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Abstract— This paper presents the design of a nonlinear
control law for a typical electromagnetic actuator system.
Electromagnetic actuators are widely implemented in industrial
applications, and especially as linear positioning system. In this
work, we aim at taking into account a magnetic phenomenon
that is usually neglected: flux fringing. This issue is addressed
with an uncertain modeling approach. The proposed control
law consists of two steps, a backstepping control regulates the
mechanical part and a sliding mode approach controls the
coil current and the magnetic force implicitly. An illustrative
example shows the effectiveness of the presented approach.

I. INTRODUCTION

For many years Electro-Magnetic Actuators (EMA) have
been developed and used in industrial environment, and
especially in automotive industries [1]. This interest can be
easily explained by several factors: their small size, their
simple structure, their cost/efficiency ratio and the very large
range of applications. For example, such technology is used
at a micro-scale with the micro-electro-mechanical-systems
(MEMS) [2]. At a macro-scale, magnetic bearing systems
[3], electromagnetic positioning systems [4] or electronic
injection systems of thermal motors [1] are all typical
examples of EMA. Also, at a larger scale, this technology
is under development for magnetic levitated vehicle [5]. For
several years, the National Centre for Space Studies (CNES1)
investigates innovative technologies to expand the use of
electrical actuators in Ariane launchers. More specifically,
the space agency has been working with CSTM, a mechan-
ical engineering company, to replace pneumatic valves with
electromagnetic actuators [6]. The present study continues
this work, in collaboration with the CNES and CSTM, and
focuses on the control issue.

EMA are often controlled by linear control strategies such
as Proportional Derivative controller (PD) [7], Proportional
Integral Derivative controller (PID) [8] or Linear Parameter
Varying (LPV ) [9], Model Predictive Control (MPC) [3] and
Linear Quadratic Regulator (LQR) controllers [10]. In [7]
and [3], a common approximation of the electromagnetic
force Fmag =

B2S
2µ0

is considered. Such simplification may be
valid when the magnetic circuit is neglected and only airgap
surface are considered. A linearization around a settling point
leads to the use of a second order transfer function between
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the input current and the position of the EMA. In [9] and
[10], the expression of the magnetic force has been refined,
as Fmag = N2 i2k2

(k0+k1x)2 even though the model is, eventually
linearized. In this expression, Fmag depends explicitly on the
airgap x and the actuator current i. N and ki are constants
related to the physical structure of the system. The nature of
this latter expression has led researches to design non-linear
control laws.

Hence, in [11], a backstepping approach is proposed to
address the stabilization of a nonlinear model of the EMA.
Furthermore, a worst-case estimation of the desired magnetic
force provides conditions for the backstepping gains to
avoid saturation of the magnetic force. However, notice that
no explicit analytical model for the electromagnetic force
has been developed. Instead, two look-up tables giving the
relationships between the magnetic flux, the position and
the magnetomotive force on one hand, and between the
position, the magnetomotive force and the magnetic force,
on the other hand, are used. The approach thus requires
finite element method simulation before the control design.
In [12], the author uses an adaptive preaction (feedforward)
to charge the coil energetically in order to compensate the
spring force and a sliding mode control strategy to avoid
saturation and achieve a soft landing control. A magnetic
equivalent circuit of the actuator is designed in order to
evaluate the magnetic force but some terms are neglected
like the product between the inductance and the current
time derivative L(t) di(t)

dt used in the electrical modeling. [13]
combines a linear and nonlinear controls, the magnetic force
is regarded as a virtual control input: a linear dynamic output
feedback is used to construct the image of the magnetic force
needed to stabilize the system and a backstepping method
is applied to find the input voltage required. However, the
proposed model is simplified and does not contain non-
controlled forces like spring force or gravity. [12] and [11]
take into account the magnetic saturation phenomenon, but in
the literature the flux fringing effect has not been investigated
so far.

The flux fringing is a phenomenon that occurs when the
magnetic flux flows from a ferromagnetic material to the air.
The magnetic flux tends to expand before being canalized
again when it flows back through the material. The larger
the airgap is, the larger the equivalent surface is. The EMA
principle being based on airgap control, if the stroke is
significant with respect to the magnetic circuit surface, flux
fringing must be taken into account. In control literature, the
surface in the airgap is often considered equal to the magnetic
circuit surface.
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A first objective of this paper is to consider a more
comprehensive model of the actuator and to take into account
the flux fringing. The analytical model is derived from a
reluctance network approach. This model is then supported
by finite element method simulations with COMSOL [14]
and electrical system based simulations with PLECS [15].
The effects of flux fringing are then embedded into an
uncertain model. Taking into account this issue leads to an
uncertain magnetic force, and therefore a non-linear uncer-
tain model. Then a backstepping control cannot compensate
a nonvanishing term depending on a spring force. The same
applies for the sliding mode, the non-vanishing term does
not satisfy the matching condition. The proposed control
law is then developed in two steps in order to stabilize the
system despite the presence of uncertain parameters. Firstly,
the backstepping method is used to stabilize the position and
the speed of the moving part of the actuator by computing a
suitable coil current signal. Secondly, a sliding mode control
is used to control this latter variable. The sliding surface
represents the difference between the actual current in the
actuator and the desired current for the backstepping control.
An illustrative example shows that the proposed approach
is able to ultimately bound the EMA despite the model
uncertainties.

II. SYSTEM DESCRIPTION AND MODELING

A. Description of the EMA

A schematic representation of the 1-DOF positioning
system is shown in Fig. 1. This is a typical setup for
electromagnetic valve actuators as presented in [12] and [16].
The electromagnetic system is composed of a multi-turn coil
winding a magnetic circuit which is fixed to the frame. A
silicon O-ring is installed for limited friction and for sealing.
A spring is used to counteract the magnetic force and to
ensure that the system returns to the closed position when
no supplied.

X
1

Magnetic circuit

Coil

Frame

Silicon O-ring

Spring

Flow

Valve

Fig. 1. Schematic of the EMA
In order to design a stabilizing control law for the EMA,

we firstly develop a nonlinear model, which takes into ac-
count some new features like the flux fringing phenomenon.
The following three sub-sections will develop the modeling
steps to derive a non linear mathematical model. The EMA
will be modeled as a 3 dimensional system with the state
vector x = (x1, x2, x3)

T . The state components are the posi-
tion x1 of the mobile part, its velocity x2 and the current of

the coil x3. The actuator input u is the voltage at the terminals
of the coil.

B. Electromagnetic part

Following [17], the electromagnetic energy is defined by

Wmag =
1
2

L(x1)x2
3, (1)

where L is the actuator inductance and depends on x1. The
magnetic force is therefore:

Fmag(x1,x3) =
1
2

x2
3

dL
dx1

. (2)

Furthermore, the total inductance of the system is defined by
[17]:

L =
N2

ρ(x1)
, (3)

with N the number of coil’s turn and ρ(x1) the total reluc-
tance of the magnetic circuit. The reluctance is defined by
ρ = l

µS [17], where l is the length of the magnetic tube, S
its section and µ the permeability of the material.

Using a finite element method simulation of the magnetic
field density in the actuator (Comsol Multiphysics [14]), the
path of the magnetic field lines are depicted in Fig. 2.

Fig. 2. Comsol Simulation - Magnetic field lines
Notice that on Fig. 2, the flux fringing is visible in the

airgap: some magnetic field lines do not take the shortest way
between the mobile and the fixed part of the EMA. This last
figure allows to elaborate an equivalent reluctance network
following the magnetic field lines [18] [19]. This network,
given in Fig. 3, is composed of six series reluctances de-
limited by straight sections: three for the body, two for the
airgaps and one for the moving part. All physical parameters
used to compute the reluctances network are defined in the
Fig. 3. This choice of structure leads to a reluctance network
depicted in Fig. 3.

Hence, the global reluctance of the system is computed
by

ρ(x1) =
x1

µ0S1(x1)
+

x1

µ0S3(x1)
+ρ0,

= ρxx1 +ρ0,
(4)

with ρ0 the sum of the magnetic circuit reluctances, and
ρx the sum of reluctance that depends on the airgap. The
magnetic system of Fig. 3 has been simulated with the
electrical engineering software PLECS. For nominal values,
the analytical expression of L in equations(3)and (4) has
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Fig. 3. Representation of the physical parameters (left) and the associated
reluctance network (right)

been compared to numerical simulations. Fig. 4 shows the
computation of the actuator inductance.
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Fig. 4. Reluctance network simulation using PLECS

The novelty of the model is to take into account a phe-
nomenon arisen in the magnetic circuit called flux fringing:
the equivalent sections Si encompassing the flux in the airgap
is not constant and depends on the airgap length x1. Several
models have been proposed in Bouchard [20], Woodson
[17] and Muhlethaler [21]. Following Fig. 2 and Fig. 3
two approaches are proposed. The first, most widely used,
consists of an estimate of the expansion with a weighting
coefficient such as S3 = α3SCM3 and S1 = α1SCM1. The
second approach approximates the equivalent section by a
function depending on the surface of the magnetic circuit
and the airgap. For example, if the surface of the magnetic
circuit is a rectangle, S = ab , the surface in the airgap will
be estimated as Sa = (a+x1)(b+x1). Note that those results
are mostly empirical results and will serve as an adjustment
variable for our model.

In order to cope with this physical phenomenon, airgap
surfaces will be modeled as uncertain parameters. Let Si
and Si be two positive constants bounding the surface Si(x1),
0 < Si < Si(x1) < Si. As a result ρ(x1) may be bounded by
0 < ρ(x1)< ρ(x1)< ρ(x1) with ρ(x1) =

x1

µ0S1
+

x1

µ0S3
+ρ0

and ρ(x1) =
x1

µ0S1
+

x1

µ0S3
+ρ0. In the same way, the total

inductance defined in (3) L(x1) =
N2

ρxx1 +ρ0
is bounded

by 0 < L(x1) < L(x1) < L(x1) with L(x1) =
N2

ρ(x1)
and

L(x1) =
N2

ρ(x1)
. Finally, the expression of the magnetic force

is obtained by:

Fmag(x1,x3) =−
1
2

x2
3N2 ρx

ρ(x1)2 =−1
2

x2
3µ(x1), (5)

with µ(x1) = N2 ρx

ρ(x1)2 . In the same way as the reluctance

ρ(x1) and the inductance L(x1), define µ(x1) = N2 ρx
ρ(x1)2 and

µ(x1) =N2 ρx
ρ(x1)2 such that µ(x1) is bounded by 0< µ(x1)<

µ(x1)< µ(x1).

C. Electrical part

Applying the input voltage u at the terminals of the coil
the electrical dynamic is described by:

u = Rx3 +
dΦ

dt
, (6)

with R the coil internal resistance. By definition of the
magnetic flux Φ = Lx3 [17] we get:

u = Rx3 +L
dx3

dt
+ x3

dL
dt

. (7)

Since
dL
dt

=
∂L
∂x1

dx1

dt
, a dynamical equation for the current

x3 is formulated as

dx3

dt
=

1
L(x1)

(
u−Rx3 + x2x3µ(x1)

)
. (8)

D. Mechanical part

The application of the Newton’s second law to the moving
part gives:

m
dx2

dt
=−Fmag +Fext , (9)

where Fext is the sum of the external forces: Fext = Ff riction+
Fspring. Ff riction represents the friction force which is propor-
tional to the speed, Ff riction =−λx2 and Fspring is the force
due to the spring, proportional to the position, Fspring =−Kx1
where λ and K are positives constants.

E. State space model

In this work we consider a 3 dimensional model of
the electromagnetic actuator. The state variables have been
defined in Paragraph II-A, and gathering equations (8) and
(9), a state space model is obtained in (10). Note that the
control input u(t) has effect only on the third equation. We
will name x0 the initial state of the actuator.

ẋ1 = x2,

ẋ2 =
1
m

[
1
2

x2
3µ(x1)+Fext(x1,x2)

]
,

ẋ3 =
1

L(x1)
[u−Rx3 + x2x3µ(x1)] .

(10)



III. NONLINEAR CONTROL FOR THE UNCERTAIN MODEL

The proposed method is a combination of a backstepping
control and a sliding mode control that makes the closed
loop system states converge to a ball around the desired
equilibrium point. This equilibrium point depends on the
position reference signal yr the state x1 has to track. The
first subsection is dedicated to the design of a backstepping
methodology to control the mechanical part of the system.
The second subsection develops a sliding mode control to
drive the coil current to the required value. Finally, a proof
of the system convergence under the proposed control will
then be detailed in the third subsection.

The controller design starts by the control of the position
and velocity states. The choice of the backstepping method
is natural due to the cascade form of the subsystem (11),{

ẋ1 = x2 , ẋ2 =
1
m

[
1
2

x2
3d µ +Fext(x1,x2)

]
.

(11)
where x2

3d stands for the virtual control input.
Theorem 1: Consider α1, α2 two positives scalars, a =

1− α
2
1 +

λ

m
α1 −

K
m

and b = α1 −
λ

m
. If the matrix Q =(

−α1 a/2
a/2 b−α2

)
is negative definite, then the virtual con-

trol law x2
3d = − 2m

µ(x1 + yr)
α2(x2 +α1x1−α1yr) makes the

subsystem (11) convergent to a ball of center
(

yr
0

)
and of

radius δ

αθ
, with δ = K

m | yr | , α =| λmin(Q) | and θ is a
positive scalar lower than one.

Proof: Consider the classical change of variable

 z1 = x1− yr,

z2 = x2 +α1z1,
(12)

with α1 a positive scalar. The subsystem (11) can be rewritten
as: 

ż1 = −α1z1 + z2,

ż2 =
1
m

[
1
2

x2
3d µ +Fext(z1,z2)

]
+α1z2−α

2
1 z1.

(13)
In order to achieve the closed loop desired properties, let us
consider a Lyapunov function of the form V1 = 1

2 z2
1 +

1
2 z2

2.
The derivative of V1 along the trajectories of (13) leads to:

V̇1 =−α1z2
1 +az1z2 +bz2

2 + z2
1

2m
x2

3d µ− z2
K
m

yr, (14)

with a = 1−α
2
1 +

λ

m
α1−

K
m

and b = α1−
λ

m
. Consider the

control law x2
3d = −2m

µ
α2z2 where α2 >| b | is a positive

scalar. V̇1 can then be rewritten as:

V̇1 = −α1z2
1 +az1z2 + z2

2

(
b−α2

µ

µ

)
− K

m
z2yr,

V̇1 ≤ −α1z2
1 +az1z2 +(b−α2)z2

2−
K
m

z2yr,

V̇1 ≤ zT Qz− K
m

z2yr,

(15)

with z =
(
z1 z2

)T and α1 and α2 are chosen to obtain Q =(
−α1 a/2
a/2 b−α2

)
a negative definite matrix. Therefore,

V̇1 ≤ λmin(Q) || z ||2 +K
m
| z2 | yr. (16)

Notice that the term −K
m yr can be considered as a nonvan-

ishing perturbation [22] and as yr is a bounded signal, there
exists δ > 0 such that | K

m yr |≤ δ . Consider a scalar θ ∈ [0,1],
it implies that

V̇1 ≤ −α || z ||2 + | z2 | δ
≤ −(1−θ)α || z ||2 −θα || z ||2 + || z || δ

≤ −(1−θ)α || z ||2 ∀ || z ||> δ

αθ
.

(17)

Following [22], the subsystem (11) converges to the disc
of center 0 and radius δ

αθ
which concludes the proof.

Remark 1: As the magnetic force Fmag is uncertain, it

cannot compensate exactly the constant term −K
m

yr. The
best we can do is to minimize its effect, leading to bound
ultimately the subsystem by a small bound [22].

Remark 2: A more general Lyapunov function of the form
V1 = zT Pz may be used in order to reduce the size of
the disc. Notice also that an optimization scheme could be
implemented in order to minimize the size of the ball in
which the states (x1,x2) converges.
The next step of the controller design is to design a control
law such that x3 converges to x3d . Since the functions
L(x1) and µ(x1) are uncertain, we rely on a sliding mode
approach of order 1 [23].

Theorem 2: Consider a scalar ε > 0, α3 = R | x3d | + |
(z2−α1z1)(S + x3d) | µ+ | ẋ3d | L(x1) + ε , the control law
u =−α3sign(S), with the sliding surface S = x3−x3d makes
x3 converge in finite time towards x3d .

Proof: Consider the sliding surface S = x3− x3d and
the Lyapunov function V2 =

1
2 S2. The derivative of V2 along

the trajectories of (10) leads to:

V̇2 = S
1

L(x1)
u+S

( 1
L(x1)

[−R(S+ x3d)

+(z2−α1z1)(S+ x3d)µ]− ẋ3d

)
.

(18)

Let us choose u =−α3sign(S) with a gain α3 > 0 then



V̇2 = −α3 | S |
1

L(x1)
−RS2 1

L(x1)
−Sẋ3d

+ S
( 1

L(x1)
[−Rx3d +(z2−α1z1)(S+ x3d)µ]

)
.

(19)

Notice that
1

L(x1)
is an uncertain but strictly positive function

and therefore,

V̇2 ≤ | S |
∣∣∣( 1

L(x1)
[−α3−Rx3d

+(z2−α1z1)(S+ x3d)µ− ẋ3dL(x1)]
)∣∣∣. (20)

Setting

α3 = R | x3d |+ | (z2−α1z1)(S+ x3d) | µ+ | ẋ3d | L(x1)+ ε ,
(21)

where ε > 0, we obtain V̇2 ≤ −εS = −ε
√

V2 which proves
the convergence in finite time of x3 towards x3d .
The last step consists in proving the convergence of the
whole system (10) to a ball around the desired equilibrium
point with the control laws defined in Theorem 1 and
Theorem 2

Theorem 3: Consider ε1, α1, α2 three positives

scalars, a = 1 − α
2
1 +

λ

m
α1 −

K
m

and b = α1 −
λ

m
,

Q =

(
−α1 a/2
a/2 b−α2

)
,α =| λmin(Q) |,α3 = R | x3d | + |

(z2−α1z1)(S+ x3d) | µ+ | ẋ3d | L(x1)+ ε , and θ a positive
scalar lower than one. If the matrix Q is negative definite,
then the control law u = −α3sign(S) makes the system

(10) convergent to a disc of center

 yr
0

x3d

 of radius δ

αθ
,

belonging the map x3 = x3d .
Proof: Using V = V1 +V2 , we proved in Theorem 1

and Theorem 2 that

V̇ ≤ −α || z ||2 +δ || z || −ε | S |+ 2
m | S | (x3 + x3d)µ .

(22)

Taking ε =
2
m
(x3 + x3d)µ + ε1 with ε1 > 0

V̇ ≤ −α || z ||2 +δ || z || −ε1 | S | ,

≤ −(1−θ)α || z ||2 −ε1 | S | , ∀ || z ||> δ

αθ
.

(23)

As S converges to 0 in finite time we prove that the
whole system converges asymptotically to an invariant and

attractive disc of center

 yr
0

x3d

 of radius δ

αθ
, belonging the

map x3 = x3d .
Remark 3: The proposed approach is a combined back-

stepping - sliding mode control. Notice that a backstepping
approach cannot be applied all along the design due to the
nonvanishing term depending on a spring force which cannot
be compensated by the control because of the uncertainty. In
the same way, it appears to be complicated to design a sliding
mode from the beginning because the nonvanishing term

does not satisfy the matching condition, the usual condition
allowing a sliding mode control to reject a perturbation [23].

IV. SIMULATION

Let us consider the EMA whose parameters are given in
Table I and consider the control defined by Theorem 3 with
the followings parameters α1 = 10, α2 = 20000 and ε1 = 10.
In this simulation, yr is a step signal of 3 mm amplitude.

Name Value Description
ρx 2.8 ×1010 H−1m−1 Airgap reluctance
ρ0 630 H−1 Magnetic circuit reluctance
λ 5 Nm−2 Friction coefficient
K 120 Nm−1 Spring constant
N 70 Coil winding
m 0.1 kg Mass of the moving part
R 0.4 Ω coil intern resitor
x0 (0.001 m,0,0)T Initial state

TABLE I

The results of the position tracking simulation are shown in
the Figure 5, the speed, the current and the input voltage u
respectively in Figures 5, 6 and 7.
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Fig. 5. Evolution of the position tracking x1 and velocity x2

Fig. 6. Evolution of the coil current x3

The system position follows the reference yr with a
good settling time (≈ 0.2s) and no overshoot. There is no
chattering on the position and the speed due to the pure
integrator in the system. However, a chattering phenomenon
appears on the current due to the discontinuous control u.
Notice that from a practical point of view, this high frequency
switching is not an issue since the implemented control is
based on switching transistors. The coil current magnitude is
standard as common EMA needs values of a few milliampere



Fig. 7. Evolution of the voltage input u

to a few Ampere. Notice that the control signal u has also
standard values. In this case it can be easily generated by a
150V switching power supply.

The Figure 8 shows the error due to the uncertainty on the
model for different initial values. As mentioned in Theorem
3, it is impossible to compensate the constant term −K

m
yr so

the system converges around the reference but a small error
remains. However, we may consider this algorithm as robust
since the error is minimized. S converges to 0 and there is
less than 0.1% error between x1 and yr.

-6 -4 -2 0 2 4 6
z1 #10-5

-4

-2

0
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#10-4

x1(0) = 1mm, yr = 2mm
x1(0) = 1mm, yr = 3mm
x1(0) = 2mm, yr = 3mm
error disk yr = 3mm
error disk yr = 2mm

Fig. 8. Zoom on the tracking error: Plane z1 - z2

V. CONCLUSION

This paper focuses on a robust control law design for an
uncertain model of EMA which takes into account the flux
fringing. The proposed control law relies on a combined
backstepping and sliding mode control and ensures that the
states are ultimately bounded within a disc centered around
the reference to be tracked.

Future work consists in, on one hand validating the control
law on a testbed, on the other hand, including LMI opti-
mization algorithm in order to minimize the set in which the
states converge. In addition, a future work should include the
design of a control law taking also into account the magnetic
saturation.

ACKNOWLEDGMENT

The Authors would like to thank Bruno Vieille from CNES
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