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Abstract

In this paper, we address the risk estimation problem where one aims at estimating the probability of violation of
safety constraints for a robot in the presence of bounded uncertainties with arbitrary probability distributions. In this
problem, an unsafe set is described by level sets of polynomials that is, in general, a non-convex set. Uncertainty arises
due to the probabilistic parameters of the unsafe set and probabilistic states of the robot. To solve this problem, we use
a moment-based representation of probability distributions. We describe upper and lower bounds of the risk in terms
of a linear weighted sum of the moments. Weights are coefficients of a univariate Chebyshev polynomial obtained
by solving a sum-of-squares optimization problem in the offline step. Hence, given a finite number of moments of
probability distributions, risk can be estimated in real-time. We demonstrate the performance of the provided approach
by solving probabilistic collision checking problems where we aim to find the probability of collision of a robot with
a non-convex obstacle in the presence of probabilistic uncertainties in the location of the robot and size, location,
and geometry of the obstacle.

I. INTRODUCTION

Probabilistic analysis plays a key role in planning and control problems in the presence of uncertainties. In this
paper, we consider the risk estimation problem where we aim to estimate the probability of failure in the presence
of uncertainties. This problem has many applications in different areas. For example, in probabilistic motion
planning of robots where we need the probability of collision with obstacles in uncertain environments ([1], [2],
[3], [4], [5]). Another application is in stochastic scheduling problems where the probability of feasibility of each
plan given the probabilistic temporal constraints is required ([6], [7], [8]).

The problem of computing the probability is challenging because it requires evaluation of multivariate integrals
over non-convex sets. Several approaches have been proposed to find the probability over a given set. However,
the proposed approaches are limited to particular uncertainties and sets. For example, Boole’s inequality is
widely used to estimate the probability of violation of linear constraints ([1], [2], [3]). More precisely, the
probability of being safe in the presence of a convex polytopic obstacle χ represented by a conjunction of
linear inequality constraints, e.g., χ = {∩Nj=1χj}, χj = {x ∈ Rn : a′jx ≤ bj}, is calculated as follows:
1 − probability(∩Nj=1χj) = probability(∪Nj=1χ̄j) ≤

∑N
j=1 probability(χ̄j) where χ̄j = Rn \ χj is the complement

set. This results in a conservative upper bound on the probability. Uncertainty sampling based methods are also
widely used in many probabilistic planning and control applications ([9], [10], [11]). Being a randomized approach,
no analytical bounds can be provided on the probability. In ([12], [13], [14]), semidefinite programs (SDP) are
provided to estimate the probability of semialgebraic sets. These methods rely on polynomial approximation of an
n-dimensional indicator function of a given set that are formulated as a sum of squares (SOS) optimization. The
obtained SDPs easily become computationally intractable as the size of the original problem increases.

In this paper, we leverage SOS based techniques to provide upper and lower bounds of the probability of violation
of safety constraints described by level sets of n-variate polynomials. The proposed method can deal with bounded
uncertainties with arbitrary probability distributions and also uncertain nonconvex safety constraints e.g., obstacles
with uncertain location, size, and geometry. The provided method relies on a convex optimization that looks for
a univariate polynomial indicator function. Using the proposed approach, we describe upper and lower bounds of
the risk as a linear weighted sum of the moments of uncertainties. The weights are coefficients of a univariate
Chebyshev polynomial obtained by solving a univariate SOS optimization.

This work was supported in part by Boeing grant MIT-BA-GTA-1 and by the Toyota Research Institute (TRI). However, this article solely
reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.
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The key innovations of our proposed approach are as follow: (1) the proposed approach performs numerical
computations in the offline step, and uses these results to efficiently compute the risk bounds for the given moments
of probability distributions, in real-time. Hence, in the presence of time varying or state-dependent uncertainties,
it can update the risk bounds by only updating the moment information, in real-time, (2) to reduce the size of
SOS optimization, the proposed approach solves a univariate SOS optimization. Hence, computation time reduces
significantly compared to the multivariate SOS based techniques.

The outline of the paper is as follows: in Section 2, we cover the notation adopted in the paper, and present
preliminary results on polynomials; Section 3 includes the problem statement and a motivating example; Section
4 details the proposed technique to estimate the probability with an illustrative example; in Section 5, we present
numerical results, followed by some concluding remarks given in Section 6.

II. NOTATION AND PRELIMINARY RESULTS

This section covers notation and includes some basic definitions of polynomials and moments ([15], [16], [17],
[13], [14]). Given n and d in N, we define Sn,d :=

(
d+n
n

)
and Nn

d := {α ∈ Nn : ‖α‖1 ≤ d}. Also, given two sets A
and B, we define the set difference by A \B = {x : x ∈ A, x /∈ B}.

Standard Polynomials: Let R[x] be the set of real polynomials in the variables x ∈ Rn. Given P ∈ R[x], we
represent P as

∑
α∈Nn pαx

α using the standard basis {xα}α∈Nn of R[x], and p = {pα}α∈Nn denotes the polynomial
coefficients. Also, let Rd[x] ⊂ R[x] denotes the set of polynomials of degree at most d ∈ N. Any given P ∈ Rd[x],
has Sn,d number of coefficients.

Chebyshev Polynomials: Chebyshev polynomials of the first kind with degree d are defined as
Td(x) = cos(d cos−1(x)), x ∈ [−1, 1], d ∈ N, [18]. Chebyshev polynomial Td(x) can be represented in
terms of powers of x as Td(x) = d

2

∑[d/2]
i=0 (−1)i (d−i−1)!

i!(d−2i)!
(2x)d−2i (e.g., T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1). Also, the

product of Chebyshev polynomials can be expanded as follows: Td1
(x)Td2

(x) = 1
2
(Td1+d2

+ T|d1−d2|). The important
property of Chebyshev polynomials is orthogonality.

Sum of Squares Polynomials: Let S2[x] ⊂ R[x] be the set of sum of squares (SOS) polynomials. Polynomial
s : Rn → R is an SOS polynomial if it can be written as a sum of finitely many squared polynomials, i.e.,
s(x) =

∑`
j=1 hj(x)2 for some ` < ∞ and hj ∈ R[x] for 1 ≤ j ≤ `. The following lemma gives a sufficient

condition for P ∈ R[x] to be nonnegative on the compact set K = {x ∈ Rn : Pj(x) ≥ 0, j = 1, 2, ..., `}, where
Pj ∈ R[x] ([15], [16], [17], [13]).

Lemma 1: If P ∈ R[x] is strictly positive on K, then P has the SOS representation as follows:

P = s0 +
∑̀
j=1

sjPj , sj ∈ S2[x], j = 0, ..., `

The SOS condition is a convex constraint that can be represented as a linear matrix inequality in terms of
coefficients of polynomial P.

Moments of Probability Distributions Let x = [x1, ..., xn] ∈ Rn be a multivariate random variable with
probability distribution µx. Support of the probability distribution µx is denoted by supp(µx), i.e., the smallest
closed set that contains all the sets with nonzero probability. Given −→α = (α1, ..., αn) with αi in N, the moment
of order −→α of µx is defined as mxα1,α2,...,αn

= E[xα1
1 xα2

2 ...xαnn ] =
∫
xα1

1 xα2
2 ...xαnn µxdx1...dxn. If µx is defined on

the hyper-cube [−1, 1]n, then its moments are bounded in [−1, 1] ([15], [14]). Moments of µx can be written in
terms of the Chebyshev basis as mxTα1,...,αn

= E[Tα1 ...Tαn ]. Using the mapping between Chebyshev and standard
polynomials, moments in the Chebyshev basis can be written in terms of the moments in the standard basis (e.g.,
n = 1, mxT2

= 2mx2 −mx0 ) [14].

III. PROBLEM STATEMENT

In this paper, we consider the risk estimation problem defined as follows: let x ∈ Rn be a multivariate random
variable with known probability distribution µx defined on a compact set (e.g., uncertain position of a robot in



Fig. 1: Uncertain obstacle for parameter q = 0 (blue) and q = 1 (red) and possible locations of the rover (dashed line)

work/joint space). The uncertain unsafe set χ (e.g., obstacle with uncertain location/size/geometry) is defined as
level-sets of polynomials as follows:

χ(q) := {x ∈ Rn : lj ≤ Pj(x, q) ≤ uj , j = 1, . . . , ` } (1)

where Pj : Rn × Rm → R, j = 1, 2, . . . , ` are given polynomials, q ∈ Rm is a multivariate random variable with
known probability distribution µq defined on a compact set, and lj , uj ∈ R for j = 1, ..., `. Set χ(q) is in general a
non-convex set. Given the probability distributions µx and µq and unsafe set χ, we focus on solving the following
problem:

P∗risk := Probabilityµx,µq{x ∈ χ(q)} (2)

where P∗risk is the probability of failure due to violation of the safety constraints (e.g., probability of
collision with the obstacle). The probability in (2) involves a multivariate integral over a nonconvex set i.e.,∫
{(x,q):{lj≤Pj(x,q)≤uj}`j=1 } µxµqdx1...dxndq1...dqm, which is computationally challenging.

Motivating Example: An uncertain non-convex obstacle, shown in Figure 1, is described as χ(q) = {x ∈ R2 :

−0.1 ≤ −x4
1 + 0.5(x2

1 − x2
2) + 0.1q ≤ 0.2} where q has a Beta(4, 4) probability distribution defined on [0, 1].

A rover is located at (xr1, xr2) where xr1 and xr2 have uniform probability distributions on [−0.5, 0.5] and
[−0.8,−0.5], respectively. We want to find the risk defined as the probability of collision with the obstacle, i.e.,
P∗risk = Probabilityµxr1 ,µxr2 ,µq{−0.1 ≤ −x4

r1 + 0.5(x2
r1 − x2

r2) + 0.1q ≤ 0.2}.

IV. MOMENT-SUM-OF-SQUARES FORMULATION

To solve the risk estimation problem defined in (2), we first provide a sum of squares (SOS) optimization
approach involving multivariate polynomial approximation. Then, we reduce the size of the optimization problem
and look for a univariate polynomial to obtain the solution of the original problem in (2).

Given the polynomials Pj(x, q), j = 1, 2, . . . , `, of the set in (1), we define:

K = {(x, q) ∈ Rn × Rm, lj ≤ Pj(x, q) ≤ uj , j = 1, . . . , ` } (3)

Assumption 1. Set K is a compact set. Hence, the projection of K onto x-coordinates denoted by Πx and onto
q-coordinates denoted by Πq are also compact. Therefore, after rescaling of the polynomials, we assume without
loss of generality that Πx ⊂ X = [−1, 1]n and Πq ⊂ Q = [−1, 1]m; Hence, K ⊂ B = X×Q = [−1, 1]n× [−1, 1]m,
[14].

Assumption 2. We assume that supp(µx) ⊂ X and supp(µq) ⊂ Q. Also, moments of any order of the probability
distributions can be computed [14].

Assumption 3. After rescaling of the polynomials, we assume without loss of generality that the polynomials of
set K are bounded as −1 ≤ Pj(x, q) ≤ 1, j = 1, ..., ` on B; Hence, −1 ≤ lj , uj ≤ −1, j = 1, ..., `.



A. Moment-SOS Based Risk Bounds

Consider the defined set K in (3). Let IK be the indicator function of the set K, (e.g., IK = 1 ∀(x, q) ∈ K, IK =
0 ∀(x, q) /∈ K). Then, the probability in (2) can be written as the following expectation:

P∗risk = E[IK] =

∫
IKµxµqdx1...dxndq1...dqm (4)

To evaluate the integral in (4), one can use the polynomial approximation of the indicator function denoted by
PK(x, q), as follows ([13],[21] Lemma 1):

minPK(x,q)∈Rd[x,q]

∫
B
PK(x, q)dx1...dxndq1...dqm (5)

s.t PK(x, q) ≥ 1 on K (5a)
PK(x, q) ≥ 0 on B (5b)

where B is the bounding box defined in Assumption 1. Note that the constraints in (5a) and (5b) are polynomial
non-negativity constraints that can be formulated as SOS convex constraints. Similarly, one can find the polynomial
approximation of the indicator function of the complement set K̄ = B\K denoted by PK̄(x, q). Obtaining degree-d
polynomials PK(x, q) and PK̄(x, q), the following results hold:

Lemma 2: The risk defined in (2) is bounded by

1− E[PK̄(x, q)] ≤ P∗risk ≤ E[PK(x, q)] (6)

and limd→∞ E[PK(x, q)] = limd→∞ 1− E[PK̄(x, q)] = P∗risk.
Sketch of the proof: PK(x, q) ∈ Rd[x, q] is an upper bound approximation of IK and monotonically converges

in L1-norm to IK as its degree d increases [21]. Hence, using Eq (4), E[PK(x, q)] is an upper bound of P∗risk
and converges monotonically [13]. Similarly, 1− PK̄(x, q) ∈ Rd[x, q] is a lower bound of IK and as its degree d
increases, 1− E[PK̄(x, q)] converges monotonically to P∗risk. �

Let c and c̄ be the coefficient vectors of polynomials PK(x, q) and PK̄(x, q), respectively, and mxq
i be the i−th

moment of probability distribution µxµq , then lower and upper bounds of the risk in (6) can be written in terms of
the weighted sum of the moments as E[PK(x, q)] =

∑
i cim

xq
i and 1−E[PK̄(x, q)] = 1−

∑
i c̄im

xq
i . Hence, one can

obtain the coefficients c and c̄ by solving SDP (5) in the offline step and then calculate the probability bounds for
given probability distributions of uncertainties in the online step.

Note that the problem in (5) is a multivariate SOS optimization that looks for a polynomial of order d in (n+m)-
variate polynomial space (e.g., Sn+m,d unknown coefficients). Therefore, as the dimension of the original problem
increases, the optimization problem (5) becomes computationally intractable. To avoid this, we present a procedure
that requires solving a univariate SOS optimization (e.g., S1,d unknown coefficients).

B. Modified Moment-SOS Based Risk Bounds

In this section, to solve the risk estimation problem in (2), we provide a procedure that requires a univariate
approximation of the indicator function. For this purpose, we first consider the unsafe set χ(q) involving one
polynomial (e.g., ` = 1) and then extend the obtained results to the set χ(q) involving multiple polynomials.

1) Unsafe Set Involving One Polynomial: Consider the given set χ in (1) where ` = 1, i.e., χ(q) :=
{x ∈ Rn : l1 ≤ P(x, q) ≤ u1 }. We define random variable z ∈ R in terms of the polynomial of the set χ as

z = P(x, q) (7)

Random variable z is a continuous function of the random variables x and q; Therefore, its moments can be obtained
in terms of the moments of probability distributions µx and µq as follows:

mz
α = E[zα] = E[Pα(x, q)] =

∑
i,j

aijm
x
im

q
j (8)



where mz
i ,m

x
i , and mq

i are the i-th moments of random variables z, x, and q, respectively, and aij are the coefficients
of polynomial Pα(x, q). Defining random variable z, the risk in (2) can be stated as:

P∗risk := Probabilityµz{l1 ≤ z ≤ u1} (9)

where µz is the probability distribution of z. Note that, based on assumptions 2 and 3, random variable z is
supported on Bz = [−1, 1].

According to Lemma 2, the following results hold:

1− E[PK̄(z)] = 1−
d∑
i=0

c̄zim
z
i ≤ P∗risk ≤ E[PK(z)] =

d∑
i=0

czim
z
i (10)

where K = [l1, u1] and K̄ = Bz \ [l1, u1]. Univariate polynomials PK(z) ∈ Rd[z] with coefficients czi , i = 0, ..., d and
PK̄(z) ∈ Rd[z] with coefficients c̄zi , i = 0, ..., d are polynomial approximations of the indicator functions of the sets
K and K̄, respectively, that are obtained by solving a convex optimization problem similar to (5), i.e.,

minPK(z)∈Rd[z]

∫
Bz
PK(z)dz (11)

s.t PK(z) ≥ 1 on K (11a)
PK(z) ≥ 0 on Bz (11b)

Note that the optimization problem in (11) is a univariate SOS optimization. To improve the obtained risk bounds
in (10), we use the Chebyshev polynomial basis instead of the standard basis to solve the optimization problem in
(11) and to represent the moments ([13], [14]). Hence, the new risk bounds read as:

1− E[PTK̄ ] = 1−
d∑
i=0

c̄Tim
z
Ti ≤ P∗risk ≤ E[PTK ] =

d∑
i=0

cTim
z
Ti (12)

where PTK with coefficients cTi , i = 0, ..., d and PTK̄ with coefficients c̄Ti , i = 0, ..., d are Chebyshev based
polynomial approximations of the indicator functions of the sets K and K̄, respectively, and mz

Ti
is the i-th moment

of z written in the Chebyshev basis.

Illustrative Example: Let x be a single random variable with uniform probability distribution µx = U [−0.5, 0.5]
representing the location of a ball. There is a moving hole h = [q − 0.8, q] where q is a random variable with
µq = Beta(3−

√
2, 3+

√
2) probability distribution. We are interested in finding the probability that the ball lands in

the hole, i.e., ProbabilityU,Beta{x ∈ h}. Hence, the risk is defined as P∗risk =
∫
−0.4≤0.5(x−q)≤0

µxµqdxdq. We define
a random variable as z = 0.5(x−q) and the sets K = [−0.4, 0] and Bz = [−1, 1]. Then, P∗risk =

∫
K µzdz =

∫
IKµzdz.

The following result holds: 1 −
∫ 1
−1 PK̄(z)µzdz ≤ P∗risk ≤

∫ 1
−1 PK(z)µzdz where PK(z) and PK̄(z) are polynomial

approximations of the indicator functions of the sets K and K̄.

The α-th moment of z can be written in terms of the known moments of x and q as follows:
mzα = E[zα] = E[( 1

2
(x − q))α] =

∑α
i=0

(α
i

)
(−1)α−i( 1

2
)αmxim

q
α−i, where the i-th moments of x and q are

mx
i = 0.5i+1−0.5i+1

i+1
, mq

i = 3−
√

2+i−1
6+i−1

mq
i−1, respectively. For example, the first 3 moments of z described

in the standard basis read as: mz
0 = 1, mz

1 = 0.5mx
1 − 0.5mq

1, mz
2 = 0.25mx

2 − 0.5mx
1m

q
1 + 0.25mq

2. Also, the moments
in the Chebyshev basis are mz

T0
= mz

0, mz
T1

= mz
1, mz

T2
= −mz

0 + 2mz
2.

Figure 2 shows the moments of z in the standard and Chebyshev basis up to the order α = 66. We solve
optimization problem (11) for the sets K and K̄ with d = 66. The obtained polynomial approximations of the
indicator functions and their coefficients are shown in Figures 3 and 4, respectively. According to Eq (12) the risk
bounds are [0.591, 0.798] while the true risk, approximated by the Monte-Carlo sampling method, is 0.7. Table I
shows the obtained lower and upper bounds on the risk denoted by pl and pu, respectively, for different polynomial
degree d. According to Lemma 2 as d increases, the obtained bounds converge to the true risk.



Fig. 2: Moments of random variable z in the standard (mz
α ) and Chebyshev basis (mz

Tα )

Fig. 3: PTK(z) and PTK̄(z), Chebyshev based polynomial approximations of the indicator functions of the sets K, K̄, respectively.

Fig. 4: cTα: coefficients of PTK(z), ¯cTα: coefficients of PTK̄(z)

It is shown that the Chebyshev basis could improve the resluts of SDPs ([13], [14]). In the risk estimation
problem, the Chebyshev representation improves the results because i) Chebyshev based polynomial approximation
of the indicator function reduces the oscillations on the boundary of the given set [13] e.g., points x = −0.4 and
x = 0 (Figure 3), ii) Chebyshev based representation of the moments affect the risk bounds more efficiently, e.g.,
moments in the standard basis mz

α vanishes rapidly (Figure 2).

d 20 30 40 50 60 66
pu 0.92 0.879 0.859 0.822 0.804 0.798
pl 0.401 0.485 0.511 0.562 0.586 0.591

TABLE I: Upper and lower bounds of the risk

2) Unsafe Set Involving Multiple Polynomials: Consider the given set χ in (1). We define random vector Z ∈ R`
in terms of the polynomials of the set χ as:

Z = [z1, ..., z`], zj = Pj(x, q), j = 1, ..., ` (13)



The moment of order −→α = (α1, ..., α`) of Z can be obtained in terms of the moments of probability distributions
µx and µq as follows:

mZ
α1,...,α`

= E[
∏̀
j=1

z
αj
j ] = E[

∏̀
j=1

Pαjj (x, q)] =
∑
i,j

aijm
x
im

q
j (14)

where mx
i and mq

i are the i-th order moments of random variables x and q, respectively, and aij are the coefficients
of polynomial

∏`
j=1 P

αj
j (x, q). Defining random vector Z, risk in (2) reads as

P∗risk := ProbabilityµZ{Z ∈ [l1, u1]× [l2, u2]...× [l`, u`]} (15)

where µZ is the probability distribution of Z. Hence, according to Lemma 2 the following result holds:

P∗risk ≤ E[
∏̀
j=1

PKj (zj)] (16)

where Kj = [lj , uj ], j = 1, ..., ` and univariate polynomials PKj (zj), j = 1, ..., ` are the polynomial approximations of
the indicator functions of the sets Kj , j = 1, ..., ` that are obtained by solving convex optimization problem (11). Note
that

∏`
j PKj (zj) represents the polynomial approximation of the indicator function of the set [l1, u1]×[l2, u2]...×[l`, u`].

Let PTKj
, j = 1, ..., ` denote the Chebyshev based polynomial approximations of the indicator functions of the

sets Kj , j = 1, ..., ` and mz
Ti1,...,i`

be the moment of order −→i = (i1, ..., i`) of Z written in the Chebyshev basis. Then,
risk bound in (16) reads as P∗risk ≤

∑
i1,...,i`

cTi1,...,i`
mZTi1,...,i`

where cTi1,...,i` are the coefficients of polynomial∏`
j=1 PTKj

.

V. IMPLEMENTATION AND NUMERICAL RESULTS

In this section, two numerical examples are presented that illustrate the performance of the proposed approach.
We solve the SDP in (11) to find the coefficients of Chebyshev based polynomial approximations of the indicator
functions of the sets K and K̄. Also, we obtain the coefficients vector in (8) that maps the moments of uncertainties
to the moments of random variable z. Obtaining these coefficients in the offline step, we calculate the risk bounds
for any given uncertainties in real-time. Note that calculation of the risk bounds only requires multiplying the
moment vector of uncertainties by the coefficient vectors calculated in the offline step. Hence, in the presence of
time varying or state-dependent uncertainties, risk bounds can be updated by updating the moment information
of uncertainties. For example, locations of dynamic obstacles can be modeled as time varying probabilistic
uncertainties and the probability of collision at each time can be calculated by updating the moment information.

The computations in this section were performed on a computer with Intel i7 2.9GHz processors and 8 GB
RAM. We use the Chebfun package [19] to work with univariate Chebyshev polynomials and also SeDuMi
to solve the SDP in (11). We compare the proposed method with the moment-SDP based approach in [13]
where, in the dual space, one needs to solve SOS optimization (5). For this, we use GloptiPoly [20], which
is a MATLAB-based toolbox for moment-based SDP, and Mosek SDP solver. In all the tables, d denotes the
degree of the polynomial approximation of the indicator function, pu and pl denote upper and lower bounds
on the risk, respectively, tu and tl denote computation time in seconds required for computing pu and pl, respectively.

In this paper, we assume that semialgebraic representations of the obstacles are given. One can use the SOS
based approaches in ([22], [21]), to construct semialgebraic representations of obstacles from point cloud data
obtained by sensors. In this case, additional constraints on the polynomials should be added to satisfy Assumption
3. Note that defined random variable z in the Section IV-B is supported in [−1, 1]; Hence, it’s moment sequence
is bounded in [−1, 1]. We note, however, that describing the high order moments of z in the Chebyshev basis
could become numerically unstable. This is due to the large coefficients of the linear map between the Chebyshev
and the standard basis that results in finite-precision floating-point error. Fixing this issue requires an appropriate
rescaling of the Chebyshev basis [23]. In the provided numerical examples, we use the polynomial degree d that
results in bounded moments in the Chebyshev basis i.e., −1 ≤ mz

Tα
≤ 1, α = 0, ..., d.



multivariate SOS

d 10 20 30
pu 0.54 0.50 0.495
tu(s) ≈2.6 ≈76 ≈3689
pl 0.13 0.15 0.161
tl(s) ≈4.5 ≈70 ≈3156

proposed univariate SOS

d 88
pu 0.48
tu(s) ≈17
pl 0.169
tl(s) ≈15

TABLE II: Results of proposed univariate SOS and multivariate SOS in [13] for Example 1

Fig. 5: Non-convex uncertain obstacle for q = 0 (red), q = 0.07 (blue), and q = 0.1 (black)

A. Example 1: Consider the motivating example in section III. Based on the proposed approach, we need to find
the following probability in terms of random variable z: P∗risk = Probabilityµz{−0.1 ≤ z ≤ 0.2}. The polynomials
PTK and PTK̄ for the set K = [−0.1, 0.2] are obtained by solving the optimization problem in (11) with d = 88.
The moments of z are obtained in terms of known moments of xr1, xr2, and q in the Chebyshev basis. Obtaining
mz
Ti

and coefficients cTi and c̄Ti , the risk bounds are computed using (12) as [0.169, 0.48] while the true risk,
approximated by the Monte-Carlo sampling method, is 0.32. The computation time required to solve the univariate
SOS optimization and calculate the risk in the online step are less than ≈ 17(s) and 0.1(s), respectively. Also,
implementing the approach in [13], the obtained upper and lower bounds of the risk and the computation time for
different polynomial orders d are reported in Table II. Note that one needs to repeat the heavy computations of the
multivariate SOS in [13], each time that moments of uncertainties change. However, in our approach one needs to
only update the moment information and use the previously calculated coefficients cTi and c̄Ti to update the risk
bounds. Proposed univariate SOS achieves better risk bounds in much less computation time.

B. Example 2: a non-convex uncertain set, shown in Figure 5, is described as χ(q) = {x ∈ R3 : 0.84 ≤
P(x1, x2, x3, q) ≤ 1}, where P = 0.9487722614−0.0022x1−0.0042x2−0.0457x3−0.3877x2

1+0.0405x1x2−0.3105x2
2−0.0537x1x3−

0.0179x2x3 − 0.4094x2
3 − 0.1059x3

1 − 0.0212x2
1x2 + 0.0906x1x

2
2 − 0.0543x3

2 + 0.1451x2
1x3 − 1.8302x1x2x3 + 0.1135x2

2x3 − 0.1096x1x
2
3 +

0.1205x2x
2
3 + 0.3407x3

3− 0.3285x4
1− 0.1338x3

1x2 + 0.4847x2
1x

2
2 + 0.1127x1x

3
2− 0.3495x4

2 + 0.0394x3
1x3 + 0.0149x2

1x2x3− 0.0051x1x
2
2x3−

0.0594x3
2x3 + 0.5418x2

1x
2
3− 0.0659x1x2x

2
3 + 0.4840x2

2x
2
3 + 0.0085x1x

3
3 + 0.0657x2x

3
3− 0.3076x4

3 + 0.1268x5
1 + 0.0058x4

1x2− 0.1012x3
1x

2
2 +

0.0070x2
1x

3
2 + 0.0053x1x

4
2 + 0.0718x5

2 − 0.0226x4
1x3 + 0.7338x3

1x2x3 − 0.0716x2
1x

2
2x3 + 0.7226x1x

3
2x3 − 0.2075x4

2x3 + 0.0378x3
1x

2
3 −

0.0139x2
1x2x

2
3+0.0224x1x

2
2x

2
3−0.0566x3

2x
2
3−0.0773x2

1x
3
3+0.7345x1x2x

3
3+0.0955x2

2x
3
3+0.0399x1x

4
3−0.0653x2x

4
3−0.3173x5

3−q and q is
an uncertain parameter with uniform probability distribution on [0, 0.1]. Also, x1, x2, and x3 have uniform probability
distributions on [−0.4, 0.4]. We want to find the risk defined as P∗risk = Probabilityµx1 ,µx2 ,µx3 ,µq

{x ∈ χ(q)}.
Based on the provided approach, we need to find the following probability in terms of new random variable z:
P∗risk = Probabilityµz{0.84 ≤ z ≤ 1}. The moments of z are obtained in terms of known moments of x1, x2, x3,
and q in the Chebyshev basis. The polynomials PTK and PTK̄ for the sets K = [0.84, 1] and K̄ = [−1, 1] \ [0.84, 1]
are obtained by solving optimization problem (11) with d = 48. Obtaining the moments mz

Ti
and coefficients cTi



multivariate SOS

d 10 20 30
pu 0.81 0.78 –
tu(s) ≈12 ≈7459 –
pl 0.189 0.239 –
tl(s) ≈11 ≈6657 –

proposed univariate SOS

d 48
pu 0.77
tu(s) ≈5
pl 0.25
tl(s) ≈5

TABLE III: Results of proposed univariate SOS and multivariate SOS in [13] for Example 2

and c̄Ti , the risk bounds are obtained using (12) as [0.25, 0.77] while the true risk, approximated by the Monte-Carlo
sampling method, is 0.519. The computation time required to solve the univariate SOS optimization and calculate
the risk in the online step are less than ≈ 5(s) and 0.1(s), respectively. Also, implementing the approach in [13],
the obtained upper and lower bounds of the risk and the computation time for different polynomial orders d are
reported in Table III. For d = 30, we receive an ”out of memory” error due to the large size of the SDP.

VI. CONCLUSION

In this paper, we consider the probability estimation of the safety constraints violation in the presence of bounded
uncertainties with arbitrary probability distributions. Safety constraints are represented by a non-convex set defined
by polynomial inequalities. To solve this problem, we use a moment-based representation of probability distributions.
Upper and lower bounds of the risk are computed as a weighted sum of the moments of the probability distributions
of uncertainties. The weights are obtained in the offline step by solving a univariate sum of squares optimization
problem in the Chebyshev basis. Numerical examples on probabilistic collision checking problem in uncertain
environments are provided that show the performance of the proposed method. For the future work, we will use
the proposed method in probabilistic motion planning to evaluate the risk of the designed maneuvers for robots.
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