures are
initiated by a random attack on a certain fraction of nodes.
The system robustness, defined as the steady-state fraction of
nodes that survive the cascade, is characterized in terms of all
network parameters involved (e.g., degree distribution of the
cyber-network, load-capacity values in the physical-network,
network size, attack size, etc.). Analytic results are supported
by an extensive numerical study. An interesting finding is
that under our model, the system goes through a complete
breakdown through a discontinuous transition with respect to
increasing attack size. In other words, the variation of the
“mean fraction of functional nodes at the steady state” with
respect to “attack size” has a discontinuity at the critical attack
size above which the system collapses. This indicates that our
model’s behavior is reminiscent of large but rare blackouts
seen in real world, and thus might help explain how small
initial shocks can cascade to disrupt large systems that have
proven stable with respect to similar disturbances in the past.

We also leverage our main result to investigate how the
robustness can be improved by adjusting various parameters
defining the interdependent system; e.g., load/capacity values
in the physical network and the degree distribution of the
cyber-network. This can prove useful in designing an inter-
dependent system so that it has maximum robustness under
given constraints. It is important to note that limited prior

work revealed unprecedented differences in the behaviors of
interdependent networks as compared to single networks. For
instance, it has been shown [6], [37] that a network design
that is optimal in countering node failures in a single network
could be the most catastrophic choice for the resiliency of
interdependent networks. For the model considered here, our
results reveal an intricate connection between the robustness
of each constituent network when they are isolated and the
robustness of the interdependent system formed by them. First
of all, when all else is fixed, and the total capacity available to
all nodes in the physical network is given, the interdependent
system becomes more robust when capacities are allocated
such that every node has the same redundant space (i.e.,
capacity minus initial load) as compared to the commonly
used [11], [19], [21], [35] allocation where nodes are given
a redundant space proportional to their initial load. However,
the situation becomes much more intricate when the degree
distribution of the cyber-network and the redundant space
allocation in the physical network are adjusted simultaneously.
There, we observe that depending on the degree distribution
of the cyber-network, an interdependent system with equal
redundant space allocation can be more or less robust than
one where redundant space is proportional to load (with mean
node degree and initial loads fixed). Also, in contrast with
the well-known results in single networks [3] where degree
distributions with large variance (e.g., Pareto) are associated
with higher robustness (against random failures) than cases
where the variance is small (e.g., Poisson distribution), we
demonstrate that the comparison is more intricate for interde-
pendent systems. In particular, we provide several examples
where the interdependent system with a Pareto-distributed
cyber-network is more or less robust than one where the cyber-
network has Poisson degree distribution, even when all other
parameters are kept constant.

We believe this work brings a new perspective to the field
of robustness of interdependent networks and might help
steer the literature away from the heavily-studied percolation
models towards flow-redistribution models, and towards mod-
els that combine networks with inherently different cascade
characteristics (of which CPS is an archetypal example); to
the best of our knowledge, this is the first work where the
interdependence of two networks with fundamentally different
cascade behavior is studied. We believe that our results provide
interesting insights on the robustness of interdependent CPSs
against random failures and attacks. In particular, despite the
simplicity of the models used, our results might capture the
qualitative behavior of cascades in an interdependent system
well. We also believe this work will trigger further studies (and
provide initial ideas) on how node capacities in the physical-
network and the topology of the communication network
can be designed jointly to maximize the robustness of an
interdependent CPS.

The rest of the paper is organized as follows. In Section
II, we present our interdependent system model in details,
starting with the distinction between intra-dependency and
inter-dependency. In Section III, we present the main result of
the paper, which allows computing the fraction of surviving
nodes at each step of cascading failures initiated by a random
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attack. Here, we also provide an outline of the proof, while
full proof is given in Appendix. In Section IV, we present
numerical results demonstrating the accuracy of our analysis
in the finite node regime. The paper is concluded in Section
V with several suggestions for future work.

II. SYSTEM MODEL

A. Intra-dependency vs. Inter-dependency

Our modeling framework is motivated with the inherent
dependencies that exist in many real-world systems including
cyber-physical systems (CPSs). Namely, we will character-
ize how component failures propagate and cascade, both
within the cyber or the physical parts of the system (due
to “intra-dependency”), as well as across them due to “inter-
dependency”. The actual meaning of “failure” is expected to
be domain-dependent and can vary from a component being
physically damaged to a node’s inability to carry out its tasks.
For ease of exposition, we consider two sub-systems, say A
and B.

Assume that network A consists of nodes {a1, . . . , aN} and
network B consists of nodes {b1, . . . , bN}. For illustration
purposes, we can think of network A as the power network
consisting of generators and substations (i.e., the physical
network), and network B as the control and communication
network consisting of control centers and routers (i.e., the cy-
ber network) – This is a classical example of an interdependent
CPS, with the power stations sending data to and receiving
control signals from routers, and routers receiving power from
substations. Modeling the dependencies within and between
networks A and B amounts to answering three questions.
First, for both networks we have to decide on the set of rules
governing how failures would propagate within that network,
leading to a characterization of the intra-dependencies. For
example, we should identify how the failure of a power
node ai affects other substations and generators in the power
network A. Similarly, we should identify how the failure of a
communication node bj affects other nodes in B. Finally, we
must characterize the inter-dependence of the two systems,
and how this interdependence may lead to propagation of
failures across them. Namely, we must have a set of rules
that specify how the failure of a power station ai impacts the
nodes {b1, . . . , bN} in the communication network and vice
versa.

Once these modeling questions are answered, the propa-
gation of failures in an interdependent system (consisting of
networks A and B) can be studied. Without loss of generality,
assume that the failures are initiated in network A due to
random failures or attacks. To get a better idea about the role
of intra- and inter-dependencies in the cascade of failures, con-
sider an asynchronous failure update model, where the effect
of intra-dependencies and inter-dependencies are considered
in two separate batches, following one another. See Figure
1 for an illustration of the asynchronous failure propagation
model. The asynchronous failure update assumption eases
the implementation and analysis of the model, and can be
shown to yield the same steady-state network structures with
a synchronous failure update model; just note that failure

Fig. 1. An illustration of failure propagation model in an interdependent
system.

propagation process is monotone and that (according to our
assumption) nodes can not heal once failed.

B. The Model

Despite the vast literature on interdependent networks [6],
[30], [37], [38], there has been little (if any) attempt to
characterize the robustness of interdependent systems where
the constituent networks have different intra-dependency be-
haviors. In the case of CPS, it would be expected that the
cyber and physical counterparts obey inherently different rules
governing how failures would propagate internally in each
network. To this end, we study in this paper an interdependent
system model that consists of two networks with different
characteristics governing their intra-dependency: i) a cyber-
network where a node is deemed to be functional as long
as it belongs to the largest connected (i.e., giant) component;
and ii) a physical network where nodes are given an initial
flow and a capacity, and failure of a node results with
redistribution of its flow to the remaining nodes, upon which
further failures might take place due to overloading (i.e.,
the flow of a node exceeding its capacity). To the best of
our knowledge, this is the first work in the literature that
studies interdependence between networks with fundamentally
different intra-dependency; most existing works are focused on
the interdependency between two physical networks (that obey
a flow-redistribution-based model) [29], or two cyber-networks
(that obey a giant-component-based intra-failure model) [6].

For simplicity, the interdependence across the two networks
is assumed to be one-to-one; i.e., every node in the cyber-
network is dependent upon and supports a single node in
the physical network, and vice versa; see Figure 2. More
precisely, we assume that for each i = 1, . . . , N , nodes
ai and bi are dependent on each other meaning that if one
fails, the other will fail as well. Although simplistic, the one-
to-one interdependence model is considered to be a good
starting point and has already provided useful insights in
similar settings [6]; more complicated interdependence models
shall be considered in future work including regular allocation
strategy, i.e., each node in A is connected to k nodes in B and
vice versa, or a more general case where some nodes do not
have interdependent links and can function even without any
support from the other network.
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Network A

Network B

Fig. 2. System model illustration for the cyber-physical systems, where
network A can be the physical grid, and network B can be the communication
network that sends control signals. The interdependence across the two net-
works are realized through random one-to-one support links shown by dashed
lines.

Intra-dependency in Network A. Let network A represent a
flow network on nodes a1, . . . , aN . Each node ai is given an
initial load (e.g., power flow) L1, . . . , LN . The capacity Ci of
node ai defines the maximum flow that it can sustain, and is
given by

Ci = Li + Si, i = 1, . . . , N, (1)

where Si denotes the free-space (or, redundancy) available to
node ai. It is assumed that a node fails (i.e., outages) if its load
exceeds its capacity at any given time. The key assumption
of our intra-dependency model for network A is that when a
node fails, the load it was carrying (right before the failure)
is redistributed equally among all remaining nodes. This leads
to an increase in load carried by all remaining nodes, which
in turn may lead to further failures of overloaded nodes, and
so on, potentially leading to a cascade of failures.

The equal load redistribution rule takes its roots from the
democratic fiber bundle model [2], [12], and has been recently
used by Pahwa et al. [25] in the context of power systems; see
also [36], [39]. The relevance of the equal load-redistribution
model for power systems stems from its ability to capture the
long-range nature of the Kirchhoff’s law, at least in the mean-
field sense, as opposed to the topological models where failed
load is redistributed only locally among neighboring lines [11],
[34].

Throughout we assume that the load and free-space pairs
(Li, Si) are independently and identically distributed with
PLS(x, y) := P [L ≤ x, S ≤ y] for each i = 1, . . . , N . The
corresponding (joint) probability density function is given by
pLS(x, y) = ∂2

∂x∂yPLS(x, y). In order to avoid trivial cases,
we assume that Si > 0 and Li > 0 with probability one for
each ai. Finally, we assume that the marginal densities pL(x)
and pS(y) are continuous on their support.

Intra-dependency in Network B. Let network B represent
a cyber (e.g., communication) network consisting of nodes
b1, . . . , bN . In this network, we assume that a node keeps
functioning as long as it belongs to the largest (i.e., giant)
connected component of the network. If a node loses its
connection to the giant core of the network, then it is assumed
to have failed and can no longer carry out its functions. This
percolation-based failure rule, though not suitable for physical
systems carrying a flow, can be regarded as a reasonable model

for cyber-networks (e.g., sensor networks) where connectivity
to a giant core would be crucial for a node’s capability to
deliver its tasks.

Robustness of networks under the giant-component based
failure model has been extensively analyzed in the case of
single networks [3], [22], [23]. The focus has recently been
shifted towards interdependent networks with the work of
Buldyrev et al. [6], where robustness of two interdependent
networks, both operating under the giant-component based
intra-dependence rule, was studied. Their model, and most
works that follow, are unable to capture the true nature of
a cyber-physical network, where the cyber-network and the
physical-network should obey a different set of rules deter-
mining their intra-dependencies.

We define the structure of the network B through its degree
distribution, namely the probabilities {dk, k = 0, 1, . . .}
that an arbitrary node in B has degree k; clearly, we need
to have

∑∞
k=0 dk = 1. In particular, each node b1, . . . , bN

is assigned a degree drawn from the distribution {dk}∞k=0

independently from any other node. Once the degree sequence,
degree(b1), . . . , degree(bN ), of the network is determined,
network B is constructed by selecting uniformly at random
a graph among all graphs on N nodes with the given degree
sequence; see [5], [20], [23] for details of such constructions.
This class of networks is known in the literature as the
configuration model or random graphs with arbitrary degree
distribution. Degree distribution is often regarded as the core
property defining a graph, and random networks with arbitrary
degree distributions are extensively used as a starting point in
the literature on robustness of complex networks.

Interdependent System Model. With the intra-dependency
models of both networks specified, we adopt a one-to-one
inter-dependency model across networks A and B; i.e., nodes
ai and bi depend on each other for each i = 1, . . . , N . With
these in mind, we are interested in understanding the dynamics
of cascading failures in this interdependent system, where
failures are initiated by removing a (1− p)-fraction of nodes,
selected randomly, from network A . As explained in Figure
1, we assume an asynchronous cascade model, where intra-
propagation and inter-propagation of failures are considered in
a sequential manner. At any stage t = 1, 2, . . . of the cascade
process, a node ai in network A will still be functioning if and
only if (i) its current flow at time t is less than its capacity; and
(ii) its counterpart bi in network B is still functioning (which
is equivalent to bi being contained in the largest connected
subgraph of B). Similarly, a node bj in network B survives
cascade step t if and only if i) it belongs to largest connected
component of B at time t; and (ii) its counterpart aj in network
A is still functioning (which is equivalent to aj carrying a flow
at time t that is less than its capacity).

Since the cascade process is monotone, a steady-state will
eventually be reached, possibly after all nodes have failed.
Let Nsurviving ⊂ {1, . . . , N} be the set of node id’s that
are still functioning at the steady state. In other words,
the surviving interdependent system will consist of nodes
{ai : i ∈ Nsurviving} where each ai has more capacity than
its flow and {bi : i ∈ Nsurviving} that constitutes a connected
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subgraph of network B. The primary goal of this paper is to
derive the mean fraction of nodes that survive the cascades as
a function of the initial attack size 1 − p, in the asymptotic
limit of large network size N . More precisely, we would like
to characterize S(p) defined as

S(p) := lim
N→∞

E [|Nsurviving(p)|]
N

In what follows, we present our main result that allows
computing S(p) under any degree distribution {dk}∞k=0 of the
cyber-network B, any load-(free-space) distribution PLS(x, y)
of the physical network A, and under any attack size 0 ≤
p ≤ 1. This is followed in Section IV by a numerical
study that demonstrates the accuracy of our analysis even
with finite N , and presents insights on how the robustness of
an interdependent cyber-physical system can be improved by
careful allocation of available resources (e.g., node capacities
and degrees).

III. MAIN RESULT

Our main result is presented next. The approach is based
on recursively deriving the mean fraction of surviving nodes
from both networks at each stage t = 1, 2, . . . of the cascade
process. The cascade process starts at time t = 0 with a
random attack that kills 1 − p fraction of the nodes from
network A. As mentioned earlier, we assume an asynchronous
cascading failure model where at stages t = 1, 3, . . . we

consider the failures in network A and in stages t = 2, 4, . . .
we consider the failures in network B. In this manner, we
keep track of the subset of vertices A1 ⊃ A3 ⊃ . . . ⊃ A2i+1

and B2 ⊃ B4 ⊃ . . . ⊃ B2i that represent the functioning (i.e.,
surviving) nodes at the corresponding stage of the cascade. We
let fAi denote the relative size of the surviving set of nodes
from network A at stage i, i.e.,

fAi =
|Ai|
N

, i = 1, 3, 5, . . .

We define fBi similarly as

fBi =
|Bi|
N

, i = 2, 4, 6, . . .

Our main result, presented next, shows how these quantities
can be computed in a recursive manner.

Theorem 3.1: Consider an interdependent system as
described in Section II, where the load and free-space values
of nodes a1, . . . , aN are drawn independently from the
distribution pLS , and network B is generated according to the
configuration model with degree distribution {dk}∞k=0; i.e., we
have P [degree of node bi = k] = dk for each k = 0, 1, . . .
and i = 1, . . . , N . Let mean degree be denoted by 〈d〉, i.e.,
let 〈d〉 =

∑∞
k=0 kdk. With fB0

= pB0
= p, fA−1

= 1,
and Q−1 = 0, the relative size of the surviving parts of
network A and B at each stage of the cascade, initiated
by a random attack on 1 − p fraction of the nodes, can
be computed recursively as follows for each i = 0, 1, . . .

pA2i+1 =
fB2i

fA2i−1

(2)

Q2i+1 = Q2i−1 +min

{
x∈ (0,∞] :

P [S > Q2i−1 +x]

P [S > Q2i−1]
(x+Q2i−1 +E [L | S> x+Q2i−1])≥ Q2i−1 +E [L | S >Q2i−1]

pA2i+1

}
(3)

fA2i+1
= fA2i−1

· pA2i+1
· P [S > Q2i+1 | S > Q2i−1] (4)

pB2i+2 = pB2i

fA2i+1

fB2i

(5)

u2i+2 = max

{
u ∈ [0, 1] : u = 1−

∞∑
k=0

kdk
〈d〉

(1− u · pB2i+2)k−1

}
(6)

fB2i+2
= pB2i+2

(
1−

∞∑
k=0

dk
(
1− u2i+2 · pB2i+2

)k)
(7)

The notation used in Theorem 3.1 is summarized in Table I. In
these iterations, it is assumed that if at any stage i, it happens
to be the case that no x <∞ satisfies the inequality at (3), we
set Q2i+1 =∞. It is then understood that the entire network
A (and thus B) have failed, and we get fA2i+1

= fB2i+2
= 0.

Similarly, it can be seen that the equality in (6) always holds
with u = 0. Thus, if at any stage i, there is no u > 0 satisfying
the equality in (6), we will get u2i+2 = 0 leading to fB2i+2

=

0; i.e., the entire network B (and thus A) will have collapsed.

Ai set of surviving nodes in network A at stage i = 1, 3, 5, . . .
Bi set of surviving nodes in network B at stage i = 2, 4, 6, . . .
fA2i+1

fraction |A2i+1|/N of surviving nodes in A at stage 2i+ 1

fB2i+2
fraction |B2i+2|/N of surviving nodes in B at stage 2i+ 2

Q2i+1 extra load per surviving node in A at stage 2i+ 1
pA2i+1

prob. of a node in A2i−1 surviving inter-failures at stage 2i

1− pB2i+2
equivalent prob. of random attack to B that gives B2i+2

u2i+2 auxiliary variable used in computing fB2i+2

TABLE I
KEY NOTATION IN THE ANALYSIS OF CASCADING FAILURES
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As mentioned before, our goal is to obtain the final system
size, i.e., the relative size of the surviving nodes at the steady-
state. In view of the one-to-one interdependence model, the
surviving size of the networks A and B will be the same at
the steady-state. Thus, we conclude that

S(p) = lim
i→∞

fAi = lim
i→∞

fBi .

Next, we provide an outline of the proof, while the full
details are available in Appendix. In [39], we already analyzed
the cascade dynamics and derived the final system size in a
single flow carrying network (similar to network A in our
analysis), when 1 − p fraction of its nodes are randomly
removed; the result enables computing the final system size in
terms of the initial attack size 1−p, as well as the load and free
space distribution PLS(x, y). The results established in [39]
are incorporated in the recursions above through expression
(3) that allows us to calculate, in a recursive manner, the extra
load that each of the surviving nodes at a particular stage will
be carrying in addition to their initial load.

According to the failure propagation model described at the
beginning of this section, at odd stages failures from network
B can propagate to network A, causing a fraction of nodes
to be removed. As explained in details in Appendix, given
that the intra-failure dynamics of network B is completely
independent from network A, the impact of the failures in B
to network A will be equivalent to a random attack launched
on A. In addition, at each odd stage t = 2i− 1, i = 1, 2, · · · ,
we can treat the remaining part of network A as a new
physical network A2i−1, with the appropriately updated size
and load-‘free-space’ distribution. Thus, the random removal
of nodes caused by failures in network B (through the one-
to-one interdependency links) from last cascade stage can be
viewed as a new random attack to A2i−1 that keeps only
pA2i+1

fraction of its nodes alive. Then following a similar
approach, we can compute the size of network A at the next
stage 2i+1, i.e., fA2i+1 . An important observation is the need
to update the load and free-space distributions for each new
network A2i+1 to incorporate the facts that the surviving nodes
in A2i+1 are added with Q2i−1 amount of extra load, and at
the same time the free-space of each surviving node must be
at least Q2i−1. We show in the detailed proof in Appendix that
the changes of the distribution can be represented by the initial
load and free-space distribution with Q2i+1 representing the
extra load in each stage. In other words, each time failures
propagate between the two networks, network A will shrink
to a group of nodes that have a higher free space and that are
now carrying more load. The fractional size of this surviving
subset of nodes at each time stage can be computed via the
equivalent attack size pA2i+1

(caused by failures in network
B propagated via the one-to-one dependent links), extra load
Q2i+1 and the load free-space distribution PLS(x, y); see (2)-
(4).

Following the same approach, in network B we treat each
new failure that comes from network A as a new random
attack (or failure) on the existing network B2i+2. For a node in
network B to function, it must belong to the largest connected
(i.e., giant) component, so actually the functioning network
B2i+2 at time stage t = 2i + 2, i = 0, 1, 2, · · · is the giant

component after the random attack propagated from network
A. A key insight here is that the sequential process of applying
a first random attack on the cyber-network, then computing the
giant component, and then applying a second random attack
and then computing the giant component is equivalent to (in
terms of the fractional size of the set of nodes that survives)
the process where the second random attack is applied directly
after the first one without computing the giant component;
e.g., see [6]. This way, the result of a series of random
attack/giant-component calculation processes can be emulated
by a single random attack/giant-component calculation, with
an appropriately calculated equivalent random attack size. In
our calculations, this equivalent attack size for stage 2i+ 2 is
represented by 1−pB2i+2

and can be computed recursively as
given in (5). This formula is based on treating all new failures
propagated from network A in the following time stage as the
new random attack size launched on B, which is then used to
update the equivalent attack size 1− pB2i+2 that will be used
to emulate the entire cascade sequence up until that stage.
Then, the size of network B2i+2, namely the size of the giant
component after randomly removing (1− pB2i+2

)-fraction of
nodes, can be computed using the technique of generating
functions [6], [17], [22], [23], [32]. The formulas that give
the network size fB2i+2 at each time stage i = 0, 1, . . . are
presented at (6) and (7).

Once we know how to compute the surviving network sizes
fA2i+1 and fB2i+2 at each stage, the propagation of failures
between the two networks is seen to be governed via (2) and
(5) that reveal how the key quantities pA2i+1 and pB2i+2

used
in computing fA2i+1

and fB2i+2
, respectively, need to be up-

dated based on the result of the last cascade stage. Collecting,
a thorough analysis that reveals a full understanding of the
system behavior and robustness during the failure process is
presented in equations (2)-(7).

IV. NUMERICAL RESULTS

In this section, we confirm our analytic results through nu-
merical simulations under a wide range of parameter choices,
with a particular focus on checking the accuracy of the results
when the network size N is finite.

For physical networks carrying a certain flow (i.e., network
A in our analysis), we consider different combinations of
probability distributions for the load and free-space variables.
Throughout, we consider three commonly used families of
distributions: i) Uniform, ii) Pareto, and iii) Weibull. These
distributions are chosen here because they cover a wide range
of commonly used and representative cases. In particular,
uniform distribution provides an intuitive baseline. Distribu-
tions belonging to the Pareto family are also known as a
power-law distributions and have been observed in many real-
world networks including the Internet, the citation network,
as well as power systems [24]. Weibull distribution is widely
used in engineering problems involving reliability and survival
analysis, and contains several classical distributions as special
cases; e.g., Exponential, Rayleigh, and Dirac-delta.

The corresponding probability density functions are defined
below for a generic random variable L.
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• Uniform Distribution: L ∼ U(Lmin, Lmax). The density is
given by

pL(x) =
1

Lmax − Lmin
· 1 [Lmin ≤ x ≤ Lmax]

• Pareto Distribution: L ∼ Pareto(Lmin, b). With Lmin > 0
and b > 0, the density is given by

pL(x) = Lbminbx
−b−11 [x ≥ Lmin] .

To ensure that E [L] = bLmin/(b − 1) is finite, we also
enforce b > 1. Distributions belonging to the Pareto
family are also known as a power-law distributions and
have been extensively used in many fields including
power systems.

• Weibull Distribution: L ∼ Weibull(Lmin, λ, k). With
λ, k, Lmin > 0, the density is given by

pL(x) =
k

λ

(
x− Lmin

λ

)k−1

e
−
(
x−Lmin
λ

)k
1 [x ≥ Lmin] .

The case k = 1 corresponds to the exponential distribu-
tion, and k = 2 corresponds to Rayleigh distribution. The
mean is given by E [L] = Lmin +λΓ(1+1/k), where Γ(·)
is the gamma-function given by Γ(x) =

∫∞
0
tx−1e−tdt.

As explained in Section II-B, the cyber-network where a
node is only functional when it belongs to the giant component
(i.e., network B in our analysis) is generated according to the
configuration model with degree distribution {dk}∞k=0. In the
simulations, we consider two representative cases given below:
• Erdős-Rényi (ER) network model [4], [15], [16]. This

corresponds to having the degree distribution dk follow a
Binomial distribution, i.e., dk ∼ Binomial(N − 1; 〈d〉N−1 );
as before 〈d〉 gives the mean node degree.

• The scale-free (SF) network model [3]. We consider the
case where the degree distribution {dk}∞k=0 is a power-
law with exponential cut-off, which was observed [10] in
many real networks including the Internet; i.e., we have

dk =

{
0 if k = 0

1
Liγ(e−1/Γ)

k−γe−k/Γ if k = 1, 2, · · · , (8)

where γ is the power exponent, Γ is the cut-off point, and
Lim(z) :=

∑k=∞
k=1 zkk−m is the normalizing constant.

We remind that although we restrict our attention to these
special cases in the simulations, our analysis applies under
more general degree distributions as well.

A. Fiber Network Coupled with ER Network

The Erdős-Rényi graph is one of the most basic and widely
used network models and often serve as a starting point in
simulations. In our study, we start with N nodes, and connect
each pair of vertices with an edge with probability 〈d〉/(N−1)
independently from each other. When N is large, this is
equivalent to generating the network via the configuration
model using a Poisson degree distribution with mean 〈d〉.

First, we confirm our main result presented in Sec. III
concerning the final system size S(p), i.e., the mean fraction
of surviving nodes at the end of cascading failures initiated
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Fig. 3. Final system size under different network settings, including different
load-free space distributions in the physical network and different mean degree
in the cyber network. Analytic results are represented by lines, whereas simula-
tion results are represented by symbols (averaged over 100 independent runs).
We see that in each case theoretical results match the simulation results very
well.

by a random attack that removes 1 − p fraction of nodes in
network A. In all simulations, we fix the number of nodes in
both networks at N = 105, and for each set of parameters
being considered (i.e., the distribution pLS(x, y), the attack
size 1− p in network A, and the mean degree 〈d〉 in network
B), we run 100 independent experiments. The results are
shown in Figure 3 where symbols represent the empirical
value of the final system size S(p) (obtained by averaging
over 100 independent runs for each data point), and lines
represent the analytic results computed via (2)–(7). We see that
theoretical results match the simulations very well in all cases.
This suggests that although asymptotic in nature, our main
result can still be helpful when the network size N is finite.
The specific distributions used in Figure 3 are as follows:
From left to right, we have i) in network A (the physical
network), L is Weibull with Lmin = 10, λ = 100, k = 0.6 and
S = αL with α = 3.74; in network B (the cyber network)
the mean degree 〈d〉 = 5.5; ii) in network A, L is Weibull
with Lmin = 10, λ = 100, k = 0.6 and S is Uniform over
[60, 80]; in network B 〈d〉 = 4; iii) L is Uniform over [10, 30]
and and S = αL with α = 2.74; in network B 〈d〉 = 3.5;
iv) L is Uniform over [10, 30] and S is Uniform over [40, 50];
〈d〉 = 4; v) L is Pareto with Lmin = 10, b = 2, S = αL with
α = 2.3; 〈d〉 = 4.5; vi) L is Pareto with Lmin = 10, b = 2,
S = αL with α = 2.3; 〈d〉 = 3.

The plots in Figure 3 show how different load-free space
distributions in network A as well as the mean degree in
network B affect the system behavior. For example, with the
mean degree of network B is fixed to 〈d〉 = 4, the two
different cases considered in Figure 3, one where the initial
loads in network A follow a Weibull distribution (magenta
asterisk) and the other where the initial loads follow a Uniform
distribution (purple triangle) lead to vastly different system
behavior against attacks. When load in network A follows
Weibull distribution, the final system size drops to zero at a
point where the attack size is around 0.23, meaning that any
random attack that kills more than 23% of the nodes will
destroy the entire system. On the other hand, if the load and
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free space follows Uniform distribution, the system is quite
robust and can sustain initial attack sizes up to 0.55 without
collapsing. Similarly, when we fix the distribution in network
A, we can see the effect of mean degree in the cyber network
on system robustness: when initial load in physical network
follows Pareto(10, 2) distribution, and free space is given by
S = αL with α = 2.3, we see that increasing mean degree
of network B from 〈d〉 = 3 (green cross) to 〈d〉 = 4.5 (light
blue triangle) leads to a substantial increase on the final system
size at all attack sizes; i.e., the interdependent CPS becomes
more robust. This is intuitive since higher 〈d〉 values lead to a
cyber-network B with higher levels of connectivity enabling
the entire CPS to sustain larger attacks while maintaining a
larger fraction of nodes in its giant component.

An interesting observation from Figure 3 is that in all
cases, the final drop of the system size to zero takes place
through a first-order (i.e., discontinuous) transition1, making
it difficult to predict system behavior from previous data
(in response to attacks with larger than previously observed
size). In fact, this abrupt failure behavior is reminiscent of
the real-world phenomena of unexpected large-scale system
collapses; i.e., cases where seemingly identical attacks/failures
leading to entirely different consequences. We also see that our
model can lead to a rich set of behaviors to increasing attack
sizes. For instance, when the initial load follows a Weibull
distribution, depending on the parameters, it is possible to
observe an abrupt first-order transition with no prior indication
of system collapse at smaller attack sizes (magenta asterisk),
as well as a first-then-second order transition (orange triangle)
before the system size drops to zero through a final first-order
transition. These behaviors are due to the intrinsic characters of
different distributions, and should be considered in designing
CPS where the physical network may be governed by different
flow distribution types.

From a design perspective, it is of interest to understand
how the robustness of the interdependent system can be
improved or even maximized under certain constrains. To gain
insights on this, we fix the mean degree in network B (the
cyber network), and explore the effect of the allocation (i.e.,
distribution) of node capacities in the physical network. A
key determining factor of system robustness is expected to
be the free-space distribution as it specifies the extra load
a node can receive from the failed ones before it fails due
to overloading. The vast majority of the literature and most
real world applications employ a linear free-space allocation
scheme where the free-space assigned to a node is set to be
a fixed proportion of its initial load. In other words, it is
assumed that S = αL, where α is the tolerance factor and
is usually a fixed value [11], [19], [21], [35] used for the
entire network. We already showed in [39] that in a single
flow-carrying network, allocating every node exactly the same
free-space leads to a higher robustness (at any attack size
1 − p) than the commonly used setting of equal tolerance
factor (with the comparison made when the total free-space
in the entire network is fixed). In fact, in the single network

1The nomenclature concerning the order of transitions is adopted from the
studies on phase transition in Physics; simply put, first (resp. second) order
transitions are associated with discontinuous (resp. continuous) variations.
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Fig. 4. Final system size under equal free space (solid lines with symbols)
or equal tolerance factor (dashed lines with symbols) when network B is a
ER graph with fixed mean degree. The symbols are empirical results over
100 independent runs on network size N = 105, and lines (dashed or solid)
represent analytic results. We can see in all cases equal free space greatly
improves system robustness by allowing the system to sustain a larger initial
attack size and still not collapsing.

case, the robustness is shown to be maximized when all nodes
receive the same free space.

Our numerical simulations, presented in Figure 4, shows
that the above conclusion still applies in interdependent net-
works. Namely, assigning every node the same free space
provides a much better overall system robustness as compared
to the widely used setting of equal tolerance factor (i.e.,
linear free-space allocation). To provide an overall evaluation
of the system robustness, we define the critical attack size
1 − p? as the minimum attack size that breaks down the
whole system. Thus, the larger 1− p? is, the more robust will
the system be since it can sustain larger attacks. In Figure
4, the comparison between the equal free-space and equal
tolerance factor allocations are made with the mean free space
E[S] being fixed (i.e., the total free space in the network is
constrained). We see that compared to the equal tolerance
factor scheme, the equal free-space allocation enables the
system to sustain much larger attacks. In fact, in the case of
Weibull distribution, the robustness is almost 2.5 times higher
in the case of equal free space as compared to the case with
equal tolerance factor; i.e., 1− p? = 0.7 vs. 1− p? = 0.28.

B. Fiber Network Coupled with SF Network

Although the ER graph constitutes a simple and useful net-
work model, networks in most real-world applications might
have significantly different structure and robustness behavior
against attacks. For instance, scale-free networks (SF model)
were shown [1] to exhibit fundamentally different robustness
behavior with ER networks; the former is very robust against
random attacks but fragile against targeted attacks, while the
situation is exactly the opposite for the latter. In order to better
understand the impact of the topology of the cyber-network on
the overall robustness of an interdependent CPS, we consider
in this section the case where the cyber network (network B)
has a power-law degree distribution with exponential cutoff.
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Fig. 5. Final system size under different network settings, including different load-free space distributions in the physical network and different exponent in the
scale-free cyber network. Analytic results are represented by lines, whereas simulation results are represented by symbols (averaged over 100 independent runs).
We see that in each case theoretical results match the simulation results very well.

In addition to being observed in many real-world networks
including the Internet [10], power-law distributions with ex-
ponential cut-off also ensure that all moments of the node
degree are finite, which helps certain convergences take place
faster (i.e., with smaller N ).

In Figure 5, we verify our analytic results when network
B (cyber network) has a degree distribution in the form
of a power-law with exponential cut-off; this is denoted by
SF (γ,Γ), where γ is the power exponent and Γ is the cut-
off parameter given at (8). In all cases, we fix the number
of nodes in both networks to be N = 106, and consider
several different load-‘free space’ distributions in network A
and different (γ,Γ) values for network B (while noting that
in real-world networks, it is often observed that 2 < γ < 3).
The simulation results are obtained by averaging over 100
independent experiments for each data point and it is seen
that they are in very good agreement with the analytic results.

Next, we seek to obtain an overall understanding of how
the free-space allocation in the physical network together with
the topology of the cyber network (ER vs. SF model) affect
the system robustness. With the discussion from Section IV-A
in mind, we consider the widely used equal tolerance factor
allocation (equal α), where the free-space S is a fixed factor α
of the load on a node (i.e., S = α∗L) and the equal free-space
allocation scheme (equal S) that was shown [39] to be optimal
in a single physical network. For fairness, all comparisons are
made under the same initial load distribution, and with the
mean free-space in network A and the mean node degree in
network B being fixed.

The results are shown in Figure 6. We can see that no matter
how the initial load is distributed, i.e., whether it’s Uniform,
Pareto or Weibull, and despite of the structure of the cyber
network being SF network or ER network, equal free-space
allocation can greatly improve system robustness as compared
to the equal tolerance factor allocation. We observe that when
all nodes in network A are given the same free-space, the
overall interdependent CPS can sustain a much larger initial

attack size without collapsing; i.e., it has a much larger critical
attack size. For example in the case of Weibull distributed load
with SF network, the system can only take around 16.8% of
initial attack size when using equal α, but can sustain a initial
attack that removes 58% of the nodes when equal S is used,
making the system about 3 times more robust in terms of the
critical attack size.

We also see in Figure 6 that the topology of the cyber
network affects the robustness of the interdependent CPS in
an intricate way, with some cases showing the exact opposite
of what would have been expected from the results on single
networks. In particular, SF networks are known [3] to be more
robust than ER networks against random attacks. This is often
attributed to the fact that SF networks typically have a few
nodes with very high degrees and the network will likely
contain a large connected component unless these high-degree
nodes are removed (which is unlikely to happen if the attack
is random); this dependence on a few nodes is exactly what
makes SF networks very fragile against a targeted attack. In
the case of the interdependent CPS model, we see that the
comparison of the overall robustness between the cases where
they cyber network is SF or ER is a much more complicated
matter. In fact, depending on the load-‘free-space’ distribution
in the physical network, the cyber network being SF does not
always lead to a better robustness than the case with ER. For
example, in the upper two plots in Figure 6 where the initial
load is Uniform and Pareto, respectively, the cases with the
ER network leads to a better robustness than that with SF. In
the bottom left picture where the initial load in the physical
networks is Weibull, the situation is even more intricate. With
equal α, the case where the cyber-network is ER leads to a
better robustness, while SF network performs better (in terms
of the critical attack size) under the equal-S allocation. This
shows that an integrated CPS can not be designed in the most
robust way by considering the physical and cyber counterparts
separately. Instead, a holistic design approach is needed where
the robustness of the CPS as a whole is considered.
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Fig. 6. Comparison of final system size when equal tolerance factor (equal α) and equal free space (equal S) schemes are used. The mean value of free
space is kept the same, as well as the mean degree in SF and ER networks. In all cases, equal S outperform the widely used equal α scheme. The effect
of topology in the cyber network is not unitary: in some cases ER leads to better robustness, while in other cases SF is better, contradicting the results [3]
concerning the robustness of single networks.

V. CONCLUSION

We have studied the robustness of an interdependent system
against cascading failures initiated by a random attack. This
is done through a novel model where the constituent networks
exhibit inherently different intra-dependency characteristics.
In particular, inspired by many applications of interdependent
cyber-physical systems (CPSs), our model consists of a flow
network where failure of a node leads to flow redistribution
and possible further failures due to overloading (i.e., the flow
on a node exceeding its capacity), and a cyber-network where
nodes need to be a part of the largest connected cluster to be
functional. We derive relations for the dynamics of cascading
failures, characterizing the mean fraction of surviving nodes
from each network at every stage of the cascade. This leads
to deriving the mean fraction of nodes that ultimately survive
the cascade as a function of the initial attack size. Through
numerical simulations, we confirm our analysis and derive
useful insights concerning the robustness of interdependent
CPSs.

There are many open directions for future work. First of all,

the simplistic one-to-one interdependence model used here can
be replaced by more sophisticated and realistic dependency
models. A good starting point would be to consider a model
where every node is assigned k inter-links and can continue
to function as long as at least one of its k support nodes
in the other network is functional. It would be interesting
to study the trade-off between the number of inter-links and
the resulting improvements in overall system robustness; one
might also consider a heterogeneous allocation of inter-links
and study the optimal (in the sense of maximizing robustness)
way to assign inter-links subject to certain constraints [37].
It would also be interesting the consider more complicated
flow redistribution models based on network topology, rather
than the equal redistribution model considered here. Finally,
it would be interesting to study the system robustness under
targeted attacks (where the set of nodes to be attacked is
chosen carefully by an adversary) rather than the case of
random attacks considered in this paper.
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[38] Y. Zhang, A. Arenas, and O. Yağan. Cascading failures in interdependent
systems under a flow redistribution model. Phys. Rev. E, 97:022307, Feb
2018.
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APPENDIX

PROOF OF THE MAIN RESULT

We now prove the main result of the paper, i.e., Theorem
3.1. This entails recursively deriving the mean fraction of
surviving nodes from both networks at each stage t = 1, 2, . . .
of the cascade process. The cascade process starts at time t = 0
with a random attack that kills 1−p fraction of the nodes from
network A. As mentioned earlier, we assume an asynchronous
model where at stages t = 1, 3, . . . we consider the failures in
network A and in stages t = 2, 4, . . . we consider the failures
in network B. In this manner, we keep track of the subset of
vertices A1 ⊃ A3 ⊃ . . . ⊃ A2i+1 and B2 ⊃ B4 ⊃ . . . ⊃ B2i

that represent the functioning (i.e., surviving) nodes at the
corresponding stage of the cascade. We let fAi denote the
relative size of the surviving set of nodes from network A at
stage i, i.e.,

fAi =
|Ai|
N

, i = 1, 3, 5, . . .

We define fBi similarly as

fBi =
|Bi|
N

, i = 2, 4, 6, . . .

A. Computing the Functional Component in Physical Network

First, we consider the intra-failures within the physical
network A and derive fAi for i = 1, 3, . . .. Initially, 1 − pA1

fraction of nodes are attacked (or, failed) randomly in network
A, where pA1

∈ [0, 1]. The flow in the failed nodes will
get redistributed (equally) to all remaining nodes that are not
attacked. Each such node will now have an increased load
on them. If the extra load received is greater than the free-
space on a node (equivalently, if the current load is greater
than their capacity), it will fail resulting in another round of
redistribution, and so on and so forth.
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In our previous work [39], we analyzed the cascading
failures in a single flow network and obtained results that
allows computing i) the fraction of nodes that will survive
at the steady-state of cascades; and ii) the extra load that
each surviving line will be carrying, once the steady-state is
reached. Here, this result, presented below as Theorem A.1
for convenience, will be used in calculating the outcome of
each round of intra-failures in network A.

Theorem A.1 ( [39]): Consider a flow network ofN nodes as
described in Section II-B. Let L and S denote generic random
variables following the same distribution (i.e., pLS(x, y)) with
initial loads L1, . . . , LN , and free spaces S1, . . . , SN , respec-
tively. Let n∞(p) be the mean fraction of nodes that are still
functioning at the steady of cascading failures initiated by a
random attack on (1− p)-fraction of the nodes. Then, we have

n∞(p) = pP [S > x?] . (A.1)

with x? denoting the extra load carried by each node that
survives at the steady-state and is given by

x? = min

{
x ∈ (0,∞] : (A.2)

P [S > x] (x+ E [L | S > x]) ≥ E [L]

p

}
In words, this result states that when (1 − p)-fraction of

nodes fail randomly in a flow network where the initial
load-‘free-space’ distribution is given by pLS , the cascading
failures (caused by recursive load redistribution) will stop with
pP[S > x?]-fraction of nodes surviving, and the load-‘free-
space’ distribution of surviving nodes will be updated as

L(·) ∼ L+ x? | S > x? (A.3)

S(·) ∼ S − x? | S > x? (A.4)

where x? is as defined in (A.2). These observations as well
as (A.1) follow immediately from the fact that x? gives the
amount of extra load each surviving node carries at the steady-
state; see [39] for a detailed explanation of this fact. For
example, (A.1) is seen easily as the probability that a node
is not in the initial set of (1− p)-fraction of failed nodes, and
has more free-space than the x? amount of load it receives
through redistribution from nodes that failed at any step of
the cascade. Also, given that a node survives this cascade
of failures, the probability distribution of its load-‘free-space’
values need to be updated via conditioning on the fact that its
free space satisfies S > x?. Noting also that each surviving
node will now carry x? amount of extra load in addition to its
initial load, and will have x? amount of less free-space than
it started with, we obtain (A.3) and (A.4).

In the forthcoming discussion we will repeatedly use the
fact that the set of nodes that survive at the steady-state
still form a flow network as described in Section II-B, with
its fractional size reduced to pP[S > x?] and its load-
‘free-space’ distribution updated via (A.3) - (A.4). For the
interdependent network model under consideration, the intra-
failures in network A will be followed by failures in network B
first due to inter-dependence, and then due to intra-dependence
in B, with the latter possibly triggering further failures in A;

e.g., see Figure 1). For instance, for any stage i = 0, 1, . . ., let
us assume that the intra-failures in network A has just resulted
in A2i−1. This will be followed by the aforementioned failures
in B leading to B2i. Since intra-failure dynamics of network
B is completely independent from network A, the impact of
the failures in B to network A will be will be equivalent to a
random attack launched on A2i−1; in fact, it will be equivalent
to a random attack targeting 1− |B2i|/|A2i−1|-fraction of the
nodes. The discussion above shows that we can compute the
outcome of this random attack again from Theorem A.1 and
obtain the size of A2i+1, and so on.

With these in mind, we now start by computing fA1
which

gives the resulting size of network A after a random attack to
1−pA1 -fraction of nodes; i.e., fA1 gives the fraction of nodes
in A1. Using Theorem A.1, we immediately get

fA1
= pA1

P [S > x?1] (A.5)

where x?1 is given from

x?1 = min

{
x ∈ (0,∞] : (A.6)

P [S > x] (x+ E [L | S > x]) ≥ E [L]

pA1

}
We also know from Theorem A.1 that the f1 fraction of nodes
that constitute the sub-network A1 have their loads and free-
spaces coming from the updated distributions

L(1) ∼ L+ x?1 | S > x?1 (A.7)

S(1) ∼ S − x?1 | S > x?1 (A.8)

We find it useful to denote by Qi the extra load that each
surviving node carries at stage i = 1, 3, 5, . . .; i.e., Qi denotes
the extra load each node in Ai carries. This leads to Q1 = x?1,
and we get

fA1
= pA1

P [S > Q1] (A.9)

where

Q1 = min

{
x ∈ (0,∞] : (A.10)

P [S > x] (x+ E [L | S > x]) ≥ E [L]

pA1

}
Setting fB0

= p, fA−1
= 1, and Q−1 = 0 for convenience,

these establish the desired results (2)-(4) for i = 0.
After the intra-failures in network A stabilizes, we check

the effect of these on network B, again according to the
asynchronous cascading failure model summarized in Figure
1. Due to the one-to-one interdependence between network A
and B, when cascading failures stop at network A, network
B reduces to B̄2 which has the same size with A1; in fact,
B̄2 = {bj : aj ∈ A1}. According to our model, the intra-
failures in the cyber-network B are governed by the giant-
component rule, i.e., at each stage a node in B is functional
if and only if it belongs to its largest connected component.
This will lead to a reduction of B̄2 to its largest connected
component, defined as B2. Due to one-to-one interdependence
model, we will next observe |B̄2 − B2| nodes failing from
network A, more precisely from A1. It should be clear that
the nodes that belong to |B̄2−B2| have failed solely according
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to the initial intra-topology of network B which is constructed
independently from network A. Therefore, the removal of
|B̄2 − B2| nodes from A1 will be equivalent to a random
attack launched on A1 that removes

|B̄2 −B2|
|A1|

=
|A1| − |B2|
|A1|

= 1− fB2

fA1

fraction of nodes.
As in (2) with i = 1, we define pA3 =

fB2

fA1
. Now, the

impact of intra-failures in network A can be computed once
again from Theorem A.1. This time, a random attack of size
1−pA3 will be launched on A1 whose fractional size is given
by fA1

, and the distribution of load and free-space of its nodes
are as given in (A.7)-(A.8). From Theorem A.1, we get

fA3
= fA1

pA3
P
[
S(1) > x?3

]
(A.11)

where x?3 is given from

x?3 = min

{
x ∈ (0,∞] : (A.12)

P
[
S(1) > x

] (
x+ E

[
L(1) | S(1) > x

])
≥

E
[
L(1)

]
pA3

}
Also, each surviving node in A3 will now have an updated
load and free-space distribution, given as

L(3) ∼ L(1) + x?3 | S(1) > x?3

S(3) ∼ S(1) − x?3 | S(1) > x?3.

From (A.7) and (A.8), this is equivalent to

L(3) ∼ L+Q3 | S > Q3 (A.13)

S(3) ∼ S −Q3 | S > Q3, (A.14)

as we set Q3 = x?1 +x?3. As before, Q3 denotes the extra load
that each node in A3 carries.

We now use (A.7)-(A.8) and definitions of Q1, Q3 to
simplify (A.11) and (A.12). First, observe that

P
[
S(1) > x?3

]
= P [S − x?1 > x?3 | S > x?1]

= P [S > Q3 | S > Q1]

Similarly,

P
[
S(1) > x

] (
x+ E

[
L(1) | S(1) > x

])
= P [S > x?1 + x | S > x?1] (x+ E [x?1 + L | S > x?1])

=
P [S > Q1 + x]

P [S > Q1]
(x+Q1 + E [L | S > Q1])

since x > 0. Finally, we have

E
[
L(1)

]
= E [L+ x?1 | S > x?1] = Q1 + E [L | S > Q1]

Reporting these into (A.11) and (A.12), we now get

fA3 = fA1pA3P [S > Q3 | S > Q1] (A.15)

where

Q3 = Q1 + min

{
x ∈ (0,∞] :

P [S > Q1 + x]

P [S > Q1]
× (A.16)

× (x+Q1 + E [L | S > Q1]) ≥ Q1 + E [L | S > Q1]

pA3

}

The desired results (2)-(4) of Theorem 3.1 are now established
for i = 1.

The cascade process will continue in the same manner,
by considering the failures in network B. Again, the impact
of intra-failures in B will be equivalent to a random attack
launched at A3 that fail

|B̄4 −B4|
|A3|

=
|A3| − |B4|
|A3|

= 1− fB4

fA3

:= 1− pA5

fraction of nodes. We can use Theorem A.1 again to compute
the fraction of nodes from A3 that survive this random attack.
This time we should note that the fraction of nodes in A3

equals f3, while the load and free-space values of nodes in
A3 follow (A.13) and (A.14), respectively. This gives us

fA5
= fA3

pA5
P
[
S(3) > x?5

]
(A.17)

where x?3 is given from

x?5 = min

{
x ∈ (0,∞] : (A.18)

P
[
S(3) > x

] (
x+ E

[
L(3) | S(3) > x

])
≥

E
[
L(3)

]
pA5

}
Once again, we can simplify (A.17) and (A.18) using

(A.13), (A.13) and setting Q5 = Q3 +x?5. We omit the details
here in the interest of brevity, but it is straightforward to see
that

fA5
= fA3

pA5
P [S > Q5 | S > Q3] (A.19)

where

Q5 = Q3 + min

{
x ∈ (0,∞] :

P [S > Q3 + x]

P [S > Q3]
× (A.20)

× (x+Q3 + E [L | S > Q3]) ≥ Q3 + E [L | S > Q3]

pA5

}
The results (2)-(4) are now established for i = 2.

The form of the recursive equations concerning the func-
tional size of network A is now clear: We have (2)-(4) for
each i = 0, 1, . . . upon setting

Q2i+1 =

i∑
k=1

x?2k+1 = Q2i−1 + x?2i+1. (A.21)

As already mentioned, Q2i+1 denotes the extra load that each
node in A2i+1 carries. Using (2)-(4), we can compute the size,
fA2i+1

of the functioning nodes in the physical network A at
any stage i of the cascading failure process. Next, we will look
at how we can compute the size fB2i of functioning component
in the cyber network B.

B. Computing the Giant Component in Cyber Network

We now explain how the remaining fraction of functional
nodes in the cyber-network B can be computed at each stage
of the cascading failures; i.e., we will establish (5), (6), and
(7). The main idea we will use in this proof is the fact that
the failures that take place in network A at each cascade step
due to flow redistribution will be seen as a random attack to
the remaining portion of network B. This follows from the
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intra-topology of network B being independent from the load
and free-space values of the corresponding nodes in A.

With this in mind, the following result established in [20],
[22] will be used repeatedly.

Theorem B.2: Consider a network B generated randomly
according to the configuration model with degree distribution
{dk}∞k=0; i.e., we have P [degree of node bi = k] = dk for each
k = 0, 1, . . . and i = 1, . . . , N . The mean degree is denoted
by 〈d〉, i.e., we have 〈d〉 =

∑∞
k=0 kdk. Let fB(p) be the mean

fraction of nodes that are still functioning after a random attack
is launched on (1−p)-fraction of the nodes inB. In other words,
with B̄ denoting the network obtained by deleting every node
of B independently with probability (1− p), let fB(p) give the
fraction of nodes that are in the giant component of B̄. We have

fB(p) = p

(
1−

∞∑
k=0

dk (1− u?p)k
)

(B.22)

where

u? = max

{
u ∈ [0, 1] : u = 1−

∞∑
k=0

kdk
〈d〉

(1− up)k−1

}
(B.23)

Theorem B.2 can be used directly to derive (5)-(7) for i = 0,
i.e., to compute the fraction of nodes in B2. As stated before,
the initial attack on 1−p fraction of the nodes and subsequent
failures in network A due to flow redistribution leads to
network A reducing to A1 whose relative size is given by fA1

.
Due to the one-to-one interdependence between networks A
and B, this will lead to network B reducing to B̄2 which has
the same size with A1; in fact, B̄2 = {bj : aj ∈ A1}. In
light of the aforementioned independence between the intra-
topology of network B and the failures that lead A to reduce
to A1, the reduction of B to B̄2 will be equivalent to a random
attack launched on B that kills

1− |B̄2| = 1− fA1
:= pB2

fraction of the nodes. Thus, the size of the giant component
of B̄2 (denoted as B2 with relative size fB2

) can be computed
from Theorem B.2 by replacing p with pB2 . This yields

fB2 = pB2

(
1−

∞∑
k=0

dk (1− u2pB2)
k

)
where

u2 = max

{
u ∈ [0, 1] : u = 1−

∞∑
k=0

kdk
〈d〉

(1− upB2)k−1

}
.

These establish (5)-(7) for i = 0.
For the subsequent stages, we use the following result

that was introduced in [7]. Let network B be generated as
described in Theorem B.2. Assume that, as in the case studied
here, B goes through a series of random attacks, where after
each attack only the largest connected component of the
non-attacked part remains functional. For example, let B go
through the following process.

B
random attack−−−−−−−−−→

(1−p2)−fraction
B̄2

giant−−−→
comp.

B2
attack−−−→
1−p4

B̄4
giant−−−→
comp.

B4

→ · · · → B2i
attack−−−−−→

1−p2i+2

B̄2i+2
giant−−−→
comp.

B2i+2 (B.24)

Since all the attacks here are random, this process is equivalent
(in terms of the fractional size of B2i+2) to the case where a
single random attack (with appropriate size to be discussed
next) is applied to B followed by the computation of the
giant component of the remaining network. In other words,
the process described in (B.24) yields statistically the same
fraction of nodes in B2i+2 with the process

B
random attack−−−−−−−−−−−−−−−−→

(1−p2·p4···p2i+2)−fraction
B̄

giant−−−→
comp.

B2i+2 (B.25)

This result can be understood by considering the point of
view of a single fixed node, say vb in B, and calculating
its probability of being in B2i+2. Given that the network is
attacked sequentially with probabilities of failing any node
being 1 − p2, 1 − p4, . . . 1 − p2i+2, the probability for vb to
not fail in any of these stages is given by

p2 · p4 · · · p2i+2. (B.26)

This probability is the same with the case if B experiences
only one attack that kills (1 − p2 · p4 · · · p2i+2)-fraction of
nodes. Secondly, vb will survive this process and will be in
B2i+2 if it is also in the giant component of the remaining
part of B. We know from [20] that B can have at most
one component whose fractional size is positive, with all
other components having size o(n). This is also true for all
the intermediary networks B2, B4, . . .. Thus, the process of
reducing the network to its giant component can be done only
once after all the attacks have been applied, without affecting
the fractional size of the resulting giant component; i.e., the
small components (with size o(n)) eliminated at each stage in
(B.24) will have no affect on the fractional size of B2i+2.

With this result, we can now establish (5)-(7) for all i =
1, 2, . . .. For each i, the fractional size fB2i+2

of B2i+2 can
be computed from Theorem B.2 in view of the equivalence
of the processes (B.24) and (B.25). In particular, fB2i+2 is
calculated from (B.22)-(B.23) as the fractional size of the giant
component of B̄, obtained by deleting every node of B with
probability 1− pB2i+2

. Here, pB2i+2
is the probability for any

node in B to not have been attacked in any of the previous
stages, and can be computed as in (B.26). In particular, it is
given by the multiplication of the probabilities of a node vb
not losing its support in network A in consecutive stages. We
can compute this probability recursively as

pB2i+2 = pB2iP
[
vb does not lose its support

in A at stage 2i+ 1

]
= pB2i

|A2i+1|
|B2i|

(B.27)

= pB2i

fA2i+1

fB2i

(B.28)

where (B.27) follows from the independence of failures in A
with the topology of network B. We now established (5) for
each i = 0, 1, . . ., and (6)-(7) follow from Theorem B.2 and
the discussion that follows.
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