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Abstract— Future vehicles are expected to be able to exploit
increasingly the connected driving environment for efficient,
comfortable, and safe driving. Given relatively slow dynamics
associated with the state of charge and temperature response
in electrified vehicles with large batteries, a long predic-
tion/planning horizon is needed to achieve improved energy
efficiency benefits. In this paper, we develop a two-layer Model
Predictive Control (MPC) strategy for battery thermal and en-
ergy management of electric vehicle (EV), aiming at improving
fuel economy through real-time prediction and optimization.
In the first layer, the long-term traffic flow information and
an approximate model reflective of the relatively slow battery
temperature dynamics are leveraged to minimize energy con-
sumption required for battery cooling while maintaining the
battery temperature within the desired operating range. In
the second layer, the scheduled battery thermal and state of
charge (SOC) trajectories planned to achieve long-term battery
energy-optimal thermal behavior are used as the reference over
a short horizon to regulate the battery temperature. Addition-
ally, an intelligent online constraint handling (IOCH) algorithm
is developed to compensate for the mismatch between the actual
and predicted driving conditions and reduce the chance for
battery temperature constraint violation. The simulation results
show that, depending on the driving cycle, the proposed two-
layer MPC is able to save 2.8 − 7.9% of the battery energy
compared to the traditional rule-based controller in connected
and automated vehicle (CAV) operation scenario. Moreover,
as compared to a single layer MPC with a long horizon, the
two-layer structure of the proposed MPC solution reduces
significantly the computing effort without compromising the
performance.

I. INTRODUCTION

Efficient thermal management in electrified vehicles, in-
cluding pure electric vehicles (EVs), hybrid electric vehicles
(HEVs), and plug-in HEVs (PHEVs) is a significant factor
in the overall vehicle energy consumption optimization. For
EVs, cooling the battery pack in hot summer days takes
substantial amount of energy, which can significantly com-
promise energy efficiency and driving range of pure EVs [1].
Moreover, since the required power for cooling the battery
pack is delivered by the battery itself, the operation of the
battery thermal management (BTM) system directly interacts
with other power loads, such as the traction power, forming
intricate feedback loops. Therefore, optimizing the battery
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pack operating temperature during hot weather is essential
for improving the overall vehicle energy efficiency.

There are few works in the open literature dedicated
to optimization of the EVs’ BTM system, see [2] for an
overview. The Pontryagin’s maximum principle is used in [3]
to optimize the battery thermal and energy management
dynamics. In a similar study [4], the dynamic programming
(DP) approach has been used to find the global optimal
solution for the BTM optimization problem. Both [3] and
[4] have shown the benefits of using optimization in min-
imizing the required cooling power to maintain the battery
temperature within the optimal operating range. However,
such an optimization is usually carried out offline under the
assumption that the whole driving cycle is known a priori.

While emerging connectivity and autonomous driving
technologies are expected to provide unprecedented oppor-
tunities to improve mobility and safety, they also open
up new dimensions for vehicle and powertrain control and
optimization. Extensive studies have been carried out on fuel
economy optimization for electrified vehicles [5]. However,
the implications of the connected and automated vehicles
(CAVs) operation on power and thermal management have
not been fully explored for electrified vehicles. The CAV
technology will allow for the incorporation of a range of new
high-value information into the optimization process when
determining the optimal energy flow and power split strate-
gies under real-world driving conditions, thereby realizing
the full (and hitherto unfulfilled) energy saving potential of
electrified vehicles [6].

The thermal subsystem of an EV has several special char-
acteristics and requirements that are relevant to predictive
control. In particular, due to slow thermal dynamics, the
optimization has to consider a long time horizon. Inspired
by the recent works in the literature on multi-layer optimiza-
tion and prediction for systems with different time scales,
including those for microgrids [7] and building energy man-
agement systems [8], we propose and develop an innovative
two-layer MPC formulation for battery thermal and energy
management optimization in this paper. The proposed two-
layer MPC cools the battery pack by keeping its temperature
within a certain interval based on traffic conditions and
vehicle power demand. Responding to the predicted traffic
conditions provided by the CAV (V2V/V2I) environment,
the proposed two-layer MPC manages the power used for
cooling so that the powertrain system and associated subsys-
tems operate efficiently to achieve overall system efficiency
optimization for different driving scenarios.

The contribution of this paper is threefold. First, the
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energy saving potential of predictive BTM system in EVs
is exploited by utilizing the traffic flow information over
a long prediction horizon to account for relatively slow
thermal dynamics of the battery. Second, a two-layer MPC
framework is developed to not only reduce the computation
complexity versus a single-layer MPC with a long horizon,
but also to integrate the optimization of battery thermal and
energy management into a hierarchical control framework to
account for different time-scales of prediction and control at
each layer. Third, an intelligent online constraint handling
algorithm is developed and incorporated into the two-layer
MPC structure to reduce the chances of the battery temper-
ature constraint violation in the presence of the mismatch
between the actual and predicted speed profiles, specifically
when long range prediction is used.

II. BATTERY THERMAL AND ELECTRICAL MODELS

To formulate an MPC for BTM system, both the electrical
and thermal characteristics of the battery have to be captured
by the prediction model. The thermal sub-model approxi-
mates the battery pack as a lumped mass (mbat) with heat
capacity Cth,bat, and can be described as follows [3]:

Ṫbat(t) =
1

mbatCth,bat
(I2batRbat + Q̇), (1)

where, Tbat, Ibat, and Rbat are the battery temperature,
current, and internal resistance, respectively. Q̇ < 0 is the
required heat flow rate for cooling the battery, and it is treated
as the input to the battery thermal model in this paper.

The electric system sub-model of the battery includes the
battery voltage (Ubat), which can be expressed as a function
of the open-circuit voltage (Uoc), Rbat, and Ibat as follows:

Ubat = Uoc − IbatRbat (2)

Uoc and Rbat in (2) are functions of the battery state-of-
charge (SOC) and Tbat. The battery current can be written
as a function of the total demanded power as follows:

Ibat = (Ptrac + Ptemp)/Ubat, (3)

where, Ptrac is the demanded traction power, and Ptemp is
the required power to provide Q̇ for the BTM system. It
is assumed in Eq. (3) that Ptrac and Ptemp are the main
power loads on the battery, and other auxiliary loads on
the battery are neglected. By substituting Ubat in (2) with
(Ptrac + Ptemp)/Ibat (Eq. (3)), Ibat can be re-written:

Ibat(t) =
Uoc −

√
U2

oc − 4Rbat(Ptrac + Ptemp)

2Rbat
(4)

Using (4), Eq. (1) becomes:

Ṫbat(t) = ξ(Tbat(t)) =

(Uoc−
√
U2

oc−4RbatPtrac+Ptemp)
2

4Rbat
+ Q̇

mbatCth,bat
.

(5)

Moreover, SOC is governed by:
˙SOC(t) = ζ(SOC(t)) = −Ibat(t)

Cnom
(6)

where, Cnom is the nominal capacity of the battery. Ptemp
is modeled as a linear function of the heat flow rate Q̇ [3]:

Ptemp(Q̇) = acQ̇, Q̇ ≤ 0, ac < 0 (7)

where ac is a constant. The parameters of the battery
and vehicle dynamics are adopted from the Autonomie [9]
software library for an electric vehicle.
III. SINGLE-LAYER MPC FOR BATTERY THERMAL AND

POWER MANAGEMENT

The traditional BTM system attempts to maintain the
battery temperature at a specified level, without consider-
ing the traffic information. A setpoint within the optimal
temperature range of the battery operation is selected and
tracked. Since the battery temperature can increase rapidly
due to aggressive vehicle acceleration and deceleration and
BTM has limited bandwidth to respond, the desired battery
temperature setpoint (T s.p.bat ) is usually selected well below
the upper limit of the optimum operation range to assure
that the temperature stays within the limit during transients.
This conservative tracking approach designed for worst case
scenarios without predictive traffic information, often leads
to considerable extra energy consumed for battery cooling.
To exploit the traffic information made available through
CAVs, and to improve thermal efficiency, a model predictive
controller is designed in this section to minimize the required
battery cooling power, and maintain the battery temperature
within the desired operation range.

1) Problem Formulation: In order to formulate the MPC,
first the thermal (ξ) and electric (ζ) models (Eqs. (6) and (5))
are discretized by applying the Euler forward method:

SOC(k + 1) = fSOC(k) = SOC(k) + Tsζ(SOC(k)), (8)
Tbat(k + 1) = fTbat(k) = Tbat(k) + Tsξ(Tbat(k)), (9)

where, Ts is the sampling time for control update (e.g.,
Ts=1 sec). We consider a single-layer MPC with an eco-
nomic cost function formulated over a finite-time horizon
(N ) with Q̇ being the optimization variable:

min
Q̇(·|k)

N∑
i=0

Ptemp(i|k),

s.t. Tbat(i+ 1|k) = fTbat
(i|k), i = 0, · · · , N,

SOC(i+ 1|k) = fSOC(i|k), i = 0, · · · , N,
TLLbat ≤ Tbat(i|k) ≤ TULbat , i = 0, · · · , N,
30% ≤ SOC(i|k) ≤ 90%, i = 0, · · · , N,
− 3000 W ≤ Q̇(i|k) ≤ 0, i = 0, · · · , N − 1,

Tbat(0|k) = Tbat(k), SOC(0|k) = SOC(k),
(10)

where, (i|k) designates the prediction for the time instant
k + iTs made at the time instant k. The nonlinear MPC
optimization problem (10) attempts to minimize the power
spent for battery thermal managment Ptemp = acQ̇ over the
prediction horizon, while enforcing the state and input con-
straints. TULbat and TLLbat are the upper and lower limits of the
battery operating temperature, and they are set to 40oC and
20oC, respectively. Note that Q̇ is always negative for battery
cooling scenario. fSOC(k) and fTbat

(k) are the discritized
nonlinear dynamics of SOC and Tbat calculated according to
(8) and (9). The optimization problem is solved at every time
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step, then Q̇(k) is commanded to the system and the horizon
is shifted by one step (Ts). The MPC simulation is carried out
on a desktop computer, with an Intel® Core i7@2.60 GHz
processor, in MATLAB®/SIMULINK® using YALMIP [10]
for formulating the optimization problem, and IPOPT [11]
for solving the optimization problem numerically.

2) Performance Evaluation: Intuitively, the solution of
the optimization problem in (10) results in the battery tem-
perature to be close to the upper limit TULbat to minimize the
cooling power consumption. However, since sudden changes
in the Ptrac could increase the battery temperature and
cause Tbat to exceed the desired range, MPC with different
prediction horizons will respond differently. Fig. 1 shows the
results of applying the nonlinear MPC (10) with different
prediction horizons (N ) on the EPA Urban Dynamometer
Driving Schedule (UDDS), where it is assumed that the entire
driving cycle is available, and the battery initial temperature
(Tbat,0) is the same in all the simulated runs. Additionally,
the MPC simulation results are compared with simple rule-
based (On/Off) controller which attempts to maintain Tbat at
a constant level of T s.p.bat =35oC.

Fig. 1. The performance of the single layer MPC for battery thermal (a)
and energy (b) management with different prediction horizons at Tbat,0 =
35oC for UDDS.

Fig. 1 shows that with a short prediction horizon (N=10),
the controller does not have enough lead time to take
mitigating actions to prevent constraint violation caused by
sudden increase in the traction power around t = 200 sec.
However, as the prediction horizon is being extended, the
MPC takes proactive actions to reduce the temperature
before the heating load increases around 200 sec, therefore
significantly reducing the time for the battery to stay in over-
temperature condition. As shown in Fig. 1-b, compared to
the simple rule-based controller, 4.5 − 5.3% improvement
in the energy consumption can be achieved by using the
predictive controllers. The temperature upper limit violation,
as expected, becomes less frequent as the prediction horizon
being extended. When the horizon is longer than 120 sec,
the MPC puts the efforts to decrease Tbat from the early
seconds, which eventually results in both fuel saving (≥ 5%)
and reduced constraint violation by up to 41% (compared to
the rule-based controller).

3) Robustness to Prediction Uncertainty: This study
confirms the advantages of incorporating the future traffic
information for battery thermal and energy optimization
via an MPC framework. Due to the large thermal inertia
and therefore large time constant in the thermal response,
however, BTM system requires much longer horizon infor-
mation to capitalize on the benefits associated with the MPC
approach.

On the other hand, the implementation of the MPC over
a long horizon is not practical for two main reasons: (i) it is
computationally demanding, and (ii) the accuracy in future
traffic event prediction over a longer horizon cannot be guar-
anteed. The average computation time per iteration and exe-
cution for the single-layer MPC with N=10, 60, 120, 180 sec
was recored as 0.75, 2.22, 6.24, 10.78 sec, respectively. It can
be seen that the MPC with a long horizon is computationally
expensive with average computation time exceeding the
sampling time Ts=1 sec. This clearly impedes the real-
time implementation of the single-layer MPC. Moreover,
vehicle speed profile can be accurately estimated using
traffic and infrastructure information (V2I/V2X) only over
a short horizon [12]. The prediction of the vehicle speed
over an extended horizon is subject to uncertainties, which
consequently affects the performance of the MPC for BTM
over a long horizon.

While accurate long term vehicle speed prediction is
difficult to obtain, it might not be necessary to claim most
of the fuel saving benefits. We show in this paper that
an approximate knowledge of future vehicle speed profile
based on the average traffic flow velocity (Vflow) estimation
can be integrated into the single-layer MPC controller to
reduce energy consumption. Vflow is estimated according
to the approach proposed in [12], where the traffic flow
data are extracted from a traffic monitoring system described
in [13], exploiting the extensive coverage of the cellular
network, GPS-based position and velocity measurements,
and the communication infrastructure of cellphones. Fig. 2
illustrates the concept of the average traffic flow speed
trajectory and compares it against the actual speed profile.
It can be observed that the vehicle speed profile prediction
is close to the actual speed for the first few cycles, before it
merges into the average traffic flow speed (gray band) over
the long horizon. For more details, see [12].

Fig. 2. The virtual traffic flow speed versus the actual driving cycle. In this
paper, it is assumed that the traffic flow velocity information is repeatedly
updated every cycle over a 250-sec window.

To understand the effects of uncertainties associated with
the long prediction horizon, we consider the implementation
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Fig. 3. Schematic of Two-Layer NMPC for battery thermal and energy
management optimization.

of the single-layer MPC with both the actual speed profile,
and with the one estimated from the traffic flow information.
It was previously observed from Fig. 1 that the single-
layer MPC with exact vehicle peed profile results in up
to 5% saving in the battery energy compared to the rule-
based controller. On the other hand, up to 3.9% energy
saving is achieved when using traffic flow information,
compared to 5% with the exact speed profile. Despite the
mismatch between the real vehicle speed profile and long
range prediction of the vehicle speed profile based on the
traffic flow information, the energy saving is still substantial.
Thus, the estimated long range vehicle speed profile via the
traffic flow speed data can serve the purpose of the BTM
system optimization.

IV. TWO-LAYER MPC FOR BATTERY THERMAL AND
ENERGY OPTIMIZATION

It was observed that for the single-layer MPC, the max-
imum computation time per controller execution can reach
as much as 20 sec, even on a powerful 2.60 GHz processor
(note that Ts=1 sec). In order to leverage the energy saving
potentials of the long horizon traffic flow information and
reduce the computation time of the MPC, we propose a
two-layer MPC for battery thermal and energy optimization
with a scheduling layer and a piloting layer as illustrated in
Fig. 3. The scheduling layer has a relatively long horizon
(Hl), and the dynamic of the system is sampled at a slower
rate (Tl > Ts). The piloting layer has a short prediction
horizon Hs, with a sampling time of Ts.
A. Scheduling Layer MPC with Long Horizon

In order to make the long-horizon MPC computationally
efficient, the dynamic models for Ṫbat and ˙SOC are simpli-
fied. To this end, first, Ibat equation from (4) is approximated
by using the Taylor series expansion with different accuracies
for SOC (ISOCbat ), and the current (ITbat

bat ) [3]:

ISOCbat (t) =
acQ̇+ Ptrac

Uoc
+
Rbat(acQ̇+ Ptrac)

2

U3
oc

, (11)

ITbat

bat (t) =
acQ̇+ Ptrac

Uoc
. (12)

Next, Eqs. (11) and (12) are used to re-write the discretized
battery state-of-charge (fSOC,l) and temperature (fTbat,l)

dynamics over the long horizon Hl assuming the sampling
time Tl, where SOCl and Tbat,l designate the states of
the simplified model used in the scheduling layer. The
scheduling layer MPC is based on the following optimization
problem formulation:

min
Q̇(·|k)

Hl∑
i=0

Ptemp(i|k),

s.t. constraints listed in (10).

(13)

The scheduling layer MPC optimizes Q̇ over the long hori-
zon, and its solution is used to schedule the desired values
of the battery temperature (T ∗bat) and state-of-charge (SOC∗)
for the piloting layer. Note that the structure of the scheduling
layer MPC is similar to the single-layer MPC in (10), but
with a different sampling rate. This, as will be shown later,
results in significantly reduced computational load.
B. Piloting Layer MPC with Short Horizon
T ∗bat and SOC∗ from the scheduling layer are passed on

to the piloting layer, where these values are used by a short-
horizon MPC for tracking. The output of the scheduling layer
MPC is updated every Tl, during which the output of the
short-horizon MPC is updated τ = Tl/Ts times, where τ ∈ Z
is the ratio between the long and short horizon length. The
length of the scheduled values which need to be passed on
to the piloting layer depends on the piloting layer prediction
horizon (Hs). Moreover, since Tl > Ts, the scheduled T ∗bat
and SOC∗ are passed on as piece-wise constant functions:
T ∗bat(t|k) and SOC∗(t|k) [8].

The short-horizon MPC of the piloting layer is formulated
as follows to track the scheduled T ∗bat and SOC∗ references
from the scheduling layer:

min
Q̇(·|k)

Hs∑
j=0

{
(Tbat(j|k)− T ∗bat(j|k))

2

+w1(SOC(j|k)− SOC∗(j|k))2

}
,

s.t. Tbat(j + 1|k) = fTbat
(j|k), j = 0, · · · , Hs,

SOC(j + 1|k) = fSOC(j|k), j = 0, · · · , Hs,

− 3000 W ≤ Q̇(j|k) ≤ 0, j = 0, · · · , Hs − 1,

Tbat(0|k) = Tbat(k), SOC(0|k) = SOC(k).

When performing optimization in the piloting layer, we
assume that the vehicle speed and the demanded traction
power can be estimated accurately over the short horizon.
Moreover, the constraints on the battery temperature and
SOC are not considered, as the long-horizon MPC has
enforced these constraints in the scheduling layer. This will
help to (i) reduce the computation time of the piloting layer
optimization problem, (ii) avoid the infeasibility problem of
the short-horizon MPC. Moreover, the computation times of
the two-layer MPC at both layers are significantly lower than
the single-layer MPC, because of:
• The larger sampling time used at the scheduling layer

leading to substantially reduced optimization variables
for the same prediction time window.

• Simplified dynamics of SOCl and Tbat,l.
• Non-redundant constraint enforcement with the battery

temperature constraint being enforced at the scheduling
layer and removed from the piloting layer MPC.
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C. Intelligent Online Constraint Handling

Since the battery temperature constraint is removed from
the short-horizon MPC, an intelligent online constraint han-
dling (IOCH) algorithm is added to the structure of the two-
layer MPC (shown in Fig. 3) to reduce the battery temper-
ature limit violation that may be caused by the mismatch
between the actual driving conditions and assumed driving
conditions based on average traffic flow information. The
IOCH block takes into account the violation of the battery
temperature limits, and monitors the difference between Tbat
and T ∗bat. The addition of the IOCH block introduces an extra
optimization variable ε which modifies the upper temperature
bound at the scheduling layer to avoid temperature limit
violations at the piloting layer, with consideration of the
battery cooling power minimization. For this purpose, the
cost function of the long-horizon MPC at the scheduling
layer in Eq. (10) is modified as follows:

min
Q̇(i|k),ε(k)

Hl∑
i=0

Ptemp(i|k) + γ(δ(Tbat, T
UL
bat )− ε(i|k))2,

(14)

where, γ is a weighting factor to adjust the controller
effort for reducing the constraint violation. The long-horizon
MPC is subject to the constraints listed in (13), except for
Tbat(i|k), which is now subject to:

TULbat (i|k) ≤ TULbat − ε(i|k), i = 0, · · · , Hl (15)
ε(i|k) ≥ 0, i = 0, · · · , Hl − 1,

where, TULbat (i|k) denotes the variable upper limit of the
battery temperature operation. The function δ(Tbat, T ∗bat) in
Eq. (14) is defined as follows:

δ(Tbat, T
UL
bat ) =

{
0 if Tbat ≤ TULbat
Tbat − TULbat if Tbat > TULbat

(16)

Fig. 4 shows the performance of the two-layer MPC for
UDDS at Tbat,0 = 39oC, Hl = 180 sec, and Hs = 15 sec.
It can be seen that when TULbat is constant and set to be 40oC,
the scheduled battery temperature trajectory (T ∗bat) does not
violate the upper limit constraint. But, the actual battery

Fig. 4. The results of battery thermal management from Two-Layer MPC
with and without IOCH for the UDDS (TUL

bat =40oC, Tbat,0=39oC).

temperature does because of the mismatch between the real
and predicted driving cycle. However, by using Eq. (14) as
the cost function of the scheduling layer MPC, the added
optimization variable ε modifies the upper limit (Eq. (15))
with respect to the mismatches between Vflow and Vveh, and
reduces the overall TULbat violation by 13%. It should be noted
from Fig. 4 that compared to the two-layer MPC without
IOCH, the energy saving results (as determined by terminal
battery SOC) of the two-layer MPC with IOCH is 1% lower,
which is expected, as the overall battery temperature is
lower and constraint violations are less frequent. This is the
price paid for putting more effort to maintain Tbat within
the desired range. While temporary violations of TULbat are
tolerated, it is required that Tbat to be maintained withing
the optimum operating range to improve the battery life and
health in long term [14].

V. TWO-LAYER MPC SIMULATION RESULTS

In order to demonstrate the energy saving potentials of the
proposed two-layer MPC for battery thermal management
of electric vehicles, the predictive controller with IOCH
is simulated for UDDS and the New York City Cycle
(NYCC) at different initial battery temperature conditions.
The NYCC features low speed stop-and-go traffic conditions.
These results are compared with the traditional rule-based
controller, and presented in Figs. 5-7. For UDDS, it can be
seen from Fig. 5 that by the end of the driving cycle, the two-
layer MPC reduces the drop in the battery SOC by 2.9% and
2.8% for Tbat,0 = 35oC and for Tbat,0 = 39oC, respectively,
compared to the rule-based controller.

Fig. 5. The results of battery energy management by using Two-Layer
MPC with IOCH and On/Off controller (T s.p.

bat =35oC) for UDDS at
Tbat,0=35oC and 39oC.

Fig. 6. The results of BTM by using Two-Layer MPC with IOCH and
On/Off controller (T s.p.

bat =35oC) for NYCC at Tbat,0=35oC and 39oC.

For the NYCC, since the vehicle speed is low on average,
aggressive rises in the demanded traction power and battery
temperature are not observed. Thus, the two-layer MPC is
able to maintain the battery temperature well below the
upper limit, even with Tbat,0 = 39oC. By looking into
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Fig. 7. The results of battery energy management by using Two-Layer
MPC with IOCH and On/Off controller (T s.p.

bat =35oC) for NYCC at
Tbat,0=35oC and 39oC.

the battery energy management results for the NYCC in
Fig. 7, it can be seen that the conservative design of the rule-
based controller results in a significant drop in the battery
SOC by the end of the driving cycle. Compared to the rule-
based controller, the two-layer MPC reduces battery energy
consumption (as determined by terminal SOC) by 7.9% and
7.7% for Tbat,0 = 39oC and Tbat,0 = 35oC, respectively.
This is because the rule-based controller tries to maintain
the temperature at T s.p.bat = 35oC, regardless of the traffic
and driving conditions.

Finally, Table I summarizes the average and maximum
required computation times for each layer of the two-layer
MPC with and without IOCH. Also the average computation
time of the single-layer MPC from Sec. III with a similar pre-
diction horizon as of the scheduling layer MPC (N = Hl),
and Ts=1 sec is listed in Table I. The average and maximum
computation times of the scheduling layer MPC with and
without IOCH are less than the sampling time (Tl=5 sec).
Moreover, it can be seen that in all cases, the average and
maximum computation times of the piloting layer MPC is
less than the sampling time Ts=1 sec. Overall, it can be
concluded that unlike the single-layer MPC, the two-layer
MPC provides a computationally efficient framework.

TABLE I
COMPUTATION TIME COMPARISON OF THE SINGLE-LAYER AND

TWO-LAYER MPCS.

Controller TUL
bat = 40oC TUL

bat = variable

Single Layer MPC N = 180 sec Ts = 1 sec
Average CPU Time 10.78 (sec) N/A
Scheduling Layer MPC Hl = 180 sec Tl = 5 sec
Average CPU Time 0.855 (sec) 2.071 (sec)
Max CPU Time 1.396 (sec) 4.265 (sec)
Piloting Layer MPC Hs = 15 sec Ts = 1 sec
Average CPU Time 0.206 (sec) 0.197 (sec)
Max CPU Time 0.563 (sec) 0.780 (sec)

VI. SUMMARY AND CONCLUSIONS

This paper investigates the design of a predictive and
integrated battery thermal management (BMT) system in
a connected and automated vehicles environment to im-
prove energy efficiency and extend range of battery electric
vehicles. To this end, first a single-layer MPC formula-
tion was proposed to minimize the battery cooling power,
while enforcing the battery temperature to be within the
desired range. The simulation results showed that due to
the relatively slow thermal dynamics of the battery, the
MPC for BTM system requires information over a long
horizon to achieve the design objectives. The simulation

results confirmed that inclusion of the long horizon vehicle
speed profile leads to 3 − 8% saving in the total battery
energy consumption, specifically for congested city driving
cycles, e.g., NYCC. However, the single-layer MPC with
a long horizon is computationally demanding. A two-layer
MPC with an intelligent online constraint handling (IOCH)
was then developed to (i) reduce the computation time as
compared to the single-layer MPC, (ii) utilize the long-term
traffic flow information along with the short-term vehicle
speed predictions, and (iii) account for the mismatch between
the actual vehicle speed profile and the predicted traffic
flow speed used over the long horizon to reduce the overall
battery temperature limit violation. The simulation results
showed that the proposed two-layer MPC is able to achieve
energy consumption reduction at a lower computational cost
and without relying on the precise knowledge of the future
vehicle speed profile. Moreover, while up to 2.9% energy
saving was achieved for the UDDS, it was shown that
for low-speed congested driving cycles, e.g., NYCC, higher
energy saving can be achieved, and the two-layer MPC can
save up to 7.9% of the battery energy.
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[11] A. Wächter and L. Biegler. On the Implementation of an Interior-Point
Filter Line-Search Algorithm for Large-Scale Nonlinear Programming.
Mathematical Programming, 106(1):25–57, 2006.

[12] C. Sun, F. Sun, X. Hu, J. Hedrick, and S. Moura. Integrating traffic
velocity data into predictive energy management of plug-in hybrid
electric vehicles. In ACC, 2015. Chicago, IL, USA.

[13] J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson, and A. Bayen.
Evaluation of Traffic Data Obtained via GPS-Enabled Mobile Phones:
The Mobile Century field experiment. Transportation Research Part
C: Emerging Technologies, 18(4):568–583, 2010.

[14] J. Neubauer and E. Wood. Thru-life Impacts of Driver Aggression,
Climate, Cabin Thermal Management, and Battery Thermal Manage-
ment on Battery Electric Vehicle Utility. Journal of Power Sources,
259:262–275, 2014.

6


	I INTRODUCTION
	II Battery Thermal and Electrical Models
	III Single-Layer MPC for Battery Thermal and Power Management
	III-.1 Problem Formulation
	III-.2 Performance Evaluation
	III-.3 Robustness to Prediction Uncertainty


	IV Two-Layer MPC for Battery Thermal and Energy Optimization
	IV-A Scheduling Layer MPC with Long Horizon
	IV-B Piloting Layer MPC with Short Horizon
	IV-C Intelligent Online Constraint Handling

	V Two-Layer MPC Simulation Results 
	VI Summary and Conclusions
	References

