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Abstract— Earlier work has established a decentralized
framework to optimally control Connected Automated Vehicles
(CAVs) crossing an urban intersection without using explicit
traffic signaling while following a strict First-In-First-Out
(FIFO) queueing structure. The proposed solution minimizes
energy consumption subject to a FIFO-based throughput max-
imization requirement. In this paper, we extend the solution
to account for asymmetric intersections by relaxing the FIFO
constraint and including a dynamic resequencing process so
as to maximize traffic throughput. To investigate the tradeoff
between throughput maximization and energy minimization
objectives, we exploit several alternative problem formulations.
In addition, the computational complexity of the resequencing
process is analyzed and proved to be bounded, which makes
the online implementation computationally feasible. The ef-
fectiveness of the dynamic resequencing process in terms of
throughput maximization is illustrated through simulation.

I. INTRODUCTION

To date, traffic light control is the prevailing method for
controlling the traffic flow in an urban area. Recent techno-
logical developments (e.g., [1]) have exploited data-driven
control and optimization approaches and enabled the adaptive
control of traffic light cycles, which reduces the travel delay.
However, in addition to the obvious infrastructure cost, safety
issues, e.g., rear-end collisions, often arise under traffic
light control. These issues have motivated research efforts
to explore new approaches capable of enabling a smoother
traffic flow while also improving safety.

Connected and Automated Vehicles (CAVs) have the
potential to drastically improve a transportation network’s
performance by assisting drivers in making better deci-
sions, ultimately reducing energy consumption, air pollution,
congestion and accidents. One of the very early efforts
exploiting the benefit of CAVs was proposed in [2], where
an optimal linear feedback regulator is introduced for the
merging problem to control a single string of vehicles. More
recently, several research efforts have been reported in the
literature for CAV coordination at intersections. Dresner and
Stone [3] proposed a reservation-based scheme for cen-
tralized automated vehicle intersection management. Since
then, numerous research efforts have explored safe and
efficient control strategies, e.g., [4]–[6]. Some approaches
have focused on coordinating vehicles so as to reduce travel
delay and increase intersection throughput, e.g., [7]–[9] and
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some have studied intersections as polling systems [10] so as
to determine a sequence of times assigned to vehicles on each
road. Reducing energy consumption is one of the desired
objectives which has been considered in recent literature
[11]–[14]. A detailed discussion of the overall research in
this area can be found in [15].

Our earlier work [16] has established a decentralized
optimal control framework for coordinating on line a contin-
uous flow of CAVs crossing an urban intersection without
using explicit traffic signaling. For each CAV, an energy
minimization optimal control problem is formulated where
the time to cross the intersection is first determined through
a throughput maximization problem. We also established
conditions under which feasible solutions to the optimal
control problem exist.

The crossing sequence for the CAVs based on which
the throughput maximization problem in [17] is formulated
adopts a strict First-In-First-Out (FIFO) queueing structure.
This can be effective when the intersection is physically
symmetrical and the vehicle arrival rates at all intersection
entries do not differ much. However, when the intersection
is asymmetrical, the FIFO queueing structure may lead to
poor scheduling and possible congestion. Even with a fully
symmetrical intersection, a strict FIFO crossing sequence is
conservative in the sense that it prevents the intersection
from further exploiting the benefits of CAVs and achieving
traffic throughput maximization. Hence, it is necessary to
design a coordination algorithm for CAVs to maximize the
traffic throughput. Zohdy et al. [18] presented an approach
based on Cooperative Adaptive Cruise Control (CACC) for
minimizing intersection delay and hence maximizing the
throughput. Lee and Park [19] considered minimizing the
overlap between vehicle positions. In this paper, we extend
the optimal control solution in [17] by relaxing the FIFO
constraint and including a dynamic resequencing process so
as to maximize traffic throughput.

The paper is structured as follows. In Section II, we
review the model in [16] and its generalization in [17].
In Section III, we extend the solution in [17] by relaxing
the FIFO constraint and including a dynamic resequencing
process so as to maximize traffic throughput. We consider
several alternative problem formulations in order to inves-
tigate the tradeoff between throughput maximization and
energy minimization objectives. In Section IV, we analyze
the computational complexity of the resequencing process
and show it to be bounded and, on average, limited to the
number of lanes in the intersection. Conclusions and future
work are given in Section V.

ar
X

iv
:1

80
9.

00
26

2v
1 

 [
m

at
h.

O
C

] 
 1

 S
ep

 2
01

8



Fig. 1: Connected Automated Vehicles crossing an urban
intersection.

II. THE MODEL

The model introduced in [16] and [17] is briefly reviewed.
We consider an intersection (Fig. 1) where the region at the
center of each intersection, called Merging Zone (MZ), is
the area of potential lateral CAV collision and assumed to
be a square of side S. The intersection has a Control Zone
(CZ) and a coordinator that can communicate with the CAVs
traveling within it. The road segment from the CZ entry to
the CZ exit (i.e., the MZ entry) is referred as a CZ segment.
The length of CZ segment is L > S, and it is assumed to
be the same for all entry points to a given CZ.

Let N(t) ∈ N be the cumulative number of CAVs which
have entered the CZ by time t and formed a queue that
designates the crossing sequence in which these CAVs will
enter the MZ. There is a number of ways to form the queue.
In [16] and [17], a strict First-In-First-Out (FIFO) crossing
sequence is assumed, that is, when a CAV reaches the CZ,
the coordinator assigns it an integer value i = N(t) + 1. If
two or more CAVs enter a CZ at the same time, then the
corresponding coordinator selects randomly the first one to
be assigned the value N(t) + 1.

For simplicity, we assume that each CAV is governed by
a second order dynamics

ṗi = vi(t), pi(t
0
i ) = 0; v̇i = ui(t), vi(t0i ) given (1)

where pi(t) ∈ Pi, vi(t) ∈ Vi, and ui(t) ∈ Ui denote the
position, i.e., travel distance since the entry of the CZ, speed
and acceleration/deceleration (control input) of each CAV i.
The sets Pi, Vi and Ui are complete and totally bounded sets
of R. These dynamics are in force over an interval [t0i , t

f
i ],

where t0i and tfi are the times that the vehicle i enters the
CZ and exits the MZ respectively.

To ensure that the control input and vehicle speed are
within a given admissible range, the following constraints
are imposed:

ui,min ≤ ui(t) ≤ ui,max, and

0 ≤ vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
f
i ].

(2)

Definition 1: Depending on its physical location inside the
CZ, CAV i−1 ∈ N (t) belongs to only one of the following
four subsets ofN (t) with respect to CAV i: 1)Ri(t) contains
all CAVs traveling on the same road as i and towards the
same direction but on different lanes, 2) Li(t) contains all
CAVs traveling on the same road and lane as vehicle i (e.g.,
L5(t) contains CAV #4 in Fig. 1), 3) Ci(t) contains all CAVs
traveling on different roads from i and having destinations
that can cause collision at the MZ (e.g., C6(t) contains CAV
#5 in Fig. 1), and 4) Oi(t) contains all CAVs traveling on
the same road as i and opposite destinations that cannot,
however, cause collision at the MZ (e.g., O4(t) contains CAV
#3 in Fig. 1).

To ensure the absence of any rear-end collision throughout
the CZ, we impose the rear-end safety constraint:

si(t) = pk(t)− pi(t) ≥ δ, ∀t ∈ [t0i , t
f
i ], k ∈ Li(t) (3)

where k is the CAV physically ahead of i on the same lane,
si(t) is the inter-vehicle distance between i and k, and δ is
the minimal safety following distance allowable.

A lateral collision involving CAV i may occur only if some
CAV j 6= i belongs to Ci(t). This leads to the following
definition:

Definition 2: For each CAV i ∈ N (t), we define the set
Γi that includes all time instants when a lateral collision
involving CAV i is possible: Γi ,

{
t | t ∈ [tmi , t

f
i ]
}

, where
tmi is the time that CAV i enters the MZ. Consequently, to
avoid a lateral collision for any two vehicles i, j ∈ N (t) on
different roads, the following constraint should hold

Γi ∩ Γj = ∅, ∀t ∈ [tmi , t
f
i ], j ∈ Ci(t). (4)

As part of safety considerations, we impose the following
assumptions: For CAV i, none of the constraints (2)-(3) is
active at t0i . The speed of the CAVs inside the MZ is constant,
i.e., vi(t) = vmi , ∀t ∈ [tmi , t

f
i ]. This implies that tfi =

tmi + S
vmi

. Each CAV i has proximity sensors and can measure
local information without errors or delays.

The objective of each CAV is to derive an optimal acceler-
ation/deceleration profile, in terms of minimizing energy con-
sumption, inside the CZ while avoiding congestion between
the two intersections. Since the coordinator is not involved
in any decision making process on the vehicle control, we
can formulate N(t) decentralized tractable problems that can
be solved online, that is,

min
ui∈Ui

1

2

∫ tmi

t0i

Ki · u2i dt

subject to : (1), (2), tmi , pi(t
0
i ) = 0, (5)

pi(t
m
i ) = L, and given t0i , vi(t0i ),

where Ki is a factor to capture CAV diversity (Ki = 1 for
simplicity). Note that the terminal speed vmi is undefined and
obtained from the energy minimization problem.

The terminal times for CAVs entering the MZ, i.e., tmi ,
can be obtained as the solution to a throughput maximization
problem based on a FIFO crossing sequence subject to rear-
end and lateral collision avoidance constraints inside the MZ.



As shown in [17], the terminal time of CAV i (i.e., tmi ) can
be recursively determined through

tm
∗

i =


tm
∗

1 if i = 1

max {tm∗i−1, tm
∗

k + δ
vmk
, tci} if i− 1 ∈ Ri ∪ Oi

max {tm∗i−1 + δ
vmi−1

, tci} if i− 1 ∈ Li
max {tm∗i−1 + S

vmi−1
, tci} if i− 1 ∈ Ci

(6)
where tci = t1i1vmi =vmax

+ t2i (1− 1vmi =vmax
) and t1i = t0i +

L
vmax

+
(vmax−v0i )

2

2ui,maxvmax
, t2i = t0i +

[2Lui,max+(v0i )
2]1/2−v0i

ui,max
. Here,

tci is a lower bound of tmi regardless of the solution of the
throughput maximization problem.

An analytical solution of problem (5) may be obtained
through a Hamiltonian analysis. Assuming that all constraints
are satisfied upon entering the CZ and that they remain
inactive throughout [t0i , t

m
i ], the optimal control input (ac-

celeration/deceleration) over t ∈ [t0i , t
m
i ] is given by

u∗i (t) = ait+ bi (7)

where ai and bi are constants of integration. Using (7) in
the CAV dynamics (1), the optimal speed and position are
obtained as

v∗i (t) =
1

2
ait

2 + bit+ ci (8)

p∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di, (9)

where ci and di are constants of integration. The coefficients
ai, bi, ci, di can be obtained given initial and terminal
conditions.

Note that the analytical solution (7) is valid while none of
the constraints becomes active for t ∈ [t0i , t

m
i ]. Otherwise,

the optimal solution should be modified considering the
active constraints as discussed in [17]. Also note that this
formulation (5) does not include the safety constraint (3).
The conditions under which the rear-end collision avoidance
constraint does not become active inside the CZ are provided
in [20], where it is also shown how they can be enforced
through an appropriately designed Feasibility Enforcement
Zone that precedes the CZ.

III. DYNAMIC RESEQUENCING OF CONNECTED
AUTOMATED VEHICLES

The crossing sequence for the CAVs based on which
the throughput maximization problem in [17] is formulated
adopts a strict FIFO queueing structure. This can be effective
when the CZ is physically symmetrical and the vehicle arrival
rates at all CZ entries do not differ much. However, when the
CZ is asymmetrical (see Fig. 2), the FIFO queueing structure
may lead to poor scheduling and possible congestion. For
example, in Fig. 2(a) where the CZ is asymmetrical in terms
of the vehicle arrival rates, CAV #4 entering the intersection
from a CZ segment with a lower arrival rate should wait
under FIFO for the first three CAVs crossing the MZ,
which leads to unnecessary travel delay and extra energy
consumption. In Fig. 2(b) where the CZ is asymmetrical
in terms of the physical lengths of CZ segments, CAV #4

enters the intersection from a shorter CZ segment and it is
closer to the MZ entry, while #4 has to decelerate in order
to let the CAV #1, #2 and #3 cross the MZ first. This again
will increase travel delay. Even with a fully symmetrical
CZ, a strict FIFO queueing structure is conservative in the
sense that it prevents the CZ from achieving higher traffic
throughput. For example, a CAV with higher initial speed
may tend to cross the MZ before another CAV which arrives
at the CZ earlier but with lower initial speed.

Fig. 2: Connected Automated Vehicles crossing an asymmet-
rical urban intersection.

A. Feasible Crossing Sequence

A natural approach dealing with the sequencing issue is
to dynamically resequence the CAVs when a new one enters
the CZ. The resequencing policy can be position-based, i.e.,
the CAV closer to the MZ entry is prioritized to cross it.
Alternatively, the crossing sequence can be determined based
on the estimated travel time to the MZ. However, these
methods may not be fair since CAVs entering from the
shorter CZ segment are always prioritized over those entering
from the longer CZ segment, which leads to congestion on
the longer CZ segment. A better approach is to evaluate all
feasible crossing sequences whenever a new CAV enters the
CZ and select the one that maximizes traffic throughput.

Thus, our objective is to assign each arriving CAV
an appropriate order to maximize traffic throughput while
maintaining the relative order of the remaining CAVs. The
problem reduces to finding all feasible crossing sequences,
computing the corresponding terminal times recursively as in
(6), and determining the one providing maximal throughput.

The first step is to find all the feasible crossing sequences,
which is equivalent to finding all the feasible orders which
can be assigned to CAV i = N(t) + 1. Recalling that CAV
k ∈ Li is the vehicle physically ahead of i on the same lane
(k = 0 if such a CAV does not exist), we define a function
f(m,n) which swaps the order of CAVs m and n, i.e., after
f(m,n) is evaluated, CAVs m and n become CAVs n and
m respectively. Denoting a crossing sequence as s and the
set containing all the feasible crossing sequences as Si when
CAV i enters the CZ, the algorithm for deriving all feasible
crossing sequences Si is presented as follows.

Note that CAV i cannot overtake the preceding CAV k
on the same lane. Therefore, the algorithm will stop if faced
with an order swap of CAVs i and k. After each call of f , the



Algorithm 1: Find the feasible crossing sequence set Si
1 set ji := i;
2 while ji 6= k do
3 obtain a new s;
4 if s is feasible then
5 add s to Si;
6 else
7 break;
8 end
9 execute f(ji, ji − 1) ⇒ ji := ji − 1;

10 end

original order of i which is o(i) = i is assigned a new order
o′(i) = ji, where the subscript i represents the original order,
and the coordinator will obtain a new crossing sequence s.
Recalling that tci is the lower bound of tmi , the crossing
sequence s can only be feasible if tmji ≥ tci is satisfied,
where tmji is given through (6). Clearly, all existing CAVs
whose order is affected by the resequencing process may
only arrive at the MZ later than the original terminal times;
therefore, it is not possible for them to violate the lower
bound. If tmji < tci holds, the sequence s is infeasible and
the algorithm can terminate. This is because for any order
j
′

i < ji, we have tm
j
′
i

≤ tmji < tci , hence, there is no need to
continue the algorithm. If the crossing sequence s is feasible,
the coordinator will record this sequence and add it to the set
Si. This process repeats until f can no longer be executed.
Note that the set Si must be non-empty since ji = i itself
is always a feasible order for CAV i. The computational
complexity of this process will be discussed in Section IV.

B. Throughput Maximization Problem Formulation

For each feasible crossing sequence s in Si, we can deter-
mine the terminal time for each CAV iteratively through (6)
and obtain a terminal time sequence t(2:i) = [tm2 , · · · , tmi ].
As in [16] and [17], we aim at minimizing the gaps between
the terminal times of two adjacent CAVs i and i− 1 in the
sequence. Given the recursive structure of the terminal times,
this objective is equivalent to minimizing tmi −tm1 . Thus, our
objective is

min
s∈Si

i∑
j=2

(
tmj − tmj−1

)
= min
s∈Si

(
tmi − tm1

)
(10)

subject to: (1), (2), (4),

si(t) = pk(t)− pi(t) > δ, ∀t ∈ [tmi , t
f
i ], k ∈ Li(t).

Observe that tm1 is not included in the terminal time
sequence since its selection is subject to a degree of freedom
reflecting the tradeoff between energy minimization and
throughput maximization. In our earlier work [16] and [17],
CAV #1 is assumed to cruise at its initial speed so that tm1 =
t01 + L

v01
and its terminal speed is vm1 = v01 . However, with

resequencing, several alternatives are possible as discussed
in the sequel.

As shown in (6), the terminal time of CAV i is dependent
not only on the terminal time of CAV i−1 and/or k, but also
on the terminal speed of CAV i− 1 and/or k. Note that the
terminal speed is unspecified and obtained from the energy
minimization problem (5). However, there is a number of
ways to specify the terminal speed.

C. Alternative Energy Minimization Problem Formulations

The effectiveness of the resequencing process may be
affected by the way we formulate the energy minimization
problem. Next, by modifying (5), we are going to explore
several alternative problem formulations and their impact on
the resequencing efficiency.

1) Modifying the terminal time of CAV #1, i.e., tm1 :
Due to the recursive structure of the terminal times in (6), tm1
will generally affect all CAVs that follow CAV #1. Recalling
that there exists a degree of freedom in the selection of
tm1 which can be used to trade off energy minimization
and throughput maximization, we can modify the energy
minimization problem formulation for CAV #1 by including
the term ρ · (tm1 − t01) below to penalize longer travel times:

min
u1

1

2

∫ tm1

t01

u21 dt+ ρ(tm1 − t01) (11)

subject to: (1), (2), p1(tm1 ) = L, given t01, v1(t01), p1(t01).

The coefficient ρ allows trading off the throughput maxi-
mization and energy minimization objectives. Note that the
terminal time tm1 is now unspecified. Alternatively, we can
force CAV #1 to reach the MZ as quickly as possible by
setting tm1 = tc1, the lower bound for terminal times.

2) Modifying the terminal speed of CAV i, i.e., vmi : Due
to the recursive terminal time structure in (6), the terminal
speed vmi also impacts vehicles that follow i, hence, this
affects the traffic throughput. For example, a low terminal
speed vmi−1 can result in a long gap between CAV i and
i−1, which leads to a longer travel time for i, thus reducing
the traffic throughput. Therefore, we can modify the energy
minimization problem by including a quadratic deviation
of vmi from the maximum speed vmax to penalize lower
terminal speeds, that is,

min
ui

1

2

∫ tmi

t0i

u2i dt+
σ

2
(vmi − vmax)2 (12)

subject to: (1), (2), tmi , pi(t
m
i ) = L, given t0i , vi(t

0
i ), pi(t

0
i ).

The coefficient σ allows trading off the throughput maxi-
mization and energy minimization objectives.

Alternatively, we can directly set vmi = vmax. Note that
CAV i may not be able to reach vmax. In that case, vmi is
set to the maximal speed that CAV i can reach given its
initial conditions. Assuming vmax is reachable for CAV i,
the energy minimization problem is formulated as

min
ui

1

2

∫ tmi

t0i

u2i dt (13)

subject to: (1), (2), tmi , pi(t
m
i ), vmi = vmax, t

0
i , vi(t

0
i ), pi(t

0
i ).

Note that vmi is specified in this formulation.



D. Case Study for Dynamic Resequencing

The effectiveness of the resequencing process in terms
of maximizing the traffic throughput is validated through
simulation in MATLAB considering 20 CAVs crossing an
urban intersection. The intersection is asymmetric by setting
the lengths of the CZ segments to LE2W = LW2E = 400m
and LN2S = LS2N = 300m, respectively. The width of
the merging zone is S = 30m. The vehicle arrival process is
assumed to be given by a Poisson process with the same rate
λ = 0.4 (veh/s) for each CZ segment. The initial speeds are
assumed to be given by a uniform distribution defined over
[8, 12] m/s. The maximum speed and maximum acceleration
are vmax = 16 m/s and umax = 2 m/s2, while the minimum
speed and maximum deceleration (minimum acceleration)
are set to vmin = 4 m/s and umin = −5 m/s2.

We consider 10 different alternative energy minimization
problem formulations for comparison ([R] indicates a case
with resequencing, and [NR] without resequencing):
(1) [NR] CAV #1 cruises and reaches MZ at tm1 = t01 + L

v0i
;

(2) [NR] CAV #1 is penalized for longer travel time by
including the term ρ(tm1 − t01) in the cost functional,
where ρ = 5;

(3) [NR] CAV #1 is forced to reach MZ at tm1 = tc1;
(4) [R] CAV #1 cruises and reaches MZ at tm1 = t01 + L

v0i
;

(5) [R] CAV #1 is penalized for longer travel time by
including the term ρ(tm1 − t01) in the cost functional,
where ρ = 5;

(6) [R] CAV #1 is forced to reach MZ at tm1 = tc1;
(7) [R] CAVs are penalized from deviating vmax at tmi

by including the term σ
2 (vi(t) − vmax)2 in the cost

functional, where σ = 0.1;
(8) [R] similar to case (7), except that σ = 1;
(9) [R] similar to case (7), except that σ = 10;

(10) [R] CAVs are forced to reach vmax at tmi .

Fig. 3: Optimal control profiles of the first 10 CAVs under
part of the problem formulation cases.

The optimal control and speed trajectories of the first 10
CAVs under different problem formulation cases are shown
in Fig. 3 and 4 respectively. Within each trajectory, the
change of color indicates an occurrence of a resequencing

process. In Fig. 3, observe that there may exist a discontinu-
ity within a control trajectory when the resequencing process
takes place since resequencing may lead to an updated
optimal trajectory. Note that the speed and control constraints
(2) are satisfied throughout the trajectories.

Fig. 4: Optimal speed trajectories of the first 10 CAVs under
different problem formulation cases.

To illustrate the resequencing process, part of the speed
trajectories for the first 3 CAVs under case 4 are shown in
Fig. 5, where CAV #1 is cruising in an energy-optimal way,
i.e., tm1 = t01 + L

v0i
and the crossing sequence is re-evaluated

whenever a CAV enters the CZ. Observe that when CAV
#3 arrives at the CZ, it is rescheduled to #13 (previously
indexed as #3), and CAV #1 and #2 are rescheduled to #21

and #32. Note that both CAV #2 and #1 are traveling on
the longer CZ segments, while CAV #3 is traveling on the
shorter CZ segment. Intuitively, since CAV #3 enters the
CZ right after CAV #2 (t02 = 0.43s, and t03 = 0.51s), it is
natural to let CAV #3 cross the MZ first as it is closer to the
MZ. Without the resequencing process (case 1), CAV #3 can



only enter the MZ when #2 leaves the MZ, which makes the
total gap tm3 − tm1 = 3.52s; with the resequencing process
(case 4), CAV #3 becomes #13, and the total gap reduces to
tm32 − t

m
13 = 2.9s, hence, improving the traffic throughput.

Fig. 5: Illustration of the resequencing process.
Under case 1, where CAV #1 is assumed to cruise at

its initial speed in terms of minimizing energy consumption
and no resequencing is considered, CAV#3 results in a low
terminal speed vm3 = 4.67m/s. Under case 4 where the
resequencing process is included, CAV #3 is rescheduled to
#13 and assumed to cruise at its initial speed. Therefore, the
terminal times for CAV #21 and #32 are updated based on the
recursive terminal time structure and observe that tm32 < tm3 .
This forces CAV #32 to accelerate, which leads to a higher
terminal speed vm32 = 13.1m/s and further minimizes the gap.

Remark 1: This case study assumes a vehicle arrival rate
near the saturation level (further discussed in Sec. IV), which
indicates that the gaps between CAV arrivals at the CZ,
i.e., t0i − t0i−1, are relatively small. When the gap between
CAV arrivals is smaller than the gap between terminal times,
i.e., tmi − tmi−1, CAV i is naturally forced to slow down as
the terminal speed is undefined in (5) and results in lower
terminal speed. Conversely, when the gap between CAV
arrivals is larger than the gap between terminal times, CAV i
may need to accelerate which leads to higher terminal speed.

Since the resequencing process aims at finding the optimal
crossing sequence which maximizes the traffic throughput,
the cases with the resequencing (Fig. 4(4-10)) outperform
those without resequencing (Fig. 4(1-3)). This can be seen
by comparing the total travel time among different cases.
In addition, due to the recursive structure of the terminal
times, there exists a propagation effect of the terminal speeds:
a lower terminal speed of CAV i − 1 may lead to higher
terminal time for CAV i, which further lowers the terminal
speed of i, as shown in Fig. 4(1). With the resequencing
process, CAV i may be rescheduled to an earlier position
ji < i in the queue. Therefore, tmji < tmi , which leads to
higher terminal speed vmji . Even though CAV j (now indexed
as (j + 1)j) is affected by the resequencing process, the
increase in tm(j+1)j

is minimal due to the higher vmji . Thus, the
gap decreases and the traffic throughput improves compared
to the cases without resequencing.

In cases 6 to 10 (Fig. 4(6-10)), we are increasing the
weight forcing the terminal speeds of CAVs to reach vmax.
Note that the travel times in these cases are similar due to

the fact that resequencing results in lower terminal times,
which naturally leads to higher terminal speeds even without
forcing a CAV to reach vmax.

Observe that without the resequencing process (Fig. 4(1-
3)), changing tm1 alone can affect the traffic throughput. In
Fig. 4(1), CAV #1 is assumed to be cruising at its initial
speed. Due to the propagation effect of the terminal speeds,
the following CAVs end up with lower terminal speeds,
which decreases the total travel time. In Fig. 4(2-3), as we
are forcing CAV #1 to reach vmax when it arrives at the MZ,
the terminal time tm1 decreases, hence, tmi , i > 1, determined
by the recursive terminal time structure, also decreases.
Thus, the following vehicles result in higher terminal speeds,
which reduces the total travel time by a large margin. The
benefit obtained from varying tm1 diminishes in the cases
with resequencing (Fig. 4(4-6)).

E. Performance Metrics
To quantify the effectiveness of the resequencing process,

we compare the performance metrics, i.e., energy consump-
tion and throughput under different cases. To measure the
throughput, we use tmN(t), the time by which all N(t) vehicles
exit the CZ. To measure the energy consumption, we use
the polynomial metamodel in [21] that yields vehicle fuel
consumption as a function of speed and acceleration. We
consider 100 CAVs crossing one intersection given a vehicle
arrival rate of λ = 0.4 (veh/s). The performance metrics are
shown in Fig. 6. Observe that with the resequencing process
(starting with case 4), the travel time is improved by approx-
imately 34% compared to the cases without resequencing.
This is consistent with the observations discussed in the case
study and shows the efficiency of the resequencing process
in terms of traffic throughput maximization.

Fig. 6: Travel time (left) and fuel consumption (right) under
alternative problem formulations given λ = 0.4 (veh/s).

In contrast to what we have observed in Fig. 4(1-3), cases
1, 2, and 3 achieve almost the same travel time in Fig. 6.
This leads to the conclusion that how we specify vm1 does
not have any effect when traffic flows reach steady state.

In Fig. 6, observe that the resequencing process leads to
an increase in energy, counteracting the throughput benefits.
This shows the tradeoff between energy minimization and
throughput maximization. Unlike the travel time curve where
cases 4-10 have minimal difference in improving travel time,
as we are increasingly forcing terminal speeds to reach vmax
(from case 4 to 10), more fuel is consumed. As a whole, cases
4 and 5 achieve better performance compared to others.



To further investigate the tradeoff between the throughput
maximization and energy minimization objectives, we ex-
plore the two performance metrics over cases 4-10 when
resequencing is applied at different traffic intensities, as
summarized in Table I. Observe that as the traffic intensity
decreases, the average travel time is improved, while more
fuel is expended. Also observe that when the traffic is light,
e.g., λ = 0.1 (veh/s), the average travel times do not
significantly vary over different problem formulations. Due
to the light traffic, the recursive terminal time structure is in-
terrupted by the critical time tci . Generally, lower travel time
corresponds to more fuel consumption, which is consistent
with the expected tradeoff between energy minimization and
throughput maximization.

TABLE I: Performance under different traffic intensities
4 5 6 7 8 9 10

λ=0.4 time 32.44 28.11 28.1 28 28.1 28.16 29.4
fuel 1.55 2.09 2.09 2.19 2.26 2.28 2.25

λ=0.3 time 28.53 26.98 26.99 27.04 27.38 27.42 28.17
fuel 2.02 2.2 2.2 2.25 2.29 2.3 2.29

λ=0.2 time 27.19 26.43 26.40 26.46 26.73 26.72 26.91
fuel 2.17 2.25 2.26 2.28 2.31 2.32 2.31

λ=0.1 time 26.17 25.98 26.04 26.27 26.30 26.29 26.33
fuel 2.26 2.28 2.28 2.29 2.33 2.34 2.34

λ: arrival rate in veh/s; time in second; fuel in liter

Remark 2: The terminal times are recursively computed
based on the lateral and rear-end collision avoidance con-
straints. These safety constraints are conservative in the sense
that only one vehicle is allowed inside the MZ if CAV
i− 1 ∈ Ci(t). However, the traffic throughput can always be
improved by subdividing the MZ into smaller single-vehicle
areas and establishing less conservative safety constraints.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS FOR
RESEQUENCING

Since the coordinator needs to re-evaluate the crossing
sequence every time a new CAV arrives at the CZ, the com-
plexity of the resequencing process (see Algorithm 1) may
be significant when the traffic is heavy. A key observation is
that CAV i can obviously not overtake its preceding CAV k,
which therefore, guarantees an upper bound in the resequenc-
ing computational complexity involved. Since the key to the
resequencing process lies in inserting CAV i into different
positions of the queue after k, the computational complexity
can be represented by the number of swaps f(i, i − 1) in
addition to the computation without resequencing.

In what follows, we carry out first a worst case analysis.
This corresponds to CAV i entering the CZ when there is
no preceding vehicle k traveling on the same lane, while all
other CZ road segments operate near capacity. Assuming four
CZ segments within an intersection, their lengths are denoted
by Lr, r ∈ {1, 2, 3, 4}. Vehicle arrivals are assumed to be
distributed according to Poisson processes with rates λr,
r ∈ {1, 2, 3, 4}. Letting the average CAV length be lv , the ca-
pacity for each CZ segment Cr is given by Cr = Lr

lv+δ
, r ∈

{1, 2, 3, 4}. Assuming CAV i enters the first CZ segment,
i.e., r = 1, the computational complexity measured using
the number of swaps for CAV i, denoted as N , under the
worst case is N1 = L2+L3+L4

lv+δ
+1. Taking the vehicle arrivals

on other CZ segments into consideration, the worst case of
the computational complexity for the whole intersection is
N = max{L2+L3+L4

lv+δ
, L1+L3+L4

lv+δ
, L1+L2+L4

lv+δ
, L1+L2+L3

lv+δ
} +

1. This represents the upper bound of the computational
complexity associated with the resequencing process. The
best case occurs when k = i−1, which indicates no necessity
to resequence. Hence, the lower bound is N = 1.

The saturation flow rate is an important concept associated
with the stability of the intersection viewed as a queueing
system. When the intersection is saturated, the number of
vehicles present exceeds its capacity and congestion occurs.
In this case, it is not possible to apply any control other than
traffic signaling. Thus, it is important to derive the expected
computational complexity when the traffic flow is stable.
The saturation flow rate is defined as the headway (in time
units) between vehicles moving at steady state. Viewed as a
queueing system, the intersection is an M/G/1 queue, where
the MZ is the server and the vehicles are the customers in
the queue. The condition for this M/G/1 queueing system to
be stable is

∑
r∈{1,2,3,4} λr < µ, where λr is the arrival rate

on rth road segment, and µ is the service rate of the MZ.
Based on the recursive structure of terminal times in (6),
vehicles traveling on opposite roads will not generate any
collision inside the MZ, hence, they are allowed to cross
the MZ at the same time. It follows that we only need∑
r∈{1,2,3,4} λr < 2µ as a condition for stability.
Expected computational complexity E[N ]: to compute

E[N ], we first consider the expected interarrival time be-
tween CAVs k and i. Assuming that CAV i enters the first
CZ segment, i.e., r = 1, the expected interarrival time is
E[∆t] = 1

λ1
. Over the interarrival time ∆t, the expected

number of arrivals on the other three CZ segments are given
by E[∆t] · (λ2 + λ3 + λ4). Therefore, for vehicles coming
from the first CZ segment, we have

E[N1] =
λ2 + λ3 + λ4

λ1
+ 1.

Similarly, for the other three CZ segments, we have E[N2] =
λ1+λ3+λ4

λ2
+1, E[N3] = λ1+λ2+λ4

λ3
+1, E[N4] = λ1+λ2+λ3

λ4
+

1. Therefore,

E[N ] =
λ1E[N1] + λ2E[N2] + λ3E[N3] + λ4E[N4]

(λ1 + λ2 + λ3 + λ4)
= 4

regardless of the arrival rates. Thus, the expected computa-
tional complexity E[N ] = 4 happens to be the number of
CZ segments. In fact, this result can be generalized to an
intersection with M lanes: for vehicles coming from the pth
CZ segment, the expected computational complexity E[Np]
can be shown to be

E[Np] =
1

λp

∑
r∈{1,...,M},r 6=p

λr + 1,

and for the whole intersection, we have

E[N ] =
λ1 · E[N1] + · · ·+ λM · E[NM ]∑

r∈{1,...,M} λr
= M (14)



This indicates that the expected computational complexity is
always determined by the number of lanes associated with
the intersection.

The expected computational complexity is validated
through simulation in MATLAB considering 100 CAVs
crossing an urban intersection, with exactly the same simula-
tion settings as in Sec. III-E with M = 4 lanes. The average
service time is roughly estimated as 1.25s and the expected
service rate is µ = 0.8. Therefore, the stability condition
can be determined as λ1 + λ2 + λ3 + λ4 < 1.6. The energy
minimization problem is formulated as in case 5 in Section
III.D, which penalizes longer travel times for CAV #1.

Fig. 7: Expected computational complexity of resequencing
process over decreasing traffic intensity.

The simulation results are shown in Fig. 7, where the
computational complexity, measured using the number of
swaps, is averaged over 10 simulations. We assume λ1 =
λ2 = λ3 = λ4 = λ, where λ < 0.4. Over different arrival
rates, the computational complexity in performing dynamic
resequencing, is approximately 4, as expected. The actual
value of E[N ], however, may be lower since a resequencing
step affects subsequent resequencing steps by altering the
vehicle arrival process distribution.

V. CONCLUSIONS AND FUTURE WORK
Earlier work [16], [17] and [20] has established a de-

centralized optimal control framework for optimally control-
ling CAVs crossing a signal-free urban intersection while
following a strict FIFO queueing order. In this paper, we
have extended the solution of this problem to account for
asymmetric intersections by relaxing the FIFO constraint
and introducing a dynamic resequencing process so as to
maximize the traffic throughput. The dynamic resequencing
has been shown to be computationally very efficient. It is
also shown to reduce the travel time at the cost of additional
fuel consumption. This tradeoff has been illustrated through
simulation examples.

Ongoing research is considering turns (see [22]) and lane
changing in the intersection with a diverse set of CAVs and
exploring the mixed scenario where both CAVs and human-
driven vehicles travel on the roads (see [23]). Future research
should also investigate the multi-intersection scenario and
how the coupling between multiple intersections would af-
fect the throughput maximization and energy minimization
problems.
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