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Derivation and Extensions of the Linear Feedback Particle Filter

based on Duality Formalisms

Jin-Won Kim, Amirhossein Taghvaei and Prashant G. Mehta

Abstract— This paper is concerned with a duality-based
approach to derive the linear feedback particle filter (FPF).
The FPF is a controlled interacting particle system where the
control law is designed to provide an exact solution for the
nonlinear filtering problem. For the linear Gaussian special
case, certain simplifications arise whereby the linear FPF is
identical to the square-root form of the ensemble Kalman filter.
For this and for the more general nonlinear non-Gaussian case,
it has been an open problem to derive/interpret the FPF control
law as a solution of an optimal control problem. In this paper,
certain duality-based arguments are employed to transform the
filtering problem into an optimal control problem. Its solution
is shown to yield the deterministic form of the linear FPF. An
extension is described to incorporate stochastic effects due to
noise leading to a novel homotopy of exact ensemble Kalman
filters. All the derivations are based on duality formalisms.

I. INTRODUCTION

Amongst the many derivations of the Kalman filter, a
particularly appealing one (to control theorists) is based on
duality arguments; cf., [1, Chapter 7]. In this derivation, the
linear Gaussian filtering (estimation) problem is modeled
as an optimization problem involving minimization of the
mean-squared error (variance) of the estimate. By designing
a suitable dual process (evolving in backward time), the
optimization problem is transformed into a finite-horizon
deterministic linear quadratic (LQ) optimal control problem.
The solution to this LQ problem yields the Kalman filter.

The duality theorem originally appeared in Kalman’s cel-
ebrated paper [2]. The duality relationship between optimal
control and linear filtering has proved to be very useful:
(i) it provides an interpretation of the Kalman filter as the
minimum variance estimator; (ii) it helps explain why the
filtering equation for the error covariance is same as the
dynamic Ricatti equation (DRE) of the optimal control; and
(iii) quantitative results on the asymptotic properties of the
solution of the DRE have been used to derive results on
asymptotic stability of the linear filter [3].

Given the historical significance of these problems, several
extensions have been considered. Early on, the linear duality
was related to the duality in nonlinear programming [4].
Extensions of the duality principle to constrained linear
estimation are described in [5].

Extensions of the duality theory to nonlinear non-Gaussian
settings is a closely related subject of historical importance
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beginning with Mortensen’s maximum-likelihood estima-
tor [6]. Over the years, there have been a number of im-
portant contributions in this area, e.g., the use of logarithmic
(Hopf-Cole) transformation to convert the filtering equation
into the Hamilton-Jacobi-Bellman (HJB) equation of optimal
control [7]. An information theoretic interpretation for the
same appears in [8]. More recently, these considerations have
led to the development and application of the path integral
approaches to filtering and smoothing problems [9]. For a
recent review with a comprehensive reference list, cf., [10].

The goal of this paper is to generalize and apply Kalman’s
duality principle for the purposes of deriving particle filters,
in the tractable linear Gaussian settings. Specifically, the
linear feedback particle filter (also referred to as the square-

root form of the ensemble Kalman filter) is derived by
extending results from the classical duality theory.

As some pertinent background, the feedback particle filter
(FPF) is an example of a controlled interacting particle
system to approximate the solution of the continuous-time
nonlinear filtering problem. In FPF, the importance sampling
step of the conventional particle filter is replaced with feed-
back control. Other steps such as resampling, reproduction,
death or birth of particles are altogether avoided. A salient
feature of the FPF is that it is an exact filter even in
nonlinear-non-Gaussian settings. An expository review of the
continuous-time filters including the progression from the
Kalman filter (1960s) to the ensemble Kalman filter (1990s)
to the feedback particle filter (2010s) appears in [11].

The contributions of this paper are as follows: This paper
is the first to present a derivation of linear FPF/ensemble
Kalman filters based on duality considerations. The adap-
tation of the duality formalisms to the particle filter, as
proposed here, is also original. These considerations are used
to obtain a novel homotopy of stochastic and deterministic
(linear) particle filters all of which are exact.

Although it is not an explicit focus of this paper, the
derivation potentially provides new tools to analyze and
interpret the optimality properties of the filter, in terms of
the simulation variance of its estimates. These properties
are important in applications of ensemble Kalman filters, in
particular, for high-dimension problems.

The outline of the remainder of this paper is as follows:
Sec. II provides the background on FPF. In Sec. III, the
duality formalism for the particle filter is introduced to
construct an optimization problem. The solution to this
problem leading to the deterministic form of the linear FPF is
presented in Sec. IV. The generalization to the stochastic case
appears on Sec. V. All the proofs appear in the Appendix.
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II. PRELIMINARIES AND BACKGROUND

In this paper, we consider the linear Gaussian filtering
problem:

dXt = AtXt dt+ dBt (1a)

dZt =CtXt dt+ dWt (1b)

where Xt ∈R
d is the (hidden) state at time t, Zt ∈R

m is the
observation; At , Ct are matrices of appropriate dimension
whose elements are continuous in t; and {Bt}, {Wt} are
mutually independent Wiener processes taking values in
R

d and R
m, respectively. The covariance associated with

{Bt} and {Wt} are denoted by Qt and Rt , respectively. The
initial condition X0 is drawn from a Gaussian distribution
N(m0,Σ0), independent of {Bt} or {Wt}. It is assumed that
the covariance matrices Qt , Rt and Σ0 are strictly positive
definite for all t. The filtering problem is to compute the
posterior distribution P(Xt ∣Zt) where Zt ∶= σ(Zs;s ∈ [0,t])
denotes the filtration (the time-history of observations).

For the linear Gaussian problem (1a)-(1b), the posterior
distribution P(Xt ∣Zt) is Gaussian N (mt ,Σt), whose mean
and covariance are given by the Kalman-Bucy filter [12]:

dmt = Atmt dt+Kt(dZt −Ctmt dt) (2a)
dΣt

dt
= AtΣt +ΣtA

⊺
t +Qt −ΣtC

⊺R−1
t CΣt (2b)

where Kt ∶= ΣtC
⊺R−1

t is the Kalman gain and the filter is
initialized with the Gaussian prior (m0,Σ0).

Feedback particle filter (FPF) is a controlled interacting
particle system to approximate the Kalman filter1. In the fol-
lowing, the McKean-Vlasov stochastic differential equation
(sde) are presented for the linear FPF algorithm. For these
models, the state at time t is denoted as X̄t . Two types of FPF
algorithm have been described in the literature [14], [15]:

(A) Stochastic linear FPF: The state X̄t evolves according
to the McKean-Vlasov sde:

dX̄t = At X̄t dt+ dB̄t + K̄t(dZt −
Ct X̄t +Ct m̄t

2
dt) (3)

where K̄t = Σ̄tC
⊺
t R−1

t is the Kalman gain; the mean-field
terms are the mean m̄t = E[X̄t ∣Zt ] and the covariance Σ̄t =
E[(X̄t−m̄t)(X̄t−m̄t)⊺∣Zt]; {B̄t} is an independent copy of the
process noise {Bt}; and the initial condition X̄0 ∼N (m0,Σ0).
(B) Deterministic linear FPF: The McKean-Vlasov sde is:

dX̄t =At X̄t dt+
1
2

Qt Σ̄
−1
t (X̄t − m̄t)dt + K̄t(dZt −

Ct X̄t +Ctm̄t

2
dt)
(4)

where (as before) K̄t = Σ̄tC
⊺
t R−1

t is the Kalman gain; the
mean m̄t = E[X̄t ∣Zt ] and the covariance Σ̄t = E[(X̄t −m̄t)(X̄t −
m̄t)⊺∣Zt]; the initial condition X̄0 ∼N (m0,Σ0).

The difference between the two algorithms is that the
process noise term dB̄t in the stochastic FPF (3) is replaced
by 1

2 Qt Σ̄
−1
t (X̄t − m̄t) in the deterministic FPF (4).

1Although the considerations of this paper are limited to the linear
Gaussian problem (1a)-(1b), the FPF algorithm is more broadly applicable
to nonlinear non-Gaussian filtering problems [13], [14].

The following Proposition, borrowed from [15], shows that
both the filters are exact:

Proposition 1: (Theorem 1 in [15]) Consider the linear
Gaussian filtering problem (1a)-(1b), and the linear FPF
(Eq. (3) or Eq. (4)). If P(X0) = P(X̄0) then

P(X̄t ∣Zt) = P(Xt ∣Zt), ∀t > 0

Therefore, mt = m̄t and Σt = Σ̄t .

In a numerical implementation, the filter is simulated with
N interacting particles where N is typically large. The filter
state is {X i

t ∶ 1 ≤ i ≤N}, where X i
t is the state of the ith-particle

at time t. The evolution of X i
t is obtained upon empirically

approximating the mean-field terms. For example, the finite-
N algorithm for the stochastic FPF is as follows:

(A) Finite-N stochastic FPF: The evolution of X i
t is given

by the sde:

dX i
t = AtX

i
t dt+ dBi

t +K
(N)
t (dZt −

CtX
i
t +Ctm

(N)
t

2
dt) (5)

where K
(N)
t ∶= Σ

(N)
t C⊺t R−1

t ; {Bi
t}N

i=1 are independent copies

of Bt ; X i
0

i.i.d∼ N (m0,Σ0) for i = 1,2, . . . ,N; and the empirical
approximations of the two mean-field terms are as follows:

m
(N)
t ∶=

1
N

N∑
j=1

X i
t , Σ

(N)
t ∶=

1
N −1

N∑
j=1
(X i

t −m
(N)
t )(X i

t −m
(N)
t )⊺

The McKean-Vlasov sde (3) represents the mean-field
limit (as N →∞) of the finite-N system (5).

III. DUALITY

A. Classical duality

Classical duality is concerned with the problem of con-
structing a minimum variance estimator for the random vari-
able a⊺XT , where XT is the hidden state (defined according
to the model (1a)) at (some fixed) time T > 0 and a ∈Rd is
an arbitrary (but known) vector.

Given observations Zt for t ∈ [0,T ] (defined according to
the model (1b)), the assumed linear structure for the causal
estimator is as follows:

ST = b⊺T m0+∫
T

0
u⊺t dZt (6)

The filter is thus parametrized by the vector bT ∈R
d and the

(possibly) time-dependent control input u ∶ [0,T ]→R
m. The

latter is denoted as ut .
The optimal filter parameters are obtained by solving the

following mean-squared optimization problem:

min
bT ,ut

E[∣ST −a⊺XT ∣2]
subject to the following constraints: (1a)-(1b) for the pro-
cesses Xt and Zt , and (6) for the random variable ST .

In the duality based derivation of Kalman filter, the opti-
mization problem is converted into a deterministic optimal
control problem by introducing a suitable dual process;
cf., [1, Chapter 7]. The solution of the optimal control
problem yields the optimal control input ut and vector bT .
By expressing the estimator (6) in its differential form, one
obtains the Kalman filter.



B. Duality for the particle filter

A particle filter empirically approximates the posterior
distribution. By the L2 optimality property of the posterior,
the particle filter can be used to obtain a mean-squared
estimate of any arbitrary function of the hidden state.

The particle analogue of (6) is as follows: Define N

random variables {Si
T ∶ 1 ≤ i ≤N} according to

Si
T =

N

∑
j=1
(bi j

T )⊺X
j

0 +∫
T

0
(ui

t)⊺dZt (7)

where the filter parameters now are b
i j
T ∈R

d for i, j = 1, . . . ,N
and the control input ui ∶ [0,T ] → R

m for i = 1, . . . ,N. As
before, the filter state depends linearly on the known data –
observations up to time T and the initial condition X

j

0 for

j = 1, . . . ,N. The initial condition X
j

0
i.i.d∼ N (m0,Σ0). Such a

sampling ensures that the filter provides consistent estimates
(as N →∞) at time T = 0.

The optimal filter parameters are chosen by solving the
following mean-squared optimization problem:

min
b

i j

T
,ui

t

E[∣ 1
N

N

∑
i=1

f (Si
T )− f (a⊺XT )∣2]

subject to the constraints: (1a)-(1b) for the processes Xt

and Zt , and (7) for the random variables Si
T . This is a

multi-objective optimization problem (as the function f is
arbitrary). With the choice of f (x) = x, one obtains the
optimization problem considered in classical duality.

There is a modeling trade-off here: Ideally, one would
want to consider a large enough class of functions f , and the
filter parameters b and u, that can represent and approximate
the posterior distribution. However, the class may not be too
large because one would still want to be able to solve the
multi-objective optimization problem.

In order to make the analysis tractable, the following
simplifications are proposed:

Step 1: Consider the following simplifications for the filter
parameters:

ui
t ∶= ut

N

∑
j=1
(bi j

T )⊺X
j

0 ∶= c⊺T (X i
0−X

(N)
0 )+b⊺T X

(N)
0

where X
(N)
0 ∶= 1

N ∑N
i=1 X i

0 is the empirical mean. Using this
new parametrization, the filter (7) becomes

Si
T = c⊺T (X i

0−X
(N)
0 )+b⊺T X

(N)
0 +∫

T

0
u⊺t dZt (8)

Step 2: The mean-field limit of the estimator is obtained by
letting N →∞. In the limit, the random variable is denoted
as S̄T . The mean-field counterpart of the filter (8) is

S̄T = c⊺T (X̄0−m0)+b⊺T m0 +∫
T

0
u⊺t dZt (9)

The optimization problem is to chose the filter parameters
bT , cT and ut to minimize the following mean-squared cost

min
bT ,cT ,ut

E[∣E[ f (S̄T )∣ZT ]− f (a⊺XT )∣2]
Step 3: In the final step, we restrict the class of functions
to f (x) = x and f (x) = x2. The justification for considering
only linear and quadratic functions is that the density of the
random variable S̄T is Gaussian (see also the Remark 1 at
the end of this section).

C. Optimization problem

In summary, the mathematical problem is a bi-objective
optimization problem:

min
bT ,cT ,ut

(E[∣E[S̄T ∣ZT ]−a⊺XT ∣2], E[∣E[S̄2
T ∣ZT ]−(a⊺XT)2∣2])

(10)
subject to the respective constraints for the state, observation,
and the estimator:

dXt = AtXt dt+ dBt , X0 ∼N (m0,Σ0) (11a)

dZt =CtXt dt+ dWt (11b)

S̄T = b⊺T m0+c⊺T (X̄0−m0)+∫ T

0
u⊺t dZt , X̄0 ∼N (m0,Σ0)

(11c)

where the noise processes Wt and Bt , and the initial condi-
tions X0 and X̄0, are all assumed to be mutually independent;
recall that Zt ∶= σ(Zs;s ∈ [0,t]) denotes the time-history of
observations up to time t (filtration).

A solution to this problem appears in the following section.

IV. DETERMINISTIC PARTICLE FILTER VIA DUALITY

Denote Σt to be the solution of the DRE (2b) with the
initial condition Σ0, and Kt ∶= ΣtC

⊺R−1
t is the Kalman gain.

Define the following state transition matrices:

dΦ

dt
(t;τ) = (−A⊺t +C⊺t K

⊺
t )Φ(t;τ) (12)

dΨ

dt
(t;τ) = (−A⊺t +

1
2

C⊺t K
⊺
t −

1
2

Σ−1
t Qt)Ψ(t;τ) (13)

with Φ(τ;τ) =Ψ(τ;τ) = I, the identity matrix.
These definitions are useful to describe the solution to

the optimization problem (10), as presented in the following
Theorem. Its proof appears in the Appendix (Sec. A).

Theorem 1: Consider the optimization problem (10) sub-
ject to the constraints (11). Its solution is as follows:

bT =Φ(0;T)a (14a)

cT =Ψ(0;T)a (14b)

ut =K
⊺
t Φ(t;T)a (14c)

The solution for cT is unique up to a sign for the scalar
(d = 1) case but it is not unique for the vector (d > 1) case.

Using the optimal parameters (14), the estimator is

S̄T =a
⊺(Φ⊺(0;T)m0+Ψ⊺(0;T)(X̄0−m0)
+∫

T

0
Φ⊺(t;T)Kt dZt), X̄0 ∼N (m0,Σ0)

(15)



This estimator is exact. That is,

E(g(S̄T)∣ZT ) = E(g(a⊺XT )∣ZT )
for all smooth test functions g and vectors a ∈Rd .

The following Proposition provides the differential (recur-
sive) form of the filter which also reveals the connection
to the FPF algorithm (compare with formula (4) for the
deterministic FPF). The proof appears in the Appendix
(Sec. B).

Proposition 2: For any given a ∈Rd and T ≥ 0, S̄T = a⊺X̄T

where X̄T is the strong solution of the following mean-field
sde:

dX̄t = At X̄t dt+Kt(dZt −
Ct X̄t +Ctm̄t

2
dt)+ 1

2
QtΣ

−1
t (X̄t − m̄t)dt

where m̄t =E[X̄t ∣Zt] and the initial condition X̄0 ∼N (m0,Σ0).
Remark 1: The derivation of the deterministic FPF offers

an a posteriori justification of our simplifying choices for
the filter parameters (in step 1) and the functions f (in step
3). That these choices were sufficient is primarily due to
the linear Gaussian nature of the problem. More generally,
if the distribution is sub-Gaussian, the method of moments
suggests considering { f (x) = xk ∣ k = 1,2, . . .} as a class of
functions [16, Section 30].

V. STOCHASTIC PARTICLE FILTER VIA DUALITY

In this section, we extend the deterministic filter struc-
ture (8) to now include noise terms:

Si
T =b

⊺
T X
(N)
0 +c⊺T (X i

0−X
(N)
0 )

+∫
T

0
u⊺t dZt +∫

T

0
v⊺t dBi

t +∫
T

0
w⊺t dW i

t

where the {Bi
t} and {W i

t } are independent copies of the
process noise (with covariance Qt ) and the measurement
error (with covariance Rt), respectively. These are also in-
dependent of Bt ,Wt ,X0,X

i
0. The design problem is to chose

the filter parameters {bT ,cT ,ut ,vt ,wt}.
The motivation of considering this type of filter structure

is two-fold: (i) Si
T now depends linearly on all of the data—

observation, initial condition as well as the copies of the
process noise and the measurement noise; and (ii) particle
filters with noise terms are widely used in practice [11],
[17]. For example, the stochastic FPF (3) includes noise
term to simulate the effect of process noise. The ensemble
Kalman filter include noise terms to simulate the effect of
both process noise and measurement noise [17].

On repeating the steps 1-3, the stochastic counterpart of
the optimization problem (10)-(11) is obtained as follows:

min
bT ,cT ,
ut ,vt ,wt

(E[∣E[S̄T ∣ZT ]−a⊺XT ∣2], E[∣E[S̄2
T ∣ZT ]−(a⊺XT )2∣2])

(16)

subject to

dXt =AtXt dt+ dBt , X0 ∼N (m0,Σ0) (17a)

dZt =CtXt dt+ dWt (17b)

S̄T =b
⊺
T m0+c⊺T (X̄0−m0)+∫ T

0
u⊺t dZt

+∫
T

0
v⊺t dB̄t +∫

T

0
w⊺t dW̄t , X̄0 ∼N (m0,Σ0) (17c)

A solution of the optimization problem is given in the
following theorem whose proof appears in the Appendix
(Sec. C). As in the deterministic case, the solution is given in
terms of certain state transition matrices. The state-transition
matrix Φ is as defined in (12). The state transition matrix Ψ
is modified to the following:

dΨ

dt
(t;τ) = (−A⊺t +

1+γ2
2

2
C⊺t K

⊺
t −

1−γ2
1

2
Σ−1

t Qt)Ψ(t;τ)
where γ1 and γ2 are real-valued parameters. With γ1 = γ2 = 0,
one obtains the original definition (13) for Ψ.

Theorem 2: Consider the optimization problem (16) sub-
ject to the dynamic constraints (17). One solution of the
optimization problem is as follows:

bT =Φ(0;T)a
cT =Ψ(0;T)a
ut =K

⊺
t Φ(t;T)a

vt = γ1Ψ(t;T)a
wt = γ2K

⊺
t Ψ(t;T)a

where the values of the parameters γ1 and γ2 can be arbitrar-
ily chosen. The resulting optimal estimator is:

S̄T =a
⊺(Φ⊺(0;T)m0+Ψ⊺(0;T)(X̄0−m0)
+∫

T

0
Φ⊺(t;T)Kt dZt +γ1∫

T

0
Ψ⊺(t;T)dB̄t

+γ2∫
T

0
Ψ⊺(t;T)Kt dW̄t)

(18)

The estimator is exact for every choice of the parameter
values γ1 and γ2. That is,

E(g(S̄T)∣ZT ) = E(g(a⊺XT )∣ZT )
for all smooth test functions g and vectors a ∈Rd .

The differential form of the filter is given in the following
Proposition whose proof appears in the Appendix.

Proposition 3: For any given a ∈Rn and T ≥ 0, S̄T = a⊺X̄T

where X̄T is the strong solution of the following mean-field
sde:

dX̄t =At X̄t dt+γ1 dB̄t +
1−γ2

1

2
QtΣ

−1
t (X̄t − m̄t)dt

+Kt(dZt −Ct((1+γ2
2 )X̄t +(1−γ2

2 )m̄t

2
)dt +γ2 dW̄t)

where m̄t =E[X̄t ∣Zt] and the initial condition X̄0 ∼N (m0,Σ0).



Remark 2: The parameters γ1 and γ2 parametrize a homo-
topy of ensemble Kalman filters/linear FPFs, all of which are
exact in the linear Gaussian settings.

1) For γ1 = γ2 = 0, one obtains the deterministic form of
the linear FPF (Eq. (4)).

2) For γ1 = 1 and γ2 = 0, one obtains the stochastic linear
FPF (Eq. (3)).

3) For γ1 = γ2 = 1, one obtains the original form of the
ensemble Kalman filter [11, Eq. (7)] where a copy of
measurement noise is introduced in the error.

By varying the parameters γ1 and γ2 in the range [0,1], one
goes from the two stochastic filters to the deterministic filter.
The filters are exact for arbitrary (even time-varying) values
of parameters γ1 and γ2.

VI. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paper, a novel homotopy of exact linear Gaussian
particle filters is derived, based on a certain extension of the
classical duality. The filter is also related to the linear FPF
and the ensemble Kalman filter.

There are several possible directions of future work. The
first direction is to extend the proposed duality framework to
now incorporate the finite-N effects. Although it was not an
explicit focus of this paper, the relationship to optimal control
potentially provides new tools to analyze and interpret the
optimality properties of the particle filter, in terms of the
simulation variance of its estimates. The other direction is to
extend the duality framework to nonlinear and non-Gaussian
settings. Note that FPF algorithm is known to be exact in
these settings. If possible, it will certainly be of interest to
derive the general FPF using the duality framework.
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APPENDIX

A. Proof of Theorem 1

Express the filter (9) as

S̄T = c⊺T (X̄0−m0)+MT (bT ,ut)
where

MT (bT ,ut) ∶= b⊺T m0+∫
T

0
ut dZt = E[S̄T ∣ZT ] (19)

is the conditional mean of S̄T .
The first objective involves minimization of the mean-

squared error (filter variance):

E[∣E[S̄T ∣ZT ]−a⊺XT ∣2] = E[∣MT −a⊺XT ∣2]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (i)

The second objective function in (10) is expressed as a
sum of two terms:

E[∣E[S̄2
T ∣ZT ]−(a⊺XT )2∣2] = E[∣c⊺T Σ0cT +M2

T −(a⊺XT )2∣2]
= var[(a⊺XT)2−M2

T ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (ii)

+ (c⊺T Σ0cT −E[(a⊺XT )2−M2
T ])2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term (iii)

(20)

The optimization of the three terms (i)-(iii) is the subject
of the three steps in this proof.

1) In step 1, term (i) is minimized by choosing the vector
bT and the control ut . The solution of this problem is
given by classical duality.

2) In step 2, it is shown that solution thus obtained also
minimizes term (ii).

3) In step 3, the vector cT is chosen to minimize the
square term (iii). Its minimum value is 0.

The details of the three steps appear next.

Step 1: The solution to the term (i) minimization problem
is given by classic duality [1]. A dual process is introduced:

dyt = −A⊺t yt dt+C⊺t ut dt, yT = a (21)

Since d(y⊺t Xt) = u⊺t CtXt dt+y⊺t dBt ,

a⊺XT = y⊺0 X0+∫
T

0
u⊺t Ct Xt dt +∫

T

0
y⊺t dBt



Using (19) and dZt =CtXt dt + dWt , one obtains

MT −a⊺XT = b⊺T m0−y⊺0 X0+∫
T

0
u⊺t dWt −∫

T

0
y⊺t dBt

Squaring and taking expectations, the term (i) is expressed
as

((b⊺T −y⊺0 )m0)2+y⊺0 Σ0y0+∫
T

0
y⊺t Qtyt +u⊺t Rtut dt

With the minimizing choice of bT = y0 =∶ b
∗
T , the term (i)

minimization problem is transformed into a linear quadratic
(LQ) optimal control problem

min
ut

y⊺0 Σ0y0+∫
T

0
y⊺t Qtyt +u⊺t Rtut dt

subject to the dynamic constraints given by the dual sys-
tem (21).

The optimal control law is easily obtained in the feedback
form

ut =K
⊺
t yt

where the gain Kt ∶= ΣtC
⊺R−1

t is obtained by solving the
DRE (2b). Upon using the defintion (12) of the state transi-
tion matrix Φ(t,τ),

ut =K
⊺
t yt =Φ(t;T)yT =Φ(t;T)a =∶ u∗T

We use the notation ŜT to denote MT with the optimal
choice of the parameters b∗T and u∗t . Explicitly,

ŜT ∶=MT (b∗T ,u∗t ) = a⊺Φ⊺(0;T)m0+∫
T

0
a⊺Φ⊺(t;T)Kt dZt

(22)
ŜT has the following properties which are useful in the

remainder of the proof:

1) ŜT is the conditional mean, i.e., ŜT = E[a⊺XT ∣ZT ].
2) The error (a⊺XT − ŜT) satisfies the orthogonal property

whereby E[(a⊺XT − ŜT )ŜT ] = 0.
3) The optimal value E[∣ŜT −a⊺XT ∣2] = a⊺ΣT a.

Step 2: The optimal parameters, b∗T and u∗t , obtained in
step 1 also minimize the term (ii). The reasoning is as
follows: Note that the term (ii) involves minimization of the
variance again by choosing bT and ut . Since the resulting
random variable M2

T is ZT -measurable, any minimizer of
term (ii) is of the general form

M2
T = E[(a⊺XT )2∣ZT ]+ (const.) (23)

Now, the conditional variance of a⊺XT is given by

var[a⊺XT ∣ZT ] = E[(a⊺XT −E[a⊺XT ∣ZT ])2∣ZT ]
= E[(a⊺XT −E[a⊺XT ∣ZT ])2]
= E[(a⊺XT − ŜT )2] = a⊺ΣT a

The second equality comes from the fact that orthogonality
implies independence for a Gaussian random variable. Since

var[a⊺XT ∣ZT ] = E[(a⊺XT )2∣ZT ]−(E[a⊺XT ∣ZT ])2
= E[(a⊺XT )2∣ZT ]− Ŝ2

T

we have

Ŝ2
T = E[(a⊺XT )2∣ZT ]−a⊺ΣT a

Comparing with (23), it follows that MT = ŜT is a minimizer
of the term (ii). Consequently, b∗T and u∗t are optimal choices
for minimizing term (ii) as well. It is noted that ŜT (defined
in (22)) is the only solution that simultaneously minimizes
both terms (i) and (ii).

Step 3: Now that the vector bT and the control ut have been
obtained, the vector cT is chosen to make the square term (iii)
zero. We have

c⊺T Σ0cT = E[(a⊺XT )2−(ŜT )2]
= E[(a⊺XT )2−(ŜT )2]−2E[(a⊺XT − ŜT )ŜT ]
= E[∣a⊺XT − ŜT ∣2] = a⊺ΣT a

Therefore, the minimizing choice of cT is obtained by
solving the scalar equation

c⊺T Σ0cT = a⊺ΣT a

It is straightforward to verify that cT =Ψ(0;T)a is a solution
of this equation. A more constructive proof follows from
introducing a backward-time process

dξt

dt
= (−A⊺t +

1
2

C⊺t K
⊺
t −

1
2

Σ−1
t Qt)ξt , ξT = a

Since Σt is a solution of the DRE (2b), it is easy to then
verify that d(ξ⊺t Σtξt) = 0, and so ξ⊺0 Σ0ξ0 = a⊺ΣT a. Thus,
cT = ξ0 =Ψ(0;T)a is a solution.

The proof for exactness is deferred to the following
Sections.

B. Proof of Proposition 2

The equation (15) for the optimal estimator has the fol-
lowing form: S̄T = a⊺X̄T . Upon denoting the (arbitrary) final
time T simply as t, one writes

X̄t =Ψ⊺(0;t)(X̄0−m0)+ m̄t (24)

where m̄t =Φ⊺(0;t)m0+∫ t

0 Φ⊺(s;t)Ks dZs = E[X̄t ∣Zt ].
Upon differentiating (24), and using the formulae (12)

and (13) for the state transition matrices,

dX̄t =(At −KtCt)Φ⊺(0;t)m0 dt

+(At −
1
2
KtCt +

1
2

QtΣ
−1
t )Ψ⊺(0;t)(X̄0−m0)dt

+(∫ t

0
(At −KtCt)Φ⊺(s;t)Ks dZs)dt+Kt dZt

=(At −KtCt)X̄t dt +(1
2
KtCt +

1
2

QtΣ
−1
t )(X̄t − m̄t)dt

This yields the recursive formula for the filter. The proof
of exactness of this filter has already appeared in [15] (see
also Prop. 1). It is also a special case of the more general
stochastic filter whose exactness proof appears in the Sec. D.



C. Proof of Theorem 2 and Proposition 3

Express the filter (17c) as

S̄T =MT +c⊺T (X̄0−m0)+∫ T

0
v⊺t dB̄t +∫

T

0
w⊺t dW̄t

where MT =MT (bT ,ut) =E[S̄T ∣ZT ] is as defined in (19). The
other three terms model the effects of randomness due to the
initial condition, process noise and the measurement noise,
respectively.

Since both the noise terms have zero-mean, these do not
affect the terms (i) and (ii) as introduced in the proof of
Thm. 1. The counterpart of (20) now is:

E[∣E[S̄2
T ∣ZT ]−(a⊺XT )2∣2] = var[(a⊺XT )2−M2

T ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (ii)

+ (c⊺T Σ0cT +∫
T

0
v⊺t Qtvt +w⊺t Rtwt dt−E[(a⊺XT )2−M2

T ])2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (iii)′

Since the terms (i) and (ii) are identical to the ones in the
proof the Thm. 1, the steps 1 and 2 apply in an identical
manner. The optimal solution for bT and ut is thus the same
as before. The optimal MT is given by ŜT (see (22)).

Upon setting the square term (iii)′ to its minimum value,
zero, the scalar equation for cT is now given by

c⊺T Σ0cT = a⊺ΣT a−∫
T

0
v⊺t Qtvt +w⊺t Rtwt dt (25)

This equation has many solutions. We pick one solution by
introducing the following modification of the process ξt :

dξt

dt
= (−A⊺t +

1+γ2
2

2
C⊺t K

⊺
t −

1−γ2
1

2
Σ−1

t Qt)ξt , ξT = a

where γ1 and γ2 are arbitrary constants. Then

d(ξ⊺t Σtξt) = γ2
1 ξ⊺t Qtξt dt+γ2

2 ξ⊺t KtRtK
⊺
t ξt dt, ξT = a

Therefore, upon setting vt = γ1ξt and wt = γ2K
⊺
t ξt , one obtains

ξ⊺0 Σ0ξ0 = a⊺ΣT a−∫
T

0
v⊺t Qtvt +w⊺t Rtwt dt

and thus

cT = ξ0 =Ψ(0;T)a
vt = γ1Ψ(t;T)a
wt = γ2K

⊺
t Ψ(t;T)a

solves (25).
Using these parameters, the estimator is S̄T = a⊺X̄T where

X̄t =Φ
⊺(0;t)m0+Ψ⊺(0;t)(X̄0−m0)
+∫

t

0
Φ⊺(s;t)Ks dZs+γ1∫

t

0
Ψ⊺(s;t)dB̄s

+γ2∫
t

0
Ψ⊺(s;t)Ks dW̄s

Its differential form is easily obtained as

dX̄t =At X̄t dt +γ1 dB̄t +
1−γ2

1

2
QtΣ

−1
t (X̄t − m̄t)dt

+Kt(dZt −Ct((1+γ2
2 )X̄t +(1−γ2

2 )m̄t

2
)dt+γ2 dW̄t)

(26)

D. Proof of the exactness of the filter

The filter (26) is a linear sde, the initial condition X̄0 is
Gaussian, and the noise terms are also Gaussian. Therefore,
the solution X̄t is Gaussian for all t > 0. Thus, in order to
show exactness, all we need to show is that the equations
for the conditional mean and the variance evolve according
to the Kalman filter equations.

Upon taking a conditional expectation of (26),

dm̄t = Atm̄t +Kt(dZt −Ctm̄t dt), m̄0 =m0

This is the same as the equation (2a) of the Kalman filter.
Next define the error process et ∶= X̄t − m̄t . The equation

for the error process is given by

det =Atet dt +
1−γ2

1

2
QtΣ

−1
t et dt

−KtCt

1+γ2
2

2
et dt +γ1 dB̄t +γ2Kt dW̄t

Upon squaring the taking expectations, one obtains the
differential equation for the variance Σ̄t = var(X̄t) as follows:

dΣ̄t

dt
=At Σ̄t + Σ̄tA

⊺
t +

1−γ2
1

2
(QtΣ

−1
t Σ̄t + Σ̄t Σ

−1
t Qt)

−
1+γ2

2

2
(KtCt Σ̄t − Σ̄tC

⊺
K
⊺
t )+γ2

1 Qt +γ2
2KtRtK

⊺
t

with initial condition Σ̄0 = Σ0. This is a linear ode (in Σ̄t ). It
thus admits a unique solution. It is straightforward to verify
that Σ̄t = Σt in fact solves the equation (recall that Σt is the
solution to the DRE (2b) with initial condition Σ0).

Therefore, the filter (26) is exact for all time t ≥ 0.


