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POMDP Model Learning for Human Robot Collaboration

Wei Zheng, Bo Wu and Hai Lin

Abstract— Recent years have seen human robot collabora-
tion (HRC) quickly emerged as a hot research area at the
intersection of control, robotics, and psychology. While most
of the existing work in HRC focused on either low-level
human-aware motion planning or HRC interface design, we
are particularly interested in a formal design of HRC with
respect to high-level complex missions, where it is of critical
importance to obtain an accurate and meanwhile tractable
human model. Instead of assuming the human model is given,
we ask whether it is reasonable to learn human models from
observed perception data, such as the gesture, eye movements,
head motions of the human in concern. As our initial step, we
adopt a partially observable Markov decision process (POMDP)
model in this work as mounting evidences have suggested
Markovian properties of human behaviors from psychology
studies. In addition, POMDP provides a general modeling
framework for sequential decision making where states are
hidden and actions have stochastic outcomes. Distinct from
the majority of POMDP model learning literature, we do not
assume that the state, the transition structure or the bound of
the number of states in POMDP model is given. Instead, we
use a Bayesian non-parametric learning approach to decide the
potential human states from data. Then we adopt an approach
inspired by probably approximately correct (PAC) learning to
obtain not only an estimation of the transition probability but
also a confidence interval associated to the estimation. Then,
the performance of applying the control policy derived from the
estimated model is guaranteed to be sufficiently close to the true
model. Finally, data collected from a driver-assistance test-bed
are used to train the model, which illustrates the effectiveness
of the proposed learning method.

I. INTRODUCTION

Human-Robot Collaboration studies how to achieve effec-
tive collaborations between human and robots to synthet-
ically combine the strengths of human beings and robots.
While robots have advantages in handling repeated tasks
with high precision and long endurance, human beings are
much more flexible to changing factors which may introduce
uncertainties that cost non-trivial efforts for robots to adapt.
Therefore, to establish an efficient collaboration between
human and robots is the core problem in the design of HRC
system.

In recent years, Partially Observable Markov Decision
Process (POMDP) models have emerged as one of the most
popular models in HRC [1][2][3]. As a general probabilistic
system model to capture uncertainties from sensing noises,
actuation errors and human behaviors, POMDP model pro-
vides a comprehensive framework for the modeling and
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sequential decision making in HRC. The discrete states of
the POMDP model can be used to represent robot and
environment status and the hidden human intentions. In
POMDP models, states are not directly observable but may
be inferred by observations which represent the available
sensing information regarding the statuses of human, robots,
and the environment. Therefore, the partial observability
on POMDP states models sensing noises and observation
errors. Between different states, probabilistic transitions are
triggered by various actions to describe uncertainties of the
system actuation capabilities.

In this paper, we propose a framework to learn, through
demonstrations, the HRC process which is modeled as a
POMDP. A key challenge to learn a POMDP model from
data is how to determine its hidden states. Traditional ap-
proaches usually assume that the states in POMDP are given
or the bound on the number of states is known. Instead, we
drop these assumptions, as the states could be tedious to
pre-define and the number of hidden states could be case
dependent especially when human is involved. Hence, we
propose to use a Bayesian non-parametric learning method to
automatically identify the number of hidden states [4][S][6].

Our proposed framework to learn a POMDP model is
shown in Figure E} First, we assume the action set that
represents the capability of the robot has been given. In
each step, the robot chooses one action to collaborate with
the human partner to accomplish some tasks. The training
data can be collected by observing the physical system.
After collecting enough training data, the structure (state
space/observation space) of the POMDP model is determined
from the data using a Bayesian non-parametric learning. In
this paper, we propose to use the hidden Markov model
(HMM) as the predictive model for the collected data. Each
hidden state of the HMM represents a distinguishable motion
pattern, and therefore corresponds to a state in POMDP.
Taking advantages of the success of applying the Beta-
Process Auto-regressive Hidden Markov Model (BP-AR-
HMM) in human motion capture [6] and motion pattern
recognition of humanoid robot for manipulation tasks [7],
we use this algorithm to automatically identify the number
of hidden states of the HMM and learn the corresponding
parameters.

Once the state/observation space is determined, the raw
data are mapped to discrete observations using the maximum
likelihood decision rule. Thus the discrete observation func-
tion can be obtained by calculating the decision error which
only depends on parameters of the learned HMM model.
Meanwhile, the sample mean is used to estimate the transi-
tion probability. Inspired by probably approximately correct
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Fig. 1.  Overview of the proposed framework. The training data are
collected from the physical system. Using the training data, Bayesian non-
parametric learning is used to learn the state/observation space of the
POMDP automatically. The transition probability is estimated using the
sample mean and the observation probability is obtained by calculating the
decision error of the maximum likelihood decision rule.

(PAC) learning, we obtain not only an estimation of the tran-
sition probability but also a confidence interval associated to
the estimation. Then the performance of applying the control
policy derived from the estimated model is guaranteed to
be sufficiently close to the optimal performance when the
number of data for training is greater than a lower bound.

The main contribution of this paper is twofold. First, the
Bayesian non-parametric learning method is used to learn
the number of states automatically. Second, a lower bound
on the number of training data is given. Once the number
of training data is greater than this bound, the performance
of the system from the optimal control policy based on the
estimated model is guaranteed, with a high confidence, to
be sufficiently close to the optimal performance of the true
model.

The rest of the paper is organized as follows. A summary
of the related work is given in Section[[I} Section [[TI] presents
preliminaries on the POMDP model. Section formulates
the problem. The learning framework with corresponding
experiment results are shown in Section [V] Section
concludes the paper.

II. RELATED WORK

The POMDP model has received an increasing attention in
the domain of HRC. In [1], the robot is capable of predicting
the goal of human by building a belief over his intentions.
This prediction is integrated into a POMDP model where
an appropriate decision can be solved to accomplish the
shared mission. In [2], human-robot social interactions are
modeled as a POMDP where the intention of the human is
represented as an unobservable part of the state space. The
ambiguous intentions of the human partner can be inferred
through their observable behavior. The POMDP model is also
used to predict the user’s intention and get feedback from

the user in terms of “satisfaction” to enhance the quality
of the interaction [8]. This strategy has been successfully
applied in a robotic wheelchair and an intelligent walking
device. In [9], POMDP is used to model joint tasks between
a human and a robot. The POMDP state is a combination
of the states of the world and the human mental state. The
mental state is not visible to the robot, but it can be observed
from the speech or gestures. In [10], the hidden-goal MDP
(HGMDP) model is introduced as a class of POMDP model,
which is used to formalize and design an intelligent assistant.
In [11], the problem of playing table tennis by human and
robots is formulated as a POMDP model. The transition and
observation are determined by the intention-driven dynam-
ics model which allows the intention to be inferred from
observed movements using Bayes’ theorem [12].

Most of the aforementioned work assumes that the
POMDP model is given. However, it is challenging to get
a POMDP model that realistically describes the proprieties
of the system. A natural way is to learn the POMDP
model from data. [13] studies active learning strategies for
POMDPs. This method could handle significant uncertainties
with relatively little training data. However, the need of an
oracle to answer the true identity of the hidden state could be
too strong in some circumstances. From the statistical point
of view, POMDP is an extension of HMM, which enable
directly applying HMM learning algorithm to POMDP model
learning when the action is fixed. For HMM model learning,
the most standard algorithm for the unsupervised learning
is the Baum-Welch algorithm [14]. For the POMDP model
learning, the Baum-Welch algorithm fixes the number of hid-
den states and begins with random initial conditions to learn
the transition probabilities given the observation sequences.
By using the Expectation-Maximization (EM) algorithm, a
new state space can be updated to maximize the likelihood of
the observations, then the Baum-Welch algorithm is executed
again until the termination condition satisfied [15]. However,
these learning procedures do not consider the complexity
of the model and the model structure has to be specified
in advance. This motivates us to apply the Bayesian non-
parametric learning on POMDP model learning since it is
then possible to extend hidden Markov models to have a
countably infinite number of hidden states and the number
of states can be inferred from data [4][16].

Theoretically, exact model learning through the observa-
tion and action sequences in HRC requires an infinite number
of samples, which is not feasible in practice. Therefore, with
only a finite number of samples, a salient approach is to
estimate the actual POMDP within a certain precision and
bound the optimality loss, which is the core idea of PAC
learning method. Existing results of PAC learning mostly
focus on MDP models [17], [18], [19] and stochastic games
[20], [21]. The main idea is to maintain and update an
MDP model learned from observed state-action sequences
through sampling. It can be proven that when the learning
stops, with a predefined high probability, the estimated model
approximates the actual model to a specified extent, such
that the optimal policy found in the estimated model incurs



a cost(reward) that is close to the optimal cost(reward) on
the true model to a specified degree. Furthermore, the time,
space and sampling complexity is polynomial with respect
to the size of the MDP and measures of accuracy. However,
for partially observable models, the existing results are only
seen for HMMs [22]. In this paper, we are able to establish
the PAC learning-like guarantee on POMDP models.

Distinct from most of the existing work on using POMDP
models in HRC, we assume that the POMDP model includ-
ing the structure of the model (states/observation space, tran-
sition/observation relations) are unknown, while most of the
existing work assumes the number of states is given. Instead,
we pursue a data-driven approach to learn such a model
where the number of states is inferred from data without
the need of prior knowledge and can be potentially infinite.
Meanwhile, we provide a lower bound on the number of
training data to guarantee the performance (optimality loss)
satisfies the requirement.

III. PRELIMINARIES

We begin with a brief description of the POMDP model
for HRC.

Definition 1: A POMDP model is defined as a tuple P =
(S,A,T,0,E, R) where S, A and O are sets of states, ac-
tions and observations. T': S x A x S — [0, 1] is a transition
function and E : S x O — [0, 1] is an observation function.
The transition function T'(s'|s,a) defines the distribution
over the next state s” after taking an action a from the state
s. The observation function E(o|s’) is a distribution over the
observation o that may occur in the state s'. R: Sx A — R
is the reward function that represents the agent’s preferences.

The control problem in POMDP targets on finding a policy
that maximizes the expectation of cumulative rewards. Since
states are not directly observable in POMDP model, the
available information is observation-action sequence which
is called history.

Definition 2: Given a POMDP model M and the corre-
sponding history set Hist, the control policy f : Hist — A
is a mapping from histories to actions.

Given a policy f, we can calculate the expected cumulative
reward by the following equation.

V=> p(p)Re(p) 0]

where p is a state-observation sequence, p(p) is the probabil-
ity of sequence p and R.(p) is the cumulative reward when
states and observations of the system follow sequence p.

The value V' depends on the transition probability, the
observation probability and the reward function. Thus the
accuracy of the model learned from data will directly influ-
ence the control policy solved and subsequently, influence
the performance when applying the control policy on the
system.

To quantify the closeness of POMDP models, we extend
the definition of a-approximation in MDPs to POMDPs [17].

Definition 3: (a-approximation of POMDP) Let M and
M be two POMDP models over the same state, action and

Fig. 2. The software OpenDs is used to simulate a vehicle driving on a
five lane road.

observation space. M is an a-approximation of M if for any
state s and s’ and any action a, the inequality [T (s'|s, a) —
Ti(s'ls,a)] < o holds where 0 < o < 1. And for any
state s, action a and observation o, equalities Ry (s,a) =
Rj;(s,a) and Ejr(ols) = Ejz(o|s) hold.

IV. PROBLEM FORMULATION

In this paper, we consider the problem of learning the
POMDP model for HRC and use the driver assistance system
as a motivating example to illustrate the proposed approach.

Example 1: Consider the scenario where a human is driv-
ing on a five-lane road and the robot (vehicle) is to assist the
driver to increase driving safety as shown in Figure 2| we
define the POMDP model for HRC in the following way.

The state space of the POMDP is the product of the state
space of human, robot and environment, namely, S = Sp X
Sk x Sg. The human state is his/her intention such as turning
left/right or answering the cell phone. The state of the robot
is the lane that the vehicle is currently driving on, namely
Sr = {laney,...,lanes}. The state of the environment
indicates whether or not there are other vehicles around.
Observation space of the POMDP is the same as the state
space but inferred from the observed data. The action set of
the robot can be advice, instructions and warnings to help the
human driver to avoid potential dangers. The reward function
is defined on the state and action pairs which quantifies the
preference of actions in a specific state. For example, if the
current state is s = (answerphone,lanes, front) which
means that the human intends to answer the cellphone, the
vehicle is in the lane 3 and there is a vehicle in the front,
the action that providing a warning is preferred. Thus the
reward R(s, “warning”) is assigned to be a positive value.

Based on the POMDP model for HRC, an optimal control
policy can be solved using POMDP planning algorithms
by maximizing the expectation of cumulative rewards and
subsequently, increase the driving safety. As the first step, to
obtain a POMDP model is a critical problem for HRC.

Problem 1: Given the finite horizon H, upper bound of
the reward function R,,,,., confidence level J and a constant
€ > 0, learn a POMDP model using the training data, such



that the H step expected cumulative reward is e close to the
optimal expected cumulative reward with confidence level no
less than 9.

V. MAIN RESULTS

To obtain a POMDP model, all elements of the tuple in
Definition [I] should be defined according to the application
scenario. The action set represents the capability of the robot
which has been determined when the robot is designed, and
thus is assumed to be known. The reward function is usually
determined by the designer in the policy design process,
so it is assumed to be known as well. Therefore, in our
paper, we mainly focus on determining and estimating the
state/observation space, transition function and observation
function.

A. State space learning

Distinct from the majority of existing work on POMDP
model learning from data, which usually assumes that the
number of states is given, we propose to use Bayesian non-
parametric learning to automatically identify the appearance
of hidden states [6]. In this method, the BP-AR-HMM is
used as the generative model of the data which is shown in
Figure 3| In the top layer, the Beta-Bernoulli process is used
to generate an infinite number of features and to model the
appearance of features among multiple time series. In the
lower layer, the AR-HMM is used to model the relationship
between the feature (hidden state) and the observed time
series.

We begin with an introduction to the BP-AR-HMM model
from the lower layer. For each time series Y = [y, ..., y%i]
where y! € R" is a n dimensional observed vector which
could be eye movements, head motions and skeleton motions
of the human, the generative model is described as

7 i
Zy T
t Z{_q

i\ i i )
Y = ZAj,z;fyt!j + €(2)
j=1

where ¢ei(k) ~ N(0,3;) is a Gaussian noise to capture
the uncertainty and r is the order of the AR-HMM. The
variable 2! is the hidden state and 7r§ specifies the transition
distribution of the state j. For each hidden state 2}, a set of
parameters 0, = {4, .i,..., A4, :, X} is used to charac-
terize the corresponding motion pattern. Note that the HMM
with Gaussian emissions is a special case of this model where
the parameter will be adaptive to 0.; = {.;, 2. }. In this
paper, the HMM model is used as the generative model since
the behavior of human is constrained in a certain area in the
driving scenario which makes the HMM sufficient to model
the behavior.

This AR-HMM/HMM can be used to model only one
time series while the training data will be multiple time
series. Thus, the Beta-Bernoulli process is used to model
the correlation between different time series in the top layer.

Beta
Process

Bernoulli
Process | |

Auto-
regressive|
HMM

Fig. 3. The Beta process auto-regressive hidden Markov model. In the
top layer, the Beta-Bernoulli process is used to generate an infinite number
of features and to model the appearance of features among multiple time
series. In the lower layer, the AR-HMM is used to model the relationship
between the feature and the observed time series.

This process is summarized as follows,
B|By ~ BP(c, By)
X;|B ~ BeP(B) 3)
7r;-|fi,'y, K~ Dir([y, ooy v + Ky Yy -] © fi)

where BP stands for Beta process, BeP stands for Bernoulli
process and Dir stands for Dirichlet distribution.

A draw B from a Beta process provides a set of global
weights for the potentially infinite number of hidden states.
For each time series ¢, an X; is drawn from a Bernoulli
process parameterized by B. Each X,; can be used to
construct a binary vector f; indicating which of the global
hidden state are selected in the i*" time series. Then the
transition probability vector 71'; of AR-HMM/HMM is drawn
from a Dirichlet distribution with self-transition bias x for
each state j.

Based on this generative model, parameters such as the
hidden variable 2! and 0.: can be inferred from data using
the Markov chain Monte Carlo (MCMC) method.

Assume there are total K time series in the training dataset
{Y'!, ..., Y&}, After using the data set to train the BP-HMM
model, for each data point ! in the trajectory Y, a hidden
state z{ is inferred to indicate under which hidden state the
data is going to emit. The total number of hidden state in
the model indicates the number of human motion patterns
in the training dataset. Since the hidden state could exhibit
among multiple time series, the same human motion pattern
shared among these time series can be detected. Thus all
possible human motion patterns that exhibit in the application
scenario can be defined.

For convenience, we use Z = {z1,...,z5} to represent
the set of hidden states where L is the total number of
hidden states. After getting the set Z, the discrete state space
of human Sp can be defined as the same set of Z with
corresponding parameters 6., namely Sp = {(z,0.)|z € Z}.
If the state space of the robot Sr and the environment Sg
has been defined using the same method, the state space of
the POMDP model is simply the product of the human state
space with the robot state space and the environment state
space S = Sp x Sg X Sg. In this way, the number of states
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Fig. 4. Trajectories of 3D position of three markers. One marker is on the
left hand of human and another is on the right hand. The third marker is
on the steering wheel.

is inferred from the data without the need of prior knowledge
and can be potentially infinite. It, therefore, provides a full
Bayesian analysis of the complexity and structure of human
models instead of defining them in advance. Meanwhile, the
hidden parameter 6, helps to characterize the mathematical
property of the state and enable us to detect the hidden state
from observations.

Example 2: As a running example, a driver and hardware-
in-the-loop simulation system are used to validate the pro-
posed approach. The software OpenDﬂis used as the driving
simulators and the OptitrackEl system is used to capture the
motion of the driver. By putting markers on the left/right
hand of the driver and the steering wheel, a time series of
positions are collected for each experiment. Each time series
consists of driver behaviors such as turning left or right,
answering phones and push a button on the laptop which is
used to simulate operating instruments of the vehicle. The
data from four experiments are used to train the BP-HMM
model, which is shown in Figure@ There are totally 1.4x10%
data points in each time series, we only pick points from
1.1 x 10* to 1.4 x 10* to show.

Then using the software provided by [6], the learning
result is shown in Figure [5] In the figure, different hidden
states are labeled by different colors. From the result, there
are totally six motion features detected with the parameter
0.. Based on the learning result, each hidden state can be
labeled with a physical meaning such as turning left/right.

Note that this state identification process needs to be done
off-line by stored training data and a human supervisor is
requested to label the identified state with physical meaning.
The human supervisor only needs to label the hidden state,
which is must easier than labeling each training data point.
Actually, the need of labeling is only for further reward and
control policy design, if the reward or preference can be
learned from data, there is no need to label the identified
state.

Thttps://www.opends.eu/home
Zhttp://optitrack.com/
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Fig. 5. The learning result of the Bayesian non-parametric method. There
are six motion features detected which are distinguished by different colors.
Correspondingly, the number of states for human in the POMDP model is
six.

B. Observation function calculation

From the motion capture system, the observed data y, is a
n dimensional vector from continuous space. A decision rule
is needed to map the observed data y; to discrete observation
o(t) € O where O is the observation set. In this paper,
the state of robot Sy and environment Sg are assumed to
be observed directly and correctly. This assumption could
be dropped if the state of the robot and/or environment
is learned in the way introduced in section Thus the
observation set O is defined as the same set as Sp, namely
0 =A{(z,0.)|z € Z}.

For each observation y;, we propose to use the maximum
likelihood (ML) estimator as the decision rule to map the
observed data to one element of the observation set O. The
decision rule is

o(t) = arg glg)Z{ L(yt|s(t) = ;) )

where L(y:|s(t) = z;) is the likelihood of observing data y;
when the state s(t) is z;. Since the emission of the HMM is
a multivariate Gaussian distribution, the likelihood is

L(yt|s(t) = z)
;6_%(3#_“21»)7“2%1(?#_#21‘) )
(2m)n (X, |

With the ML decision rule, the whole n dimensional space
is divided into N disjoint regions ©; where

©; = {ye|L(ye|s(t) = 2j) = Llyils(t) = 21), Yk # j}. ;
(6)

Then the decision rule is equivalent to

o(t) = {zly: € ©,}- (7
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Fig. 6. The observation probability calculated using Monte Carlo method
when the state of POMDP is s(t) = z1 and s(t) = z4.

Due to the existence of the sensing noise, there is a certain
detection error for the ML rule. Given the state s(t) = z;,
the probability of observing o(t) = z; is

Plo(t) = 5lstt) = 2) = [ L) ==) @
J

Since the likelihood function is a multivariate Gaussian dis-
tribution function, the disjoint regions ©; is only determined
by the parameters {(u.,%.),Vz € Z} achieved in section
[V-Al Thus it is reasonable to assert that the observation
function of the POMDP model is fixed. However, to directly
calculate the integration over region ©; is highly nontrivial
since the function to be integrated is of high order and the
integration boundary conditions can only be represented by
inequality constraints. Therefore, in this paper, we follow the
conventional way to use the Monte Carlo method to estimate
the integration [23].

Given the number of samples N,,., we first sample from
the multivariate Gaussian distribution and then decide which
region the sample belongs to. Finally, the frequency of
samples that exhibit in the region O; is used to approximate
the integration over O;.

Example 3: For example, if the current state is s(t) = z1,
the multivariate Gaussian emission parameter is (11, X1).
Using Monte Carlo method, 10® vectors are sampled from
the multivariate Gaussian distribution and then each vector is
mapped to an observation using the ML rule. The frequency
is used to approximate the observation probability. The
observation probability for state s(t) = z; and s(t) = 24
are shown in Figure [

C. Transition function approximation

In the driver assistance system, actions are designed to
increase car safety and road safety by providing real-time
advice, instructions and warnings or directly controlling the
vehicles [24]. If actions are designed in an advisory way, the
transition probability captures uncertainties of the influence
of actions on the human. Otherwise, if actions are designed
in the automatic mode, the transition probability captures
uncertainties from system actuation abilities. To learn the
exact transition probability is difficult since the learned

POMDP model may contain modeling uncertainties due to
various reasons such as limited data and insufficient inference
time [25]. In these cases, the modeling uncertainties will
make the learned transition probabilities subject to a certain
confidence level. This motivates us to apply the Chernoff
bound to reason the accuracy of the transition probabilities
for POMDP [18].

Let w(s'|s,a) denote the number of transitions observed
in the data set from s to s’ after taking action a and
w(s,a) = >, w(s'|s,a) represents the total number of
transitions start from s for action a. Let M denote the true
model of the system which share the same structure of the
learned model A/ . We use the sample mean to estimate the
transition probability,
w(s'|s,a)

©))

Ty (s =
M(S |Sva) w(s,a)
The Chernoff bound gives the relation between the confi-
dence level, the confidence interval and the number of data
needed [26].

o<2w(s.a)

> (10

P(|Ty;(s'|s,a)=Ta(8']s,a)] < a) > 1—2e~
where o > 0. Given an accepted probability error bound «
and a corresponding confidence level §, the number of data
w(s, a) should satisfy the following equation.

w(s,a) > [~ 2 (0] an

This bound gives a guidance for the transition probability
training process. If the number of data collected for each
state and action pair satisfies equation [T} the POMDP model
learned from data will be a-approximation of the true model
with confidence level no less than 6.

Example 4: Assume the transition probability for state
s(t) = =z is [0.02,0.03,0.05,0.08,0.12,0.7]. Let o =
0.01 and the confidence level § = 0.95. The minimum
number of data for training is w(s,a) = 73777. We
collect 73777 samples from this distribution and use the
sample mean to estimate the distribution. The sample mean
is [0.0203,0.0299,0.0510,0.0789,0.1177,0.7023]. From the
example, we see all the estimation fall into the confidence
interval of the true distribution.

D. Performance analysis using estimated model

Since the true POMDP model is unknown, the control pol-
icy is designed only on the estimated model. A performance
analysis is needed to evaluate the control policy.

In partially observable environments, the agent makes its
decision based on the history of its actions and observations.
A H-horizon policy tree is illustrated in Figure[7] Begin with
a dummy node, the distribution of initial state is given as an
initial belief by. In each step, an action is selected according
to the observation of the system. After taking the action, the
system makes a transition to another state in a stochastic way
and then another action could be selected according to the
new observation. This process will continue for I steps.

Since the policy tree is calculated based on the estimated
model M and applied to the real system or true model M,



1 stage to go

Fig. 7. A policy tree for horizon H. For each observation, there is a
specific action selected from the action set A.

the performance of the system under the policy needs to be
evaluated. In the following, we will discuss the finite step
performance evaluation of the policy.

Theorem 1: Given a POMDP model M which is an
m-approximation of the model M where H is a finite
horizon, N is the number of states, R4, is the upper bound
of the reward function and 0 < e < 1. For any control
policy £, the inequality [Vy/; — V| < € holds, where V, is
the expected cumulative reward for the model M under the
control of the policy f.

Proof:  For any control policy f and any state-
observation sequence p = si1,01, ..., S, 0f, we have
Vi = Vi
=|ZpM(p)R - ZPM(P)R
—Zm— mmn (12)
<Z|p]ﬂ )|HRmaw

where pas(p) is the probability of sequence p for the model
M and R.(p) is the cumulative reward for p which is
bounded by H R, Where R,,,, is the upper bound of the
reward function.

The next step is to derive the bound of the probability er-
ror. Let h; denote the model where the transition probability
is the same as M for the first i step and the rest transition
probability are identical to M. Thus pas(p) = pn,(p) and
pir(p) = pry (p). Then we have

Z'pho (p) — Phy (p)‘
7Z|pho phl )+ph1(p) - +th(p)| (13)
< Z > 1pni(0) = Pheys ()]

=0 p

Following the idea in [18], we use § to represent the state
sequence and o to represents the observation sequence. Let
5; denote the 7 step prefixes reaching s; and §; denote the

suffixes starting at s; where s; is the state reached after ¢
step.

> Ipn () = Phoss ()]
B
= Z ilpm (63)Ph (8) — Phivy (613)phs s, (3)]
Y S Sl o sl

0 Si Si+1 §; Siy1

= Phisr (8)Phiyr (Big1)Phiyy (Sit1l5i))|pn, (0]5)

7222221)’1 i)Ph; (3i+1)pn, (0]3)

Si Si+1 84 7.+1

|Ph- (8i4+1154) = Phisy (Sig1lsi)]

DI m&HZWdEWK*

Si Sit1l 8 Fiq1 max
E E Ph 5it1)
" H2NR

Zth

— Phiys (67 §)|

Si 8 Si4+1 Sit1 mazx
o €
B H2R77 a
Thus combine results of equation [12} [I3] and [I4] we have
f f 2 < _
|V]W - VM' S H Rmamm = €. (15)
|

Theorem [I] allows us to evaluate the performance distance
with respect to the similarity of models. It guarantees that
the expected cumulative reward of M is € close to that of M
once the model M is m—approximation of the model
M.

However, this theorem is derived using the same control
policy for different models. In reality, the control policy is
solved using the estimated model and applied on the true
model. The optimality loss should be the difference of the
achieved reward when applying the derived control policy
and the optimal policy to the true model.

Theorem 2: Given a POMDP model M which is an
m-approximation of the model M where H is a
finite horizon, IV is the number of states, R,,,, is the upper
bound of reward function and 0 < € < 1. Let f and g be
the H-step optimal control policy for model M and model
M respectlvely Then the inequality |V, — V| < € holds
where V s 1s the expected reward of the model M under the
control of the policy f .

Proof: From theorem |1} we have |Vf V]é\ < § and
\vi —ve \ < 5. Since f is the optimal policy for model
M, we have Vi< Vf Then

Vi SVE+5SVE+5<Vi+e o)
Since g is the optimal control policy of M, we have VA]:[ <
V. Then

Vi <vE <Vl +e (17)

Which implies the inequality |VJ, — V1{4| < € holds. ]



Theorem [2] gives a relationship between the optimality
loss and the similarity of models. Together with equation
[T1] it gives a lower bound on the number of data needed to
train the POMDP model. Conversely, if the number of data
used to train the model is greater than the bound, the H-step
expected cumulative reward is e close to the optimal expected
cumulative reward with confidence level no less than .

VI. CONCLUSIONS

In this paper, we proposed a framework to learn the
POMDP model for HRC through demonstrations. Distinct
from most of the existing work, we did not assume any
knowledge on the structure of the model. Instead, we pro-
posed to use Bayesian non-parametric methods to automat-
ically infer the number of states from the training data.
When learning the transition probability, we provided a lower
bound on the number of training data which guarantees the
optimality loss is bounded using a control policy derived
from the estimated model. In this paper, the observation
probability was assumed to be precisely calculated using
Monte Carlo approach. However, the observation probability
was also subject to a confidence interval. Hence, taking the
uncertainty of observation function into consideration will
be our immediate future work.
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