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Linearly Convergent Variable Sample-Size Schemes for Stochastic Nash

Games: Best-Response Schemes and Distributed Gradient-Response Schemes

Jinlong Lei and Uday V. Shanbhag

Abstract— This paper considers an N -player stochastic Nash
game in which the ith player minimizes a composite objective
fi(x) + ri(xi), where fi is expectation-valued and ri has an
efficient prox-evaluation. In this context, we make the following
contributions. (i) Under a strong monotonicity assumption
on the concatenated gradient map, we derive (optimal) rate
statements and oracle complexity bounds for the proposed
variable sample-size proximal stochastic gradient-response (VS-
PGR) scheme; (ii) We overlay (VS-PGR) with a consensus
phase with a view towards developing distributed protocols for
aggregative stochastic Nash games. Notably, when the sample-
size and the number of consensus steps at each iteration grow
at a suitable rate, a linear rate of convergence can be achieved;
(iii) Finally, under a suitable contractive property associated
with the proximal best-response (BR) map, we design a variable
sample-size proximal BR (VS-PBR) scheme, where the proximal
BR is computed by solving a sample-average problem. If the
batch-size for computing the sample-average is raised at a
suitable rate, we show that the resulting iterates converge at a
linear rate and derive the oracle complexity.

I. INTRODUCTION

Noncooperative game theory [1], [2] is a branch of game

theory that considers the resolution of conflicts among

selfish players, each of which tries to optimize its payoff

function, given the rivals’ strategies. Nash games represent

an important subclass of noncooperative games, originating

from the seminal work by [3]. Such models have seen wide

applicability in a breadth of engineered systems, such as

power grids, communication networks, and sensor networks.

In this paper, we consider the Nash equilibrium problem

(NEP) with a finite set of N players indexed by i where

i ∈ N , {1, · · · , N}. For any i ∈ N , the ith player is

characterized by a strategy xi ∈ R
ni and a payoff function

Fi(xi, x−i) dependent on its strategy xi and parametrized

by rivals’ strategies x−i , {xj}j 6=i. If n ,
∑N

i=1 ni and x
denotes the strategy profile, defined as x , (x1, · · · , xN ) ∈
R

n. We consider a stochastic Nash game P where the

objective of player i, given rivals’ strategies x−i, is to solve

the following stochastic composite optimization problem:

min
xi∈R

ni
Fi(xi, x−i) , fi(xi, x−i) + ri(xi) (Pi(x−i))

where fi(x) , E [ψi(x; ξ(ω))] , the random variable ξ :
Ω → R

d is defined on the probability space (Ω,F ,P),
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ψi : R
n × R

d → R is a scalar-valued function, and

E[·] denotes the expectation with respect to the probability

measure P. We restrict our attention to nonsmooth convex

Nash games where fi(xi, x−i) is assumed to be smooth and

convex in xi for any x−i while ri(xi) is assumed to be

convex but a possibly nonsmooth function with an efficient

prox-evaluation. A Nash equilibrium (NE) of the stochastic

Nash game in which the ith player solves the parametrized

problem (Pi(x−i)) is a tuple x∗ = {x∗i }Ni=1 ∈ R
n such that

the following holds for each player i ∈ N :

Fi(x
∗
i , x

∗
−i) ≤ Fi(xi, x

∗
−i) ∀xi ∈ R

ni .

In other words, x∗ is an NE if no player can improve the

payoff by unilaterally deviating from the strategy x∗i .

Our focus is two-fold: (i) Development of variable sample-

size stochastic proximal gradient-response (PGR) and prox-

imal best-response (PBR) schemes with optimal (determin-

istic) rates of convergence; (ii) Extension of PGR schemes to

distributed (consensus-based) regimes, allowing for resolving

aggregative games with a prescribed communication graph,

where linear rates of convergence are achieved by combin-

ing increasing number of consensus steps with a growing

sample-sizes of sampled gradients.

Prior research. We discuss some relevant research on

continuous-strategy Nash games and variance reduction

schemes for stochastic optimization.

(i) Deterministic Nash games. Early work considered

convex Nash games (where players solve convex programs)

where the concatenated gradient map is either strongly mono-

tone [4] or merely monotone maps [5], [6]. While the afore-

mentioned schemes utilized gradient-response techniques,

best-response schemes reliant on the contractive nature of

the best-response map were examined in [7].

(ii) Stochastic Nash games. Regularized stochastic ap-

proximation schemes were presented for monotone stochas-

tic Nash games [8] while extensions have been devel-

oped to contend with misspecification [9] and the lack of

Lipschitzian properties [10]. More recently, sampled best-

response schemes have been developed in [11] while rate

statements and iteration complexity bounds have been pro-

vided for a class of inexact stochastic best-response schemes

in [12]–[14]. In fact, we draw inspiration from our work

in [14] to develop superior rate statements and extensions

to distributed regimes. Finally, a.s. and mean convergence of

sequences produced by BR schemes was proven in [13], [15]

for stochastic and misspecified potential games.

(iii) Consensus-based distributed schemes for Nash games.

Inspired by the advances in consensus-based protocols for re-
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solving distributed optimization problems, Koshal et al. [16]

developed two sets of distributed algorithms for monotone

aggregative Nash games on graphs. More recently, in [17],

[18], the authors combine gradient-based schemes with con-

sensus protocols to address generalized Nash games.

(iv) Variance reduction schemes for stochastic optimiza-

tion. There has been an effort to utilize increasing batch-

sizes of sampled gradients in stochastic gradient schemes,

leading to improved rates of convergence, as seen in strongly

convex [19]–[21] and convex regimes [20]–[23].

Novelty and Contributions.

(i). VS-PGR. In Section II, under a strong monotonicity

assumption, we prove that a variable sample-size proximal

gradient response (VS-PGR) scheme is characterized by a

linear rate of convergence in mean-suqared error (Th. 1)

while in Th. 2, we establish that the iteration complexity

(in terms of proximal evaluations) and oracle complexity to

achieve an ǫ−NE denoted by x where x satisfies E[‖x −
x∗‖2] ≤ ǫ are O(ln(1/ǫ)) and O

(
(1/ǫ)1+δ

)
, respectively,

where δ ≥ 0 and δ = 0 under a suitable selection of

parameters. Furthermore, it is shown in Corollary 1 that with

some specific algorithmic parameters, the iteration and oracle

complexity to obtain an ǫ−NE are bounded by O(κ2 ln(1/ǫ))
and by O

(
κ2/ǫ

)
, where κ denotes the condition number.

(ii). Distributed VS-PGR. In Section III, addressing an

open question in stochastic Nash game, we design a dis-

tributed VS-PGR scheme to compute an equilibrium of an

aggregative stochastic Nash game over a communication

graph. By increasing the number of consensus steps and

sample-size at each iteration, this scheme is characterized by

a linear rate of convergence (Th. 3). In Th. 4, we show that

the iteration, oracle, and communication complexity to com-

pute an ǫ-Nash equilibrium are O(ln(1/ǫ)), O
(
(1/ǫ)1+δ

)
,

and O
(
ln2(1/ǫ)

)
respectively, where δ ≥ 0 and ǫ−NE2

denotes an x satisfying E[‖x− x∗‖] ≤ ǫ.
(iii). VS-PBR. In Section IV, we develop a variable

sample-size proximal BR (VS-PBR) scheme (see Alg. 2)

to solve a class of stochastic Nash games with contractive

proximal BR maps, where each player solves a sample-

average best-response problem per step. We show in Th. 5

that the generated iterates converge to the NE in mean at

a linear rate under suitable number of scenarios, and also

establish that the iteration and oracle complexity to achieve

an ǫ−NE2 are O((ln(1/ǫ)) and O((1/ǫ)2(1+δ)) with δ ≥ 0.
Notation: When referring to a vector x, it is assumed to be

a column vector while xT denotes its transpose. Generally,

‖x‖ denotes the Euclidean vector norm, i.e., ‖x‖ =
√
xTx.

We write a.s. as the abbreviation for “almost surely”. For a

real number x, we define by ⌈x⌉ the smallest integer greater

than x. For a closed convex function r(·), the proximal

operator is defined in the following for any α > 0:

proxαr(x) , argmin
y

(
r(y) +

1

2α
‖y − x‖2

)
. (1)

For simplicity, ξ denotes ξ(ω) and in a slight abuse of

notation, N denotes the number of players while Nk denotes

the batch-size of sampled gradients at iteration k.

II. VARIABLE SAMPLE-SIZE GRADIENT RESPONSE

This section considers the development of a variable

sample-size stochastic gradient response scheme for a class

of strongly monotone Nash games associated with a strongly

monotone concatenated gradient map. We proceed to show

that this scheme produces a sequence of iterates that con-

verges to the Nash equilibrium at a linear rate and establish

the oracle complexity to achieve an ǫ-Nash equilibrium.

A. Variable sample-size proximal GR (VS-PGR)

We impose the following assumptions on P .

Assumption 1: Let the following hold.

(a) The function ri is lower semicontinuous and convex with

effective domain denoted by Ri , dom(ri). Suppose R ,∏N
j=1 Ri and R−i =

∏
j 6=i Rj .

(b) fi(xi, x−i) is C1 and convex in xi over on an open set

containing Ri for every fixed x−i ∈ R−i;

(c) For all x−i ∈ R−i and any ξ ∈ R
d, ψi(xi, x−i; ξ) is

differentiable in xi over an open set containing Ri such that

∇xifi(xi, x−i) = E[∇xiψi(xi, x−i; ξ)].

If G(x; ξ) ,
(
∇xiψi(x; ξ)

)N
i=1

and G(x) , E[G(x; ξ)],

then G(x) = (∇xifi(x))
N
i=1 by Assumption 1(iii). The

following lemma establishes a tuple x∗ is an NE of P if

and only if it is a fixed point of a suitable map.

Lemma 1 (Equivalence between NE and fixed point):

Given the stochastic Nash game P , suppose Assumption 1

holds for each player i ∈ N . Define r(x) , (ri(xi))
N
i=1.

Then x∗ ∈ X is an NE if and only if x∗ is a fixed point of

proxαr(x− αG(x)), i.e.,

x∗ = proxαr(x
∗ − αG(x∗)), ∀α > 0. (2)

Suppose the iteration index is denoted by k and player

i’s strategy at time k is denoted by xi,k ∈ R
ni , which is

an estimate of its equilibrium strategy x∗i . We consider a

variable sample-size generalization of the standard proximal

stochastic gradient method, in which Nk sampled gradients

are utilized at iteration k. Given a sample ξ1k, · · · , ξNk

k of Nk

realizations of the random vector ξ, for any i ∈ N , given

xi,0 ∈ Ri, player i updates xi,k+1 as follows:

xi,k+1 = proxαri

[
xi,k − α

∑Nk

p=1 ∇xiψi(xk; ξ
p
k)

Nk

]
,

where α > 0 is the constant step size, ∇xiψi(xk; ξ
p
k), p =

1, · · · , Nk denote the sampled gradients. Define wp
k ,

G(xk; ξ
p
k) − G(xk), and w̄k,Nk

, 1
Nk

∑Nk

p=1 w
p
k. Then the

aforementioned scheme can be expressed as

xk+1 = proxαr [xk − α (G(xk) + w̄k,Nk
)] . (VS-PGR)

We make the following assumptions on the gradient map and

the noise.

Assumption 2: (i) The mapping G(x) is Lipschitz con-

tinuous over the set R with a constant L, namely,

‖G(x)−G(y)‖ ≤ L‖x− y‖ ∀x, y ∈ R.
(ii) G(x) is strongly monotone with parameter η, i.e.,

(G(x) −G(y))T (x− y) ≥ η‖x− y‖2 ∀x, y ∈ R.



(iii) There exists a constant ν such that the following holds

for any k ≥ 0: E[w̄k,Nk
| Fk] = 0, E[‖w̄k,Nk

‖2 | Fk] ≤
ν2/Nk a.s., where Fk , σ{x0, x1, · · · , xk}.

B. Rate analysis

We begin with a simple recursion for the conditional mean

squared error in terms of sample size Nk, step size α, and

the problem parameters.

Lemma 2: Consider (VS-PGR) and let Assumptions 1 and

2 hold. Define q , 1− 2αη + α2L2. Then for all k ≥ 0,

E[‖xk+1 − x∗‖2|Fk] ≤ q‖xk − x∗‖2 + α2ν2/Nk, a.s.
Using Lemma 2, we are able to show the linear conver-

gence rate of algorithm (VS-PGR).

Theorem 1 (Linear convergence rate of VS-PGR): Let

(VS-PGR) be applied to P , where Nk =
⌈
ρ−(k+1)

⌉
for

some ρ ∈ (0, 1), and E[‖x0 − x∗‖2] ≤ C for some constant

C > 0. Suppose Assumptions 1 and 2 hold, and α < 2η/L2.

Define q , 1 − 2αη + α2L2. Then the following holds for

any k ≥ 0.

(i) If ρ 6= q, then E[‖xk − x∗‖2] ≤ C(ρ, q)max{ρ, q}k,
where C(ρ, q) , C + α2ν2

1−min{ρ/q,q/ρ} .

(ii) If ρ = q, then for any ρ̃ ∈ (ρ, 1), E[‖xk −x∗‖2] ≤ D̃ρ̃k,

where D̃ ,

(
C + α2ν2

ln((ρ̃/ρ)e)

)
.

C. Iteration and Oracle Complexity

Next, we examine the iteration (in terms of proximal

evaluations) and oracle complexity of this scheme to compute

an ǫ-Nash equilibrium, defined next. Recall that a random

strategy profile x : Ω → R
n is an ǫ−NE if E[‖x−x∗‖2] ≤ ǫ.

Theorem 2 (Iteration and Oracle Complexity): Let

(VS-PGR) be applied to P , where Nk =
⌈
ρ−(k+1)

⌉

for some ρ ∈ (0, 1), and E[‖x0 − x∗‖2] ≤ C. Suppose

Assumptions 1 and 2 hold. Define q , 1 − 2αη + α2L2.
Let α < 2η/L2, ρ̃ ∈ (ρ, 1), C(ρ, q) and D̃ be defined

in Theorem 1. Then the number of proximal evaluations

needed to obtain an ǫ−NE is bounded by K(ǫ), defined as

K(ǫ) ,





1
ln(1/q) ln

(
C(ρ,q)

ǫ

)
if ρ < q < 1,

1
ln(1/ρ̃) ln

(
D̃
ǫ

)
if q = ρ,

1
ln(1/ρ) ln

(
C(ρ,q)

ǫ

)
if q < ρ < 1,

(3)

and the number of sampled gradients required is bounded by

M(ǫ), defined as

M(ǫ) ,





1
ρ ln(1/ρ)

(
C(ρ,q)

ǫ

) ln(1/ρ)
ln(1/q)

+K(ǫ) if ρ < q < 1,

1
ρ ln(1/ρ)

(
D̃
ǫ

) ln(1/ρ)
ln(1/ρ̃)

+K(ǫ) if q = ρ

1
ρ ln(1/ρ)

(
C(ρ,q)

ǫ

)
+K(ǫ) if q < ρ < 1.

(4)
Proof. We first consider the case ρ 6= q. By Theorem 1(i),

the following holds:

E[‖xk − x∗‖2] ≤ ǫ ⇒ k ≥ K1(ǫ) ,
ln (C(ρ, q)/ǫ)

ln (1/max{ρ, q}) .

Then we achieve the bound given in equation (3) for cases

ρ < q < 1 and q < ρ < 1. Note that for λ > 1 and any

positive integer K , the following holds:

K∑

k=0

λk ≤
∫ K+1

0

λxdx ≤ λK+1

ln(λ)
. (5)

Then we may obtain the following bound:

K1(ǫ)−1∑

k=0

Nk ≤
K1(ǫ)−1∑

k=0

ρ−(k+1) +K1(ǫ) ≤
ρ−K1(ǫ)

ρ ln(1/ρ)
+K1(ǫ).

Note that for any 0 < ǫ, p < 1, c1 > 0, the following holds:

ρ−
ln(c1/ǫ)

ln(1/p) =
(
eln(ρ

−1)
) ln(c1/ǫ)

ln(1/p)

= eln(c1/ǫ))
ln(1/ρ)
ln(1/p)

= (c1/ǫ)
ln(1/ρ)
ln(1/p) .

(6)

Thus, the number of sampled gradients required to obtain an

ǫ−NE is bounded by

1

ρ ln(1/ρ)

(
C(ρ, q)

ǫ

) ln(1/ρ)
ln(1/ max{ρ,q})

+K1(ǫ).

Thus, we achieve the bound given in equation (4) for cases

ρ < q < 1 and q < ρ < 1. The resultd for the case ρ = q
can be similarly proved. ✷

Remark 1: (i) The above theorem establishes that the

iteration and oracle complexity to achieve an ǫ−NE are

O(ln(1/ǫ)) and O((1/ǫ)1+δ), where δ = 0 when ρ ∈ (p, 1),

δ = ln(q/ρ)
ln(1/q) when ρ < q < 1, and δ = ln(ρ̃/ρ)

ln(1/ρ̃) when

q = ρ. (ii) Suppose we use an alternative metric to describe

the ǫ-Nash equilibrium: x : Ω → R
n is an ǫ−NE2 if

E[‖x − x∗‖] ≤ ǫ. Then by Jensen’s inequality if follows

that an ǫ2-NE is also an ǫ-NE2, and hence by Theorem 2 we

obtain that the iteration and oracle complexity to achieve an

ǫ−NE2 are O(ln(1/ǫ)) and O
(
(1/ǫ)2(1+δ)

)
, respectively.

Corollary 1: Let (VS-PGR) be applied to P , where

E[‖x0 − x∗‖2] ≤ C for some constant C > 0. Suppose

Assumptions 1 and 2 hold. Define the condition number κ ,
L
η . Set α = η

L2 and Nk =
⌈
ρ−(k+1)

⌉
with ρ = 1− 1

2κ2 . Then

the number of proximal evaluations and samples required

to obtain an ǫ−NE are bounded by O(κ2 ln(1/ǫ)) and by

O
(
κ2/ǫ

)
, respectively.

III. DISTRIBUTED VS-PGR FOR AGGREGATIVE GAMES

Next, we consider an aggregative game Pagg, where the

ith player solves the following parametrized problem:

min
xi∈R

ni
F agg
i (xi, x−i), (Pagg

i (x−i))

where F agg
i (xi, x−i) , fi(xi, xi + x̄−i) + ri(xi), x̄ ,∑N

i=1 xi denotes the aggregate of all players’ decisions,

x̄−i =
∑N

j=1,j 6=i xj denotes the aggregate of all play-

ers’ decisions except player i, and fi(xi, xi + x̄−i) ,

E [ψi(xi, xi + x̄−i; ξ)] is expectation valued. We impose the

following assumptions on the stochastic aggregative game.

Assumption 3: Let the following hold.

(a) The function ri is lower semicontinuous and convex with



effective domain denoted by Ri required to be compact.

(b) For any y ∈ R̄ ,
∑N

i=1 Ri, fi(xi, y) is C1 and convex

in xi over an open set containing Ri.

(c) For all y ∈ R̄ and any ξ ∈ R
d, ψi(xi, y; ξ) is

differentiable in xi over an open set containing Ri s.t.

∇xifi(xi, y) = E[∇xiψi(xi, y; ξ)].

A. Algorithm Design

We aim to design a distributed algorithm to compute an

NE of Pagg, where each player may exchange information

with its local neighbors, and subsequently update its es-

timate of the equilibrium strategy and the aggregate. The

communication among players is defined by an undirected

graph G = (N , E), where N , {1, . . . , N} is the set of

players and E is the set of undirected edges between players.

The set of neighbors of player i, denoted Ni, is defined

as Ni , {j ∈ N : (i, j) ∈ E}. Define the adjacency

matrix A = [aij ]
N
i,j=1, where aij > 0 if j ∈ Ni and

aij = 0, otherwise. A path in G with length p from v1 to

vp+1 is a sequence of distinct nodes, v1v2 . . . vp+1, such that

(vm, vm+1) ∈ E , for all m = 1, . . . , p. The graph G is termed

connected if there is a path between any two distinct players.

Though each player does not have access to all players’

decisions, it may estimate the aggregate x̄ by communicating

with its neighbors. Player i at time k holds an estimate

xi,k for its equilibrium strategy and an estimate vi,k for the

average of the aggregate. To overcome the fact that the com-

munication network is sparse, we assume that to compute

vi,k+1, players communicate not once but τk rounds at major

iteration k + 1. The strategy of each player is updated by

a variable sample-size proximal stochastic gradient scheme

that depends on parameters α and Nk, similar to (VS-PGR)

developed in Section II. We now specify the scheme in

Algorithm 1.

Algorithm 1 Distrib. VS-PGR for Agg. Stoch. Nash Games

Initialize: Set k = 0, and vi,0 = xi,0 ∈ Ri for any i ∈ N . Let
α > 0 and {τk, Nk} be deterministic sequences.
Iterate until convergence
Consensus. v̂i,k := vi,k ∀i ∈ N and repeat τk times

v̂i,k :=
∑

j∈Ni

aij v̂j,k ∀i ∈ N .

Strategy Update. for any i ∈ N

xi,k+1 := proxαri [xi,k − α (∇xifi(xi,k, Nv̂i,k) + ei,k)] , (7)

vi,k+1 := vi,k + xi,k+1 − xi,k, (8)

where ei,k ,

∑Nk
p=1 ∇xi

ψi(xi,k,Nv̂i,k ;ξ
p
k
)

Nk
−∇xifi(xi,k, Nv̂i,k).

We impose the following conditions on the communication

graph, gradient mapping, and observation noise.

Assumption 4: (i) The undirected graph G is connected

and the associated adjacency matrix A is symmetric with

row sums equal to one.

(ii) φ(x) , (∇xifi(xi, x̄))
N
i=1 is strongly monotone over R

with parameter η, i.e., (φ(x) − φ(y))T (x − y) ≥ η‖x −
y‖2 ∀x, y ∈ R.

(iii) The mapping φ(x) is Lipschitz continuous over R with

a constant L, i.e., ‖φ(x) − φ(y)‖ ≤ L‖x− y‖ ∀x, y ∈ R.
(iv) For any i ∈ N , ∇xifi(xi, y) is Lipschitz continuous in

y over the set R̄ for every fixed xi ∈ Ri, i.e., there exists

some constant Li such that for any xi ∈ Ri,

‖∇xifi(xi, y1)−∇xifi(xi, y2)‖ ≤ Li‖y1−y2‖ ∀y1, y2 ∈ R̄.
(v) If Fk , σ{x0, x1, · · · , xk}, for any i ∈ N , there exists

a constant νi such that the following holds for any k ≥ 0:

E[ei,k|Fk] = 0 and E[‖ei,k‖2|Fk] ≤ ν2i /Nk a.s.

B. Convergence Analysis

Define A(k) , Aτk . Then by Assumption 4(a), A(k) is

also symmetric with the sum of each row equaling one.

Note from the consensus step in Algorithm 1 that v̂i,k =∑N
j=1[A(k)]ijvj,k. We now recall a prior result.

Lemma 3: By Assumption 4 and [24, Proposition 1], there

exists a constant θ > 0 and β ∈ (0, 1) such that
∣∣∣∣
[
Ak

]
ij
− 1

N

∣∣∣∣ ≤ θβk ∀i, j ∈ N . (9)

We introduce the transition matrices Φ(k, s) from time s
to time k ≥ s as follows:

Φ(k, s) = A(k)A(k − 1) · · ·A(s), ∀ 0 ≤ s < k,

where Φ(k, k) = A(k). We then obtain the following

recursion on the mean-squared error.

Proposition 1: Consider Algorithm 1, where τk = k + 1
and Nk =

⌈
β−(k+1)/2

⌉
. Define M ,

∑N
j=1 max

xj∈Rj

‖xj‖,

C1 , Mθ
(
1 + 2e

√
1/ ln(β−1/2)

)
, C2 , 4Mθ

ln(1/β) , and ̺ ,(
1− 2αη + 2α2L2

)
, where θ and β are defined in Lemma

3. Let Assumptions 3 and 4 hold. Then for any k ≥ 0,

E[‖xk+1 − x∗‖2] ≤ ̺E[‖xk − x∗‖2] + C3β
(k+1)/2, (10)

where C3 is defined as

C3 , α2
N∑

i=1

ν2i + 4αMN
(
C1β

1/2 + C2

) N∑

i=1

Li

+ 4α2N2
(
C2

1β
3/2 + C2

2β
1/2

) N∑

i=1

L2
i . (11)

Proof. For purposes of brevity, we merely outline the proof.

Firstly, we give a recursion on the conditional mean-squared

error as follows:

E[‖xk+1 − x∗‖2|Fk] ≤ ̺‖xk − x∗‖2 + α2
N∑

i=1

ν2i /Nk

+ 4αMN

N∑

i=1

Li‖v̂i,k − yk‖+ 2α2N2
N∑

i=1

L2
i ‖v̂i,k − yk‖2.

We then establish an upper bound on the consensus error:

‖yk − v̂i,k‖ ≤Mθβ
∑k

p=0 τp + 2Mθ

k∑

s=1

β
∑k

p=s τp .

Finally, by getting an upper bound on
∑k

s=1 β
∑k

p=s τp ≤
e
√
1/ ln(β−1/2)β(k+1)(k+2)/2 + 2β(k+1)/2

(k+1) ln(1/β) and taking the

unconditional expectation, we prove the result. ✷



Based on Prop. 1, we can show the linear rate of conver-

gence of Algorithm 1.

Theorem 3 (Linear convergence rate of Algorithm 1):

Suppose Assumptions 3 and 4 hold. Consider Algorithm 1,

where τk = k+1, Nk =
⌈
β−(k+1)/2

⌉
and E[‖x0−x∗‖2] ≤ C

for some C > 0. Let α ∈ (0, η/L2) and define

̺ ,
(
1− 2αη + 2α2L2

)
. Then we have the following

assertions for any k ≥ 0.

(i) If β 6= ̺2, then E[‖xk − x∗‖2] ≤ C̃(̺, β)max{̺,√β}k,
where C̃(̺, β) , C+ C3

1−min{̺/
√
β,

√
β/̺} with C3 defined in

Proposition 1.

(ii) If β = ̺2, then for any ˜̺ ∈ (̺, 1), E[‖xk − x∗‖2] ≤
D̃(̺)˜̺k, where D̃(̺) ,

(
C + C3

ln((˜̺/̺)e)

)
.

Similar to Theorem 2, we may derive bounds on the

iteration and oracle complexity as well as the communication

complexity to compute an ǫ-Nash equilibrium.

Theorem 4: Suppose Assumptions 3 and 4 hold. Consider

Algorithm 1, where τk = k + 1, Nk =
⌈
β−(k+1)/2

⌉

and E[‖x0 − x∗‖2] ≤ C for some constant C > 0. Let

α ∈ (0, η/L2) and define ̺ ,
(
1− 2αη + 2α2L2

)
. Let

˜̺ ∈ (̺, 1), C̃(̺, β) and D̃(̺) be defined in Theorem 3.

Then the number of proximal evaluations needed to obtain

an ǫ−NE is bounded as follows:

K(ǫ) ,





1
ln(1/̺) ln

(
C̃(̺,β)

ǫ

)
if β < ̺2 < 1,

1
ln(1/ ˜̺) ln

(
D̃(̺)
ǫ

)
if β = ̺2,

1

ln(1/β1/2)
ln
(

C̃(̺,β)
ǫ

)
if ̺ < β1/2 < 1,

and the round of communications is
(K(ǫ)+1)(K(ǫ)+2)

2 , and

the number of sampled gradients required is bounded by

M(ǫ) ,





(
C̃(̺,β)

ǫ

) ln(1/β1/2)
ln(1/̺)

β1/2 ln((1/β1/2)
+K(ǫ) if β < ̺2 < 1,

(
D̃(̺)

ǫ

) ln(1/̺)
ln(1/ ˜̺)

β1/2 ln((1/β1/2)
+K(ǫ) if β = ̺2,

(
C̃(̺,β)

ǫ

)

β1/2 ln((1/β1/2)
+K(ǫ) if ̺ < β1/2 < 1.

Remark 2: Recall that in [25], a fast distributed gradient

algorithm based on Nesterov’s accelerated gradient algorithm

is employed to solve a distributed convex optimization prob-

lem, where at each step, O(ln(k)) consensus steps are taken.

In [25], the authors show that in merely convex settings,

the rate is O(1/k2) (optimal) and total number of commu-

nications rounds is O(k ln(k)) up to time k. Our scheme

(Algorithm 1) requires O(k2) rounds of communications to

recover the optimal linear rate of convergence but does so in a

stochastic game-theoretic regime. In future work, we intend

to investigate how the number of consensus steps may be

chosen to maintain geometric convergence while reducing

communication overhead.

IV. VARIABLE SAMPLE-SIZE PROX. BEST RESPONSE

In this section, we consider the class of stochastic Nash

games in which the proximal BR map is contractive [26].

We propose a variable sample size proximal BR scheme for

computing an equilibrium, and derive rate statements and

establish iteration and oracle complexity bounds.

A. Background on proximal best-reponse maps

For any i ∈ N and any tuple y ∈ R
n,

define the proximal BR map x̂i(y) as x̂i(y) ,

argminxi∈Rni

[
E [ψi(xi, y−i; ξ)] + ri(xi) +

µ
2 ‖xi − yi‖2

]
.

We impose the following assumption on problem (Pi(x−i)).
Assumption 5: (i) Assumption 3(i).

(ii) For every fixed x−i ∈ R−i, fi(xi, x−i) is C2 and

convex in xi over on an open set containing Ri. Moreover,

∇xifi(xi, x−i) is assumed to be Lipschitz continuous in xi
uniformly in x−i with constant Li, i.e., for any xi, x

′
i ∈ Ri,

‖∇xifi(xi, x−i)−∇xifi(x
′
i, x−i)‖ ≤ Li‖xi − x′i‖.

(iii) For all x−i ∈ R−i and any ξ ∈ R
d, ψi(xi, x−i; ξ)

is differentiable in xi over an open set containing Ri.

Moreover, for any i ∈ N and all x ∈ R, there exists Mi > 0
such that E[‖∇xifi(x) −∇xiψi(xi, x−i; ξ)‖2] ≤M2

i .
By Assumption 5, the second derivatives of the functions

fi, ∀i ∈ N on R are bounded. Analogous to the avenue

adopted in [26], we may define

Γ ,




µ
µ+ζ1,min

ζ12,max

µ+ζ1,min
. . .

ζ1N,max

µ+ζ1,min
ζ21,max

µ+ζ2,min

µ
µ+ζ2,min

. . .
ζ2N,max

µ+ζ2,min

...
. . .

ζN1,max

µ+ζN,min

ζN2,max

µ+ζN,min
. . . µ

µ+ζN,min




(12)

where ζi,min , infx∈X λmin

(
∇2

xi
fi(x)

)
and ζij,max ,

supx∈X ‖∇2
xixj

fi(x)‖ ∀j 6= i. Then by [11, Theorem 4]

we obtain that



‖x̂1(y′)− x̂1(y)‖
...

‖x̂N (y′)− x̂N (y)‖


 ≤ Γ




‖y′1 − y1‖
...

‖y′N − yN‖


 . (13)

If the spectral radius ρ(Γ) < 1, then the proximal best-

response map is contractive w.r.t. some monotonic norm.

These sufficient conditions for the contractive property of

the BR map x̂(•) can be found in [11], [26].

B. Variable sample-size proximal BR scheme

Suppose at iteration k, we have Nk samples ξ1k, · · · , ξNk

k

of the random vector ξ. For any xi ∈ Xi, we approximate

fi(xi, y−i,k) by 1
Nk

∑Nk

p=1 ψi(xi, y−i,k; ξ
p
k) and solve the

sample-average best-response problem (14). We then get the

variable-size proximal BR scheme (Algorithm 2).

Algorithm 2 Variable-size proximal BR scheme

Set k := 0. Let yi,0 = xi,0 ∈ Xi, and {γi,k}k≥0 be a given
deterministic sequence for i = 1, . . . , N .

(1) For i = 1, . . . , N , player i updates estimate xi,k+1 as

xi,k+1 = argmin
xi∈R

ni

[ 1

Nk

Nk
∑

p=1

ψi(xi, y−i,k; ξ
p

k)

+ ri(xi) +
µ

2
‖xi − yi,k‖

2
]

.

(14)

(2) For i = 1, . . . , N , yi,k+1 := xi,k+1;
(3) Set k := k + 1 and return to (1).



C. Oracle and iteration complexity

Define εi,k+1 , xi,k+1− x̂i(yk). We may obtain an bound

on E[‖εi,k+1‖2] in the following lemma.

Lemma 4: Suppose Assumption 5 holds. Consider Al-

gorithm 2. Then E[‖εi,k+1‖2] ≤ M2
i C

2
r

Nk
, where Cr ,

µ
µ2+L2 (1− L/

√
µ2 + L2)−1 with L , maxi Li.

Proof. Define w̄i,k(xi) , 1
Nk

∑Nk

p=1 ∇xiψi(xi, y−i,k; ξ
p
k) −

∇xifi(xi, y−i,k). By the optimality condition, xi,k+1 and

x̂i(yk) are respectively a fixed point of the map proxαri
[
xi−

α
(
∇xi f̃i(xi, yk)+ w̄i,k(xi)

)]
and proxαri

[
xi−αf̃i(xi, yk)

]

for any α > 0. Then by the nonexpansive property of the

proximal operator, the following holds for any α > 0 :

‖εi,k+1‖ ≤ α‖w̄i,k(xi,k+1)‖
+
∥∥∥xi,k+1 − x̂i(yk)− α

(
f̃i(xi,k+1, yk)− f̃i(x̂i(yk), yk)

)∥∥∥

≤
√
(1− αµ)2 + α2L2‖εi,k+1‖+ α‖w̄i,k(xi,k+1)‖.

In the above inequality, by setting α = µ
µ2+L2 , we obtain that

‖εi,k+1‖ ≤ Cr‖w̄i,k(xi,k+1)‖. Then by using Assumption

5(iii), the lemma is proved. ✷

Similar to [14, Prp. 4], we can prove the linear rate

of convergence. We then establish the iteration and oracle

complexity to obtain an ǫ−NE2, which is random strategy

profile x : Ω → R
n satisfies E[‖x− x∗‖] ≤ ǫ.

Theorem 5: Suppose Ass. 5 holds and a , ‖Γ‖ <
1. Let Algorithm 2 be applied to the stochastic Nash

game (Pi(x−i)), where E[‖xi,0 − x∗i ‖] ≤ C and Nk =⌈
maxi M

2
i C

2
r

η2k

⌉
for some η ∈ (0, 1). Define c , max{a, η},

let η̃ ∈ (c, 1), and D = 1/ ln((η̃/c)e). Then the number of

the deterministic optimization problems solved and samples

required by player i to obtain an ǫ−NE2 are O(ln(
√
N/ǫ))

and O
((√

N/ǫ
) 2 ln(1/η)

ln(1/η̃)

)
, respectively.

V. CONCLUDING REMARKS

We consider a class of stochastic Nash games where each

player-specific objective is a sum of an expectation-valued

smooth function and a convex nonsmooth function. We con-

sider three schemes: (i) Variable sample-size proximal gra-

dient response (VS-PGR) for strongly monotone stochastic

Nash games; (ii) Distributed VS-PGR for strongly monotone

aggregative Nash games; and (iii) VS proximal best-response

(VS-PBR) for stochastic Nash games with contractive best

response maps. Under suitable assumptions, we show that all

schemes generate sequences that converge at the (optimal)

linear rate and derive bounds on the computational, oracle,

and communication complexity.
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