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A frequency-constrained geometric Pontryagin maximum principle on

matrix Lie groups

Shruti Kotpalliwar, Pradyumna Paruchuri, Karmvir Singh Phogat, Debasish Chatterjee, Ravi Banavar

Abstract— In this article we present a geometric discrete-
time Pontryagin maximum principle (PMP) on matrix Lie
groups that incorporates frequency constraints on the controls
in addition to pointwise constraints on the states and control
actions directly at the stage of the problem formulation. This
PMP gives first order necessary conditions for optimality, and
leads to two-point boundary value problems that may be solved
by shooting techniques to arrive at optimal trajectories. We
validate our theoretical results with a numerical experiment on
the attitude control of a spacecraft on the Lie group SO(3).

I. Introduction

Most engineering systems are required to operate in a

certain pre-defined region of the state and control spaces. For

instance, since mechanical systems are inertial, mechanical

actuators have natural limitations in terms of, e.g., the torque

magnitudes and the operating frequencies. In the control lit-

erature these are known as control magnitude and frequency

constraints, respectively. Control magnitudes must be limited,

for instance, to prevent rapid movements of robotic arms for

safety considerations [1]. Frequency constraints arise from a

more subtle consideration. Consider, for instance, read/write

operations in disk drives [2] where excitation of the actu-

ator at flexible modes may result in erroneous read/write

operations, attitude orientation manoeuvres of satellites fitted

with flexible structures such as solar panels [3] may excite

the natural frequencies of the flexible structures, leading to

vibrations and structural damage unless the natural frequen-

cies are avoided, etc. It is, therefore, desirable to eliminate

certain frequencies from the spectra of the control functions

of controlled systems at the control synthesis stage.

Traditional attempts by control engineers to handle fre-

quency constraints includes filtering of the actuating signal

after control synthesis, or techniques of more recent vintage

such as H∞ control [4] that minimize a weighted combination

of transfer functions in certain frequencies as part of the

synthesis technique. Both these techniques suffer from their

own problems: The former is ad hoc and based on the

designer’s intuition of the system and actuator, and the latter,

though more systematic and incorporates penalties on the

frequencies in an interval, still suffers from the inability

to completely suppress a pre-specified set of frequencies.

More importantly, none of these techniques is capable of

incorporating hard bounds on the control actions and the

states. Constraints on the control actions and the states are
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present in the classical optimal control paradigm [5], but

frequency constraints in the same framework have not been

treated in the literature so far, with the exception of [6],

where we presented a set of first order necessary conditions

for optimal control problems with frequency constraints on

the control action trajectories. This article is a continuation

of our studies to more applied problems for an important

class of mechanical systems.

The configuration variables of a large class of mechanical

systems (e.g., spacecraft, mobile robots, autonomous under-

water vehicles [7],) evolve on matrix Lie groups. Developing

a control paradigm for such a class of systems, where

hard constraints on the actuators and the states, as well as

frequency constraints on the control actions, would prove

invaluable to the community of control practitioners. The

problem described above can be stated as a constrained

optimal control problem, and optimal control theoretic [5]

tools such as the Pontryagin maximum principle (PMP) and

dynamic programming can, in principle, be applied to them.

Optimal control problems for controlled mechanical sys-

tems evolving on non-flat manifolds cannot be solved using

the discrete-time PMP on Euclidean spaces [5] because this

technique does not carry over directly to such manifolds. We

developed a geometric version of the PMP for constrained

optimal control problems on matrix Lie groups in [8], but

frequency constraints on the control actions were not con-

sidered there. A comprehensive framework for constrained

discrete-time optimal control problems on matrix Lie groups

with state-action constraints and frequency constraints on the

control actions is needed, and in this article we establish

a discrete-time geometric version of the PMP tailored to

such problems. The main contribution of this article is that

the technique presented here provides tractable solutions to

optimal control problems, incorporating, at once, an entire

class of hard constraints on the states, control actions, and

frequency constraints on the control trajectories, right at

the synthesis stage. The constrained two point boundary

value problems arising out of the necessary conditions for

optimality can be solved via multiple shooting techniques

that can be implemented on a parallel architecture for fast

computation.

After introducing the necessary notations, we expose the

precise problem statement in §II, and follow up with the

main result — a geometric discrete-time PMP on matrix Lie

groups — in §III. A proof of the main result is given in §IV,

and numerical experiments on spacecraft attitude control are

presented in §V.
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II. Problem setup

Fix a positive integer N that will play the rôle of a time

horizon. For N ∈ N
∗, we set [N] ≔ {0, . . . ,N − 1} and

[N]∗ ≔ [N] \ {0}. Let G be a matrix Lie group with g its

Lie algebra; the map exp: g→ G denotes the corresponding

exponential map. Recall [9, p. 273] that for each X ∈ g, there

exist a map expX (·) : R → G such that expX (0) = e ∈ G,

∂t |t=0 expX(t) = X, and expX (t+ s) = expX (t) expX (s), where

e is the group identity. For y ∈ C
N we let supp(y) ≔ {i ∈

[N]∗ | yi , 0}.
Consider a controlled discrete-time system evolving partly

on a fixed matrix Lie group G and partly on R
d, given by{

qt+1 = qt st (qt, xt )
xt+1 = ft (qt, xt, ut )

for t ∈ [N]∗, (1)

where (qt, xt ) ∈ G × R
d is the vector of states and ut ∈ R

m

the vector of control actions of the system at a discrete-

time instant t. The maps st : G × R
d → G describing the

dynamics of the states qt on the matrix Lie group G, and

ft : G × R
d × R

m → R
d describing the dynamics of state

xt in R
d are smooth. We further assume that there exists an

open set O ⊂ g such that the following conditions hold:

(a) the exponential map exp : O → exp(O) is a diffeomor-

phism, and

(b) the image of st is a subset of exp(O) for all t.

An open set O satisfying the condition (a) always exists

by definition of the exponential map; the condition (b) is,

however, an assumption, in effect stipulating that the time-

discretization step is sufficiently small.

Frequency constraints: We provide a brief discussion on

discrete-time control frequency constraints. Let RN ∋ u(k) ≔
(u(k)t )N−1

t=0
be the trajectory of the k th component of the

control. Throughout the article, the subscript on u denotes

the stage and the superscript denotes the component of the

control. The hat on top of a variable denotes its frequency

representation. The discrete Fourier transform (DFT) of u(k)

is defined by [10, Chapter 7]

C
N ∋ û(k) ≔ F u(k) for k = 1, . . . ,m,

where F ≔
1√
N

©«

1 1 . . . 1

1 ω . . . ωN−1

...
...

. . .
...

1 ωN−1 . . . ω(N−1)(N−1)

ª®®®®
¬

∈ C
N×N

for ω ≔ e
−i2π
N . We let u denote the stacked vector(

(u(1))⊤ . . . (u(m))⊤
)⊤

, and define the DFT of a control

trajectory by the vector

C
mN ∋ û ≔

©«

û(1)

...

û(m)

ª®®®
¬
=

©«
F u(1)

...

F u(m)

ª®®
¬
= F

©«
u(1)

...

u(m)

ª®®
¬
,

where F is a block diagonal matrix with the standard DFT

matrix F being each block. Note that (û(k))j ∈ C represents

the (2π( j − 1)/N)th frequency component of the trajectory

u(k). Therefore, if elimination of the (2π( j−1)/N)th frequency

component of u(k) is desired, it is ensured by introducing the

constraint

0 = (û(k))j = Fju
(k),

where Fj is the j th row of the DFT matrix defined above.

Therefore, in general, control frequency constraints are en-

forced by a collection of affine equality conditions in the

control action variables, and we represent them in an abstract

fashion by one equality constraint

N−1∑
t=0

F̃tut = 0 where F̃t are suitable matrices. (2)

The reader will notice that the manner in which frequency

constraints are assimilated into the problem formulation

enables the designer to cancel particular frequencies in the

control inputs, a feature distinctly absent in other control

synthesis schemes. (A more detailed discussion on control

frequency constraints may be found in [6].)

Collecting the definitions above, we write our constrained

optimal control problem in discrete-time:

minimize
(ut )N−1

t=0

N−1∑
t=0

ct (qt, xt, ut ) + cN (qN, xN )

subject to




dynamics (1),

ut ∈ Ut for each t ∈ [N],
ϕt (qt, xt ) 6 0 for each t ∈ [N + 1]∗

(q0, x0) = (q̄, x̄),
F(u0, . . . , uN−1) = 0,

(3)

with the following data:

(3-i) (q̄, x̄) ∈ G × R
d and N ∈ N are fixed;

(3-ii) the maps ct : G × R
d × R

m → R, for each t ∈
[N] defining cost-per-stage and cN : G × R

d → R

accounting for the final stage cost are smooth;

(3-iii) the maps ϕt : G × R
d → R

nt for t ∈ [N + 1]∗ denote

constraints on the states and are smooth;

(3-iv) the set of admissible control actions Ut ⊂ R
m is

convex and compact for each t ∈ [N];
(3-v) the linear map R

mN ∋ (u0, . . . , uN−1) 7−→
F(u0, . . . , uN−1) ≔

∑N−1
t=0 F̃tut ∈ R

ℓ represents con-

straints on the frequency components of the control

profile (ut )N−1
t=0

.

Remark II.1. The map F defined in (3-v) provides the real

and imaginary components of the required frequency compo-

nents of the control profile. In this article the main result is

specialized to eliminating certain frequency components and

hence we simply set the constraint F(u0, . . . , uN−1) = 0 in

(3). However, this approach can be extended to a larger class

of constraints on the frequency components; see Remark IV.1

for modifications to the approach in such cases.

To state our main result, we need a few definitions from

the theory of Lie groups that are relevant to this article; a

detailed discussion may be found in [9, p. 124, 173, 311].

Let G ∋ q 7−→ h(q) ∈ R be a function defined on a

manifold G. The tangent lift of the function h at a point



q0 ∈ G is the map

Tq0
G ∋ v 7−→ Dqh(q0)v ≔ ∂t

��
t=0

h(γ(t)) ∈ R,

where γ(t) is a path in the manifold G with γ(0) = q0 and

∂t
��
t=0
γ(t) = v. Let Φ : G × G → G be a left action and let

Φg : G → G denote Φ(g, ·).1 The tangent lift of Φ, TΦ :

G × TG is the action

(g, (h, v)) 7−→ TΦg(h, v) =
(
Φg(h),ThΦg(v)

)
, (h, v) ∈ ThG.

The cotangent lift of Φ, T ∗Φ : G×T ∗G → T ∗G, is the action

(g, (h, a)) 7−→ T ∗Φg−1(h, a) =
(
Φg(h),T ∗

Φg (h)Φg−1(a)
)
, a ∈ T ∗

hG.

The adjoint action of G on g is defined as

G × g ∋ (g, β) 7−→ Adg β ≔ ∂s
��
s=0

gesβg−1 ∈ g,

and finally, the co-adjoint action of G on g∗ is the inverse

dual of the adjoint action, given by

G × g∗ ∋ (g, a) 7−→ Ad∗
g−1 a ∈ g∗,

where
〈
Ad∗

g−1 a, β
〉
=

〈
a,Adg−1 β

〉
.

III. Main result

The following theorem is our main result:

Theorem III.1. Let
(
u◦t
)N−1

t=0
be an optimal control trajectory

for (3) and
(
q◦
t , x◦t

)N
t=0

be the corresponding state trajectory.

Define the Hamiltonian

g ×R
d × [N]∗ × G ×R

d ×R
m ∋

(
,̺ ζ, τ, υ, ξ, µ

)
7−→

Hν,ϑ( ,̺ ζ, τ, υ, ξ, µ) ≔ νcτ(υ, ξ, µ) +
〈
,̺ exp−1

(
sτ (υ, ξ)

) 〉
g

+ 〈ζ, fτ (υ, ξ, µ)〉 +
〈
ϑ, F̃τ µ

〉
∈ R.

(4)

Then there exist

◦ adjoint trajectories
(
ηf
t

)N−1

t=0
⊂ R

d,
(
η

g
t

)N−1

t=0
⊂ g,

◦ covectors ηx
t ∈ R

nt for t ∈ [N + 1]∗, and

◦ a pair
(
ηc, η̂

)
∈
{
−1, 0

}
×R

ℓ

such that, with γ◦t ≔
(
η

g
t , η

f
t, t, q

◦
t , x◦t , u

◦
t

)
and β

g
t ≔(

D exp−1((q◦
t )−1q◦

t+1
)◦TeΦ(q◦

t )−1q◦
t+1

)∗ (
η

g
t

)
, the following con-

ditions hold:

(i) the non-triviality condition:

the adjoint variables
(
ηf
t

)N−1

t=0
,
(
η

g
t

)N−1

t=0
, and the

pair (ηc, η̂) do not simultaneously vanish;

(ii) the state and adjoint dynamics:

state

{
q◦
t+1
= q◦

t exp
(
D̺Hηc ,η̂(γ◦t )

)
,

x◦
t+1
= DζHηc ,η̂(γ◦t ),

adjoint




β
g

t−1
= T ∗

eΦq◦
t

(
DυHηc ,η̂(γ◦t ) + ηx

t Dυϕt (q◦
t , x◦t )

)
+ Ad∗

exp
(
−D̺Hηc , η̂ (γ◦t )

) βg
t ,

ηf
t−1
= DξHηc ,η̂(γ◦t ) + ηx

t Dξϕt (q◦
t , x◦t );

(iii) the transversality conditions:

β
g

N−1
= T ∗

eΦq◦
N

(
ηcDυcN (q◦

N, x◦N ) + ηx
NDυϕN (q◦

N, x◦N )
)
,

1The left action on a Lie group should not be confused with control
actions in the context of our control system.

ηf
N−1 = η

cDξcN (q◦
N, x◦N ) + ηx

NDξϕN (q◦
N, x◦N );

(iv) the Hamiltonian non-positive gradient condition:〈
DµHηc ,η̂(γ◦t ), w − u◦t

〉
6 0 for all w ∈ Ut ;

(v) the complementary slackness conditions:

(ηx
t )(j)ϕ

(j)
t (q◦

t , x◦t ) = 0

for all j ∈ [nt + 1]∗ and t ∈ [N + 1]∗

(vi) the non-positivity condition

ηx
t 6 0 for all t ∈ [N + 1]∗.

Remark III.1. The adjoint variables (a.k.a. ‘multipliers’,)

corresponding to the cost, the dynamics, the state-constraints,

and the frequency constraints of the control trajectories

appear here, and we distinguish between them by introducing

the different super-scripts of the single Greek letter η. Various

objects in frequency space are distinguished by a ‘hat’. In

particular, the two adjoint variables that are constant with

time appear in the superscript of the Hamiltonian.

IV. Proof of the main result

In this section we first provide a sketch of a proof of

Theorem III.1, and subsequently elaborate on each step of

the proof.

(S-i) The frequency constraints are represented as an aux-

iliary dynamical system that is incorporated into the

optimal control problem.

(S-ii) We define a diffeomorphism to translate the optimal

control problem obtained in step (S-i) to an equivalent

optimal control problem on a Euclidean space of

appropriate dimension;

(S-iii) The optimal control problem obtained in (S-ii) is

converted to a static optimization problem, and first

order necessary conditions for optimality are derived

using Boltyanskii’s method of tents [5].

(S-iv) The first order necessary conditions are mapped from

the Euclidean space to the configuration space via the

cotangent lift of the diffeomorphism.

(S-i): Frequency constraints via a dynamical system: The

frequency constraints in (3) are defined via the linear maps

F̃t : R
m → R

ℓ defined in (2). We recast these constraints

in the form of a linear controlled dynamical system in an

auxiliary variable w as follows:

wt+1 = wt + F̃tut, w0 = 0 ∈ R
ℓ . (5)

To wit, the frequency constraints in (3) are defined by the

linear dynamics (5) together with the boundary condition

wN = 0. Therefore, replacing the frequency constraints with

the linear dynamics (5), we write (3) in a standard form:

minimize
(ut )N−1

t=0

N−1∑
t=0

ct (qt, xt, ut ) + cN (qN, xN )

subject to




dynamics (1) and (5),

ut ∈ Ut for each t ∈ [N],
ϕt (qt, xt ) 6 0 for each t ∈ [N + 1]∗,
(q0, x0, w0) = (q̄, x̄, 0), and wN = 0.

(6)



Remark IV.1. With the auxiliary system defined as in (5), the

final states wN correspond to the real and imaginary parts of

the required/chosen frequency components. Therefore con-

straints on the frequency components of the control profile

translate to final state constraints on the auxiliary states.

(S-ii): Translation of (6) to Euclidean space: Let us

define a parametrization of the Lie group G in an open

neighbourhood of qt for each t ∈ [N + 1]. Define an open

neighborhood of qt as Qt ≔ {Φqt (g) | g ∈ exp(O)}, where

O is an open set in the Lie algebra g containing 0. Then for

a given qt ∈ G, the map φqt ≔
(
Φqt ◦ exp

)−1
: Qt → O ⊂ g

lends a unique representative for qt+1 ∈ G on the Lie algebra

g for all t ∈ [N].
Since G is a matrix Lie group, the corresponding Lie

algebra g is a finite dimensional vector space, and hence

there exists a linear homeomorphism σ : g → R
nq , where

nq is the dimension of Lie algebra g. The linear homeo-

morphism σ further translates the dynamics from the Lie

algebra to an Euclidean space. We now provide a detailed

description of the translation of the optimal control problem

to the Euclidean space. For the sake of brevity, define q ≔

(q0, . . . , qN ), x ≔ (x0, . . . , xN ),w ≔ (w0, . . . , wN ), u ≔

(u0, . . . , uN−1), and a product manifold

M ≔ GN+1 × R
d(N+1) ×R

ℓ(N+1) ×R
mN,

such that every state and action trajectory corresponds to a

unique point on M, i.e., (q,x,w,u) ∈ M .

We define a map from the open set

Λ ≔ σ(O)N+1 ×R
(N+1)d × R

(N+1)ℓ ×R
Nm

⊂ R
(N+1)nq × R

(N+1)d ×R
(N+1)ℓ ×R

Nm

into an open subset of M that enables us to translate the

optimal control problem (6) to a Euclidean space as

Λ ∋ (β,x,w,u) 7−→ Ψ(β,x,w,u)
≔

(
ψ0(β), . . . , ψN (β),x,w,u)

)
∈ Ψ(Λ),

where for t ∈ [N + 1] and a fixed q̄ ∈ G,

ψt (β) ≔ q̄ exp
(
σ−1(β0)

)
· · · exp

(
σ−1(βt )

)
. (7)

Observe that the map Ψ is a smooth bijection whose inverse

is given by the smooth map

Ψ(Λ) ∋ (α,x,w,u) 7−→ Ψ−1(α,x,w,u)

≔

( (
σ ◦ exp−1

)
(q̄−1α0), . . . ,

(
σ ◦ exp−1

)
(α−1

N−1αN ),x,w,u
)
.

In other words, Ψ is a diffeomorphism. It is important to

note that all the feasible state-action trajectories of (6) lie

in the image of Ψ as discussed in [8]. We employ the

diffeomorphism Ψ to translate (6) from the manifold M to

the Euclidean space, and for p ≔ (p0, . . . , pN ) ∈ R
(N+1)nq ,

we arrive at

minimize
(ut )N−1

t=0

N−1∑
t=0

ct
(
ψt (p), xt, ut

)
+ cN

(
ψN (p), xN

)

subject to







pt+1 =
(
σ ◦ exp−1 ◦st

) (
ψt (p), xt

)
xt+1 = ft

(
ψt (p), xt, ut

)
wt+1 = wt + F̃tut

for t ∈ [N],

ϕt
(
ψt (p), xt

)
6 0 for t ∈ [N + 1]∗,

ut ∈ Ut for t ∈ [N],
(p0, x0, w0) = (0, x̄, 0), and wN = 0.

(8)

(S-iii): From optimal control to optimization: Although

the optimal control problem (8) is defined on a Euclidean

space, the standard discrete-time PMP cannot be applied di-

rectly since the map ψt appearing on the RHS of the first two

equations leads to memory in the dynamics, i.e., ψt depends

on not just the current values of the states and control, but

on the previous values as well. To circumvent this, we lift the

optimal control problem to a static optimization problem in a

higher-dimensional Euclidean space and apply Boltyanskii’s

method of tents [5] to this lifted optimization problem.

To this end, let z ≔ (p,x,w,u) ∈ R
n, where n ≔ (nq +

d+ℓ)(N+1)+mN be the stacked vector of states and control

corresponding to (8). We define projection maps that allow

us to access each component of z as follows:

π
p
t (z) ≔ pt, π

x
t (z) ≔ xt, π

w
t (z) ≔ wt for t ∈ [N + 1],

πu
t (z) ≔ ut for t ∈ [N] and πp(z) ≔ p. (9)

We lift the cost function and the constraints of (8) to R
n

using the projection maps (9) as follows:

• The condition ut ∈ Ut becomes Ωu
t ≔

{
z ∈ R

n
�� πu

t (z) ∈
Ut

}
.

• The end-point constraints on the states are described by

Ω
0
≔

{
z ∈ R

n
�� πp

0
(z) = 0, πx

0
(z) = x̄, π

w

0
(z) = 0

}
and

Ω
N
≔

{
z ∈ R

n
�� πw

N
(z) = 0

}
.

• The cost functions, the dynamics and the state constraints

are described by:

C(z) ≔
N−1∑
t=0

ct
(
ψt (πp(z), πx

t (z), πu
t (z))

)
+ cN

(
ψN (πp)(z), πx

N (z)
)

F
q
t (z) ≔ −πp

t+1
(z) +

(
σ ◦ exp−1

)
◦ st

(
ψt (πp(z), πx

t (z))
)

Fx
t (z) ≔ −πx

t+1(z) + ft
(
ψt (πp(z), πx

t (z), πu
t (z))

)
Fw
t (z) ≔ −πw

t+1(z) + π
w
t (z) + F̃tπ

u
t (z)

Gt (z) ≔ ϕt
(
ψt (πp(z)), πx

t (z)
)

We now arrive at a static optimization problem equivalent

to the optimal control problem (6):

minimize
z

C(z)

subject to







F
q
t (z) = 0

Fx
t (z) = 0

Fw
t (z) = 0

Gt+1(z) 6 0

for t ∈ [N]

z ∈
(⋂N−1

t=0 Ω
u
t

)
∩ Ω

0
∩ Ω

N
.

(10)



Suppose that (q◦,x◦,w◦,u◦) is an optimal state-action

trajectory for the optimal control problem (6). Then z◦
≔

Ψ−1(q◦,x◦,w◦,u◦) is a solution of above optimization prob-

lem. By [5, Theorem 18], there exist multipliers (row vectors)(
ηc, (λg

t )N−1
t=0

, (ηf
t )N−1
t=0

,
(
η
w
t )N−1

t=0
, (ηx

t )Nt=1

)
∈ R × R

nq (N+1) ×
R

d(N+1) × R
ℓ(N+1)) × R

nt (N+1), not all simultaneously zero,

such that〈
ηcDzC(z◦) +

N−1∑
t=0

λ
g
t DzF

q
t (z◦) +

N−1∑
t=0

ηf
tDzFx

t (z◦), z̃
〉

+

〈
N−1∑
t=0

η
w
t DzFw

t (z◦) +
N∑
t=1

ηx
t DzGt (z◦), z̃

〉
6 0 (11)

for z̃ + z◦ ∈
(N−1⋂
t=0

QΩu
t
(z◦)

)
∩ QΩ

0
(z◦) ∩ QΩ

N
(z◦),

where QK (r) represents a tent of the set K at r ∈ K as

defined in [5, §3],2 and for each j ∈ [nt + 1]∗, (ηx
t )(j) 6 0

and (ηx
t )(j)G

(j)
t (z◦) = 0 for each t ∈ [N + 1]∗.

(S-iv) First order necessary conditions in the configuration

space: We push back the optimality condition (11) to the

configuration manifold M. Let η
g
t ≔ σ∗(λg

t ).
Adjoints of the states x: For each t ∈ [N]∗, if we choose

z̃ in (11) such that all its entries except those in πx
t (z̃) are

zero, then〈
ηcDxct (q◦

t , x◦t , u
◦
t ) + ηx

t Dxϕt (q◦
t , x◦t , u

◦
t ), πx

t (z̃)
〉

+

〈
η

g
t Dx(exp−1 ◦st )(q◦

t , x◦t , u
◦
t ), πx

t (z̃)
〉

+

〈
ηf
tDx ft (q◦

t , x◦t , u
◦
t ) − ηf

t−1, π
x
t (z̃)

〉
6 0.

(12)

Since πx
t (z̃) ∈ R

d can be arbitrary, in view of the Hamil-

tonian defined in (4), the inequality (12) reduces to the

dynamics of the adjoints ηf in (ii). An identical procedure can

be adopted to derive the transversality condition for ηf
N−1

in

(iii) after setting all entries of z̃ in (11) to zero except πx
N (z̃).

Adjoints of the (auxiliary) states w: For each t ∈ [N+1]∗,
we choose z̃ in (11) such that all its entries except those in

π
w
t (z̃) are zero. The optimality condition (11) then leads to〈
η
w

t−1
− ηwt , π

w
t (z̃)

〉
6 0. Since π

w
t (z̃) ∈ R

ℓ can be picked

arbitrarily, η
w

t−1
= η

w
t for each t ∈ [N]∗. We define R

ℓ ∋ η̂ ≔
η
w

0
= · · · = η

w

N−1
; this is our ‘multiplier’ corresponding to

the frequency constraints.

Adjoints of the configurations q: Let

q̃t ≔ Dpψt (πp(z◦))πp(z̃) ∈ Tq◦
t
G for t ∈ [N + 1],

(cf. (11)) be the velocity vector at the configuration q◦
t and

χt ≔ Tq◦
t
Φq◦

t
−1(q̃t ) ∈ g be its correspoding vector in the Lie

algebra g. Therefore

TeΦq◦
t
(χt ) = Dpψt (πp(z◦))πp(z̃) ∈ Tq◦

t
G, t ∈ [N + 1], (13)

2 Let x0 ∈ Ω ⊂ R
n . A convex cone Q ⊂ R

n with vertex x0 is a tent of
Ω at x0 if there exists a smooth map ρ defined in a neighbourhood B(x0)
of x0 such that: ρ(x) = x + o(x − x0), and there exists ǫ > 0 such that
ρ(x) ∈ Ω for x ∈ Q∩Bǫ (x0). Recall the Landau notation ϕ(x) = o(x) that

stands for a function ϕ(0) = 0 and limx→0

|ϕ(x)|
|x | = 0.

and πp(z̃) can be obtained via the tangent lift of Ψ−1 with

κt−1 ≔ D exp−1
(
(q◦

t−1
)−1q◦

t

)
◦ TeΦ(q◦

t−1
)−1q◦

t
as π

p

0
(z̃) ≔

σ(χ0) and

π
p
t (z̃) ≔ −σ ◦ κt−1

(
Adq◦

t
−1q◦

t−1
(χt−1) − χt

)
for t ∈ [N + 1]∗.

(14)

If we choose z̃ in (11) such that all its entries except πp(z̃)
are zero, then by substituting π

p
t (z̃) from (14) and using (13),

(11) reduces to

N−1∑
t=0

〈
ηcDqct (q◦

t , x◦t , u
◦
t ) + ηf

tDq ft (q◦
t , x◦t , u

◦
t ),TeΦq◦

t
(χt )

〉

+

N∑
t=1

〈
ηx
t Dqϕt (q◦

t , x◦t , u
◦
t ),TeΦq◦

t
(χt )

〉

+

N−1∑
t=0

〈
η

g
t , κt−1

(
Adq◦

t+1
−1q◦

t
(χt ) − χt+1

)〉
6 0.

(15)

Since χt ∈ g can be selected arbitrarily for all t ∈ [N + 1],
we choose a sequence (χτ)Nτ=0

such that χτ = 0 for all τ ∈
[N + 1], τ , t. In view of the above and by definition of the

Hamiltonian (4), (15) reduces to the dynamics of ηg in (ii)

and the transversality condition of η
g

N−1
in (iii) of Theorem

III.1.

Conditions on the control: Note that Ut is convex, and

therefore, Ut ⊂ QUt
(u◦t ). We restrict z̃ such that ũt + u◦t ∈

QUt
(u◦t ), which simplifies the condition (11) to〈

ηcDuct (q◦
t , x◦t , u

◦
t ) + ηf

tDu ft (q◦
t , x◦t , u

◦
t ), ω − u◦t

〉
+

〈
η̂F̃t, ω − u◦t

〉
6 0 for all ω ∈ Ut .

By definition of the Hamiltonian (4), the preceding condition

is equivalent to (iv) of Theorem III.1.

V. Numerical experiments

We illustrate our theory in the context of a spacecraft

attitude manoeuvre, where the configuration manifold is the

matrix Lie group SO(3) (the set of 3 × 3 real orthogonal

matrices with determinant 1) and its Lie algebra is so(3)
(the set of 3 × 3 real skew-symmetric matrices).

Satellite attitude dynamics: Let Rt and Pt ∈ SO(3) be

the rotation matrices that relate coordinates of a point in

the spacecraft body frame to the inertial frame and the

change in the orientation at tth time instant respectively. Let

Πt ∈ R
3 be the spacecraft momentum vector in the body

frame, and ut ∈ R
3 be the torque applied to the spacecraft in

the body frame. Assuming that a constant control is applied

between two discrete-time instants for a step length h > 0

(selected so that the conditions (a) and (b) in §II are met),

the discrete-time attitude dynamics in this setting is given in

the spacecraft body frame in a standard way as


Rt+1= RtPt,

Πt+1= P⊤
t Πt + hut,

ĥΠt = PtJd − JdP⊤
t ,

(16)

where Jd ≔ tr(J)I − J and J is the moment of inertia

matrix. A detailed derivation of the system dynamics is given

in, e.g., [11]. The data for our numerical experiments are:



System Parameters and Specifications Admissible range

the principal moment of inertia of

the spacecraft
(
Jx, Jy, Jz

)
(800, 1200, 1000) kg m2

the sampling time (T ) 0.1 s
manoeuvre angle range (θ) (any axis) [10 °, 90 °]
the maximum admissible torque
bound (control bound) (ubnd) (20, 20, 20)N m
the maximum momentum (Πbnd) (60, 60, 60)N m s

frequency constraints on the control u(1), u(3) 0 above 2π/3
frequency constraints on the control - u(2) no restriction
range of the time duration (tmax) of
manoeuvres 5 s and 30 s

Problem definition: : The control objective is to synthesize

an energy-optimal control profile to manoeuvre a spacecraft

from the initial state (Ri,Πi) to the final state (Rf ,Π f ) in N

discrete-time instances while satisfying the following state

and control constraints:


���u(i)t ��� 6 u
(i)
bnd

for t ∈ [N]���Π(i)
t

��� 6 Π(i)
bnd

for t ∈ [N]∗

supp(û(i)) ⊂ Wi

for i = 1, 2, 3, (17)

where Wi ≔ {i | 2π(i−1)
N
6

2π
3

or
2π(i−1)

N
>

4π
3
} for i = 1, 3

and W2 = {1, . . . , N} denote the set of allowable frequencies

in the torque profile u(i), u
(i)
bnd

∈ R
+ denotes the torque bound

on the actuator along i-th axis and Π
(i)
bnd

∈ R
+ denotes the

momentum bound along i-th axis.

Our frequency-constrained optimal control problem is:

minimize
{ut }N−1

t=0

J(u) ≔
N−1∑
t=0

1

2
‖ut ‖2

2

subject to dynamics (16) and constraints (17).

(18)
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Fig. 1: Optimal control profiles.

Trajectory generation: We present a manoeuvre for reori-

enting the spacecraft by 50° about the axis
(

1√
3
, 1√

3
, 1√

3

)
in

the body frame from an initial momentum Πi = (0, 0, 0)N m s

to a desired final momentum Π f = (0, 0, 0)N m s in 13s. The

frequency components of the torque profiles along the x- and

z-axes actuators that are above 2π/3 are set to be zero by an

appropriate choice of matrices Fi, and the one along the y-

axis is left unconstrained; Figure 2 reflects the outcome. The

optimal controls and the corresponding momentum profiles

are shown in Figure 1 and Figure 3 respectively. Observe

that the optimal control along the x- and y-axes saturates

for the time duration 1 − 2s in order to execute the pre-

specified manoeuvre within the given time interval, and that
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Fig. 2: Frequency spectra of the optimal controls.

the optimal control along the y-axis becomes zero for the

time duration 6.2−7s since the momentum constraints along

y-axis are active for that duration.
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Fig. 3: Optimal momentum profiles.
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