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Abstract— In this paper, a fast-convergent fault detection and
isolation architecture is proposed for linear MIMO continuous-
time systems. By exploiting a system decomposition technique
and making use of kernel-based deadbeat estimators, the
state variables can be estimated in a non-asymptotic way.
Estimation residuals are then defined to detect the occurrence
of a fault and identify the occurring fault function after fault
detection. In the noisy scenario, thresholds are defined for the
residual to distinguish the effect of the noise from that of
the fault. Numerical examples are included to characterize the
effectiveness of the proposed FDI architecture.

I. INTRODUCTION

Fault Detection and Isolation (FDI) is a fundamental

research field for modern engineering systems. Reliable

FDI schemes are needed, able to accurately monitor the

status of the system and rapidly diagnose the fault before

it has the chance to destabilize the system or lead to more

severe system failures. For preliminaries and typical FDI

techniques, readers can refer to the books [1], [2], [3].

Model-based FDI methodologies are a powerful class of

tools to address the fault diagnosis problem, relying on state

observation, parameter estimation, identification and/or par-

ity equations techniques [4]. The main logic consists in the

analysis of Input/Output signals, compared to the expected

nominal behavior based on the model of the system. Re-

markably, thanks to the development of the communication

technologies, distributed FDI methods have been developed

suitable for large-scale systems, e.g. [5], [6], [7], [8], [9].

Typical estimation methods for FDI guarantee asymptotic

convergence, which means the estimation error will decrease

gradually to the neighborhood of zero. Moreover, the choice

of initial conditions may affect the estimates. As a conse-

quence, slow convergence of the estimators (and possibly of

the thresholds as consequence) may cause inaccuracy, delays

in the detection of faults and misdetection or false-alarms.

Furthermore, in many FDI schemes, separate estimators are

needed to achieve fault detection and isolation respectively.

Therefore, after the detection of the fault, a further transient

is needed before the fault can be isolated, thus increasing

the duration of the whole fault diagnosis process. Therefore,

estimation methods with fast convergence are desired.
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In the context of fast-converging estimation, a kernel-

based deadbeat estimation methodology is proposed in [10].

Making use of the Volterra integral operator induced by

suitably designed kernel functions, the kernel-based method-

ology removes the effect of the unknown initial conditions

thus achieving non-asymptotic convergence without tran-

sient phase. Paradigms have been proposed for parameter

estimation [10], state estimation [11] and state-parameter

joint estimation [12]. Remarkably, the state-parameter joint

estimation has been successfully utilized for FDI of intercon-

nected systems in [13], where the possible fault functions are

assumed to depend on the measurements.

In this work, a novel robust FDI scheme with fast conver-

gence is proposed, able to detect and isolate faults which may

depend on non-directly measured state variables. Indeed,

applying the deadbeat observer to a system decomposed

as suggested in [14] (to be discussed thereafter), allows to

reconstruct the fault signals even if they are functions of

the internal state variables. Moreover, the Volterra image

of the fault signal can be estimated and compared with the

counterparts of the reconstructed possible fault functions, to

achieve fast fault isolation. The robustness of the proposed

FDI scheme in presence of both measurement and process

noises is analyzed and a modified FDI scheme is proposed

for this scenario, by defining suitable detection and isolation

thresholds, guaranteeing the absence of false-alarms. Numer-

ical examples are included to verify the effectiveness of the

proposed FDI method.

II. PROBLEM STATEMENT

Consider a system modeled as:

S :

{

ẋ(t) = Ax(t) +Bu(t) + Ef(t, x, u)

y(t) = Cx(t)
(1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
q are the state,

the input and the output variables of the system respectively.

The continuous function f(t, x, u) ∈ R
p models the effects

of a general fault on the state dynamic equation. A,B,C,E

are constant matrices with appropriate dimensions. The fault

function is modeled as

f(t, x, u) = B(t− T0)φ(t, x, u),

where B(t − T0) defines the fault time profile, which is

equal to 0 before the unknown fault time T0 and 1 after.

φ(t, x, u) ∈ R
p represents the functional structure of the

fault. We exploit the transformation in [14] decomposing the

system into two coupled subsystems, where the fault directly

affects only the state of the first subsystem. The following

assumptions are required as in [14]:



Assumption 1: rank(CE) = rank(E).
This assumption indicates that the number of the outputs is

greater than the dimension of the effective unknown fault.

Assumption 2: For every complex number λ with nonneg-

ative real part

rank





A− λI E

C 0



 = n+ rank(E).

Based on Lemma 1 in [14], Assumption 1 is equivalent to

the existence of state and output transformations

x(t) = T
[

ζ⊤1 (t) ζ⊤2 (t)
]⊤

, y(t) = S
[

η⊤1 (t) η
⊤
2 (t)

]⊤

resulting in the decomposition of system (1) into the decom-

position of system (1) into two transformed linear systems

with the following structure

Sζ1 :







ζ̇1(t)=A11ζ1(t)+A12ζ2(t)+B1u(t)+E1f(t, x, u)

η1(t)=C11ζ1(t)

Sζ2 :







ζ̇2(t) = A21ζ1(t) +A22ζ2(t) +B2u(t)

η2(t) = C22ζ2(t)

(2)

with

T−1AT =





A11 A12

A21 A22



 S−1CT =





C11 0

0 C22





T−1B =
[

B⊤
1 B⊤

2

]

T−1E =
[

E⊤
1 0

]

,

where B1 and C11 have the same number of rows with B1

full row rank and C11 invertible. Thanks to Assumption 2,

the pair (A22, C22) is detectable. Meanwhile, ζ1(t) ∈ R
p⋆ ,

p⋆ , rank(CE) and ζ2(t) ∈ R
(n−p⋆). Detailed calculation

of the transformations and properties can be found in [14].

III. NON-ASYMPTOTIC OBSERVER AND FAULT

DIAGNOSER DESIGN

In this section we design a deadbeat estimator based on the

decomposed system (2). The estimator exploits the Volterra

operator algebra [15] and the adoption of non-asymptotic

kernel functions [10], [11]. Remarkably, the estimator is

able to non-asymptotically estimate both the state variables

insensitive to the occurrence of the fault and the image of

the unknown fault functions which are significant clues in

the fault diagnosis.

A. State estimation

For system (1), with Assumptions 1 and 2, we denote

T = [T1 T2], S−1 =
[

S⊤
I,1 S⊤

I,2

]⊤
, (3)

where T1 ∈ R
n×p⋆ and SI,1 ∈ R

p⋆×q. Thanks to the fact

that C11 is invertible, the estimates of ζ1(t) can be retrieved

directly from the measurement

ζ̂1(t) = C−1
11 SI,1y(t). (4)

Similarly, η2(t) can be obtained by transforming the output

η̂2(t) = SI,2y(t). By recalling the fact that Sζ2 is detectable,

a non-asymptotic state observer can be designed for system

(2). For simplicity, in this paper we assume Sζ2 is a single-

output system1, i.e. η2(t) ∈ R and C22 ∈ R
1×(n−p⋆). A

linear transformation P is introduced, so that Sζ2 can be

rewritten in the observer canonical form with z(t) = Pζ2(t):






ż(t) = Acz(t) +Ac,21ζ1(t) +Bcu(t)

η2(t) = Ccz(t),
(5)

where Cc = C22P
−1 = [1 0 . . . 0],

Ac = PA22P
−1=























an⋆−1 1 0 · · · 0

an⋆−2 0 1
. . .

...

...
...

. . .
. . . 0

a1 0 . . . 0 1

a0 0 · · · 0 0























,

where n⋆ = n − p⋆ and {ai, i ∈ {0, 1, . . . , n⋆ − 1}}
denotes the coefficients of the characteristic polynomial of

the subsystems determined by the eigenvalues of matrix A22.

Moreover, Ac,21 = PA21[α
⊤
n⋆−1, α

⊤
n⋆−2, . . . , α

⊤
0 ]

⊤ and

Bc = PB2 =















b0,n⋆−1 b0,n⋆−2 . . . b0,0

b1,n⋆−1 b1,n⋆−2 . . . b1,0

bm−1,n⋆−1 bm−1,n⋆−2 . . . bm−1,0















⊤

.

Let us consider a type of Bivariate Feedthrough Non-

asymptotic Kernel (BF-NK) proposed in [11] :

Kh(t, τ) = e−ωh(t−τ)(1− e−ω̄t)N , (6)

satisfying the condition K
(i)
h (t, 0) = 0, ∀i ∈ {0, . . . , N−1}.

We consider the set of BF-NKs parameterized with the same

ω̄ but different ωh, h ∈ {0 . . . n⋆ − 1}. Moreover, we set

N ≥ n⋆ − 1 so that the kernel is of at least n⋆-th order

of non-asymptoticity. Applying the Volterra operator to the

system Sζ2 and after some algebra, one can obtain

ν(t) = Γ(t)z(t) (7)

where ν(t) = [µ0(t), µ1(t), . . . , µn⋆−1(t)]
⊤

, Γ(t) =
[

γ0(t)
⊤, γ1(t)

⊤, . . . , γn⋆−1(t)
⊤
]⊤

and ∀h ∈ {0, . . . , n⋆−1}

µh(t),(−1)n⋆−1
[

VK(n⋆) η2
]

(t)+

n⋆−1
∑

i=0

ai(−1)i
[

VK(i)η2
]

(t)

+

m−1
∑

k=0

n⋆−1
∑

i=0

(−1)ibk,i
[

VK(i)uk

]

(t) +

n⋆−1
∑

i=0

(−1)iαi

[

VK(i)ζ1
]

(t)

γh(t) ,
[

(−1)n⋆−1K(n⋆−1)(t, t), . . . ,K(t, t)
]

.

(8)

1A multi-output system can be reduced to single-output systems, for
instance, using the output counterpart of input reduction technique [16].



For Volterra transformation calculation, the signal images

are defined as [V
K

(i)
h

⋆](t) , ξ⋆,i,h(t), where ⋆(t) represents

signals η2(t), uk(t) and ζ1(t) respectively. The auxiliary

signals ξ⋆,i,h(t) can be calculated by

ξ
(1)
⋆,i,h(t) = −ωhξ⋆,i,h +K

(i)
h (t, t) ⋆ (t), (9)

with ξ⋆,i,h(0) = 0, ∀h, i, ⋆(t).
Thanks to the specific shape of kernel defined in (6), the

persistency of excitation of γh(t) guarantees the invertibility

of Γ(t). Therefore, the state estimation of system (5) can be

immediately obtained as

ẑ(t) = Γ(t)−1ν(t). (10)

Consequently, the state variables in Sζ2 can be retrieved as

ζ̂2(t) = P−1ẑ(t) and, thanks to (4), the estimated state vector

of the original system can be computed

x̂(t) = T1ζ̂1(t) + T2ζ̂2(t). (11)

B. Fault detection and isolation

Thanks to the fact that the state estimation enjoys a non-

asymptotic convergence, the detection and isolation of the

fault can be performed in a fast and accurate way. Recall

the process Sζ1 in (2). If E−1
1 is invertible, the fault signal

verifies the following identity

f = E−1
1 (ζ̇1(t)− A11ζ1(t)−A12ζ2(t)−B1u(t)), (12)

where ζ1(t) and ζ2(t) can be estimated exactly while the

derivative ζ̇1(t) becomes the main obstacle for detecting and

identifying the fault signal promptly and accurately. Inspired

by another kernel-based non-asymptotic estimation method

detailed in [10], the lack of knowledge of the derivative can

be addressed by the Volterra operator with a type of Bivariate

Causal Non-asymptotic Kernel (BC-NK) which, for given

i ≥ 1, satisfies

F (j)(t, 0) = 0, F (j)(t, t) = 0 (13)

∀t ∈ R≥0 and ∀j ∈ {0, ..., i− 1}.

Applying the Volterra operator induced by a 1-st order

BC-NK function

F (t, τ) , e−ω(t−τ)(1 − e−ωτ )[1− e−ω(t−τ)], (14)

with the only tuning parameter ω, to (12), one can get

[VF f ](t) = E−1
1

(

− [VF (1)ζ1](t)−A11[VF ζ1](t)

−A12[VF ζ2](t)
)

−B1[VFu](t)
)

,

(15)

in the light of the fact that

[VF ζ
(i)
1 ](t) = (−1)i[VF (i)ζ1](t). (16)

Remarkably, the kernel function (14) can be rearranged as

F (t, τ) = F0,1(t, τ) + F0,2(t, τ)

F (1)(t, τ) = F1,1(t, τ) + F1,2(t, τ),
(17)

where

F0,1(τ) = (eωτ − 1)e−ωt

F0,2(τ) = (eωτ − e2ωτ )e−2ωt

F1,1(τ) = ωeωτe−ωt

F1,2(τ) = (ωeωτ − 2ωe2ωτ)e−2ωt.

As a result, the image functions χ⋆,i = [VF (i)⋆] of the signal

can be calculated based on the state estimates by an internally

stable LTV system






ς
(1)
⋆,i (t) = Gς⋆,i(t) + Ei(t) ⋆ (t)

χ⋆,i(t) = Hς⋆,i(t),
(18)

where i = {0, 1} and ⋆ represents for ζ1(t) and ζ̂2(t)

G = diag(−ω,−2ω)

Ei(t) = [Fi,1(t, t), Fi,2(t, t)]
⊤

H = [1 1].

In this way, it is possible to estimate in a non-asymptotic

way the images of the fault function. We exploit this notable

property for fault detection purposes. Hence, a fault detection

residual

rFD(t) , ‖[VF f ](t)‖

= ‖E−1
1

(

− [VF (1)ζ1](t)−A11[VF ζ1](t)

−A12[VF ζ̂2](t)−B1[VFu](t)
)

‖,
(19)

can be calculated to monitor the health status of the system,

where ‖ · ‖ denotes the Euclidean norm.

Fault detection decision In noise-free conditions, a fault

occurring in the system is detected by the proposed fault

detection scheme at time t = Td if the fault detection residual

rFD(t) is different from zero, i.e. rFD(Td) 6= 0.

After the detection of the fault, a fault isolation mechanism

is activated by resetting the estimator (15), which means

resetting all the transformations in (18). For the fault isolation

purpose, a set of faults F is assumed to contain all the NF

possible fault functions φi(t, x, u), i ∈ {0, . . . , NF − 1}.

In the noise-free scenario, the exact estimation of the state

vector x̂(t) makes it possible to compute the effect of all

the possible faults φi(t, x̂, u) in the fault set F . Via the

Volterra operator, the images of the possible fault functions

[V̆Fφi](t) are compared to the estimated fault image [V̆Fφ](t)
in (15), where for convenience, a new notation is deployed

representing the operator after the resetting at t = TD:

[V̆Fφ](t) ,

∫ t−TD

0

F (t− TD, τ)φ(τ + TD)dτ, ∀t ≥ TD.

(20)

Owing to the linearity of the Volterra operator, the satisfac-

tion of the identity (15) can be preserved by this modified

operator. Therefore, fault isolation residuals for every possi-

ble fault function in F are defined:

rFI,i(t) , ‖[V̆Fφi](t)− [V̆Fφ](t)‖, ∀i ∈ {0, . . . , NF − 1}.
(21)



Fault isolation In a noise-free scenario, by using the fault

isolation residual (21), the p-th fault is excluded if rFI,p(t)
is non-zero. If all the faults are excluded but the q-th one,

i.e. rFI,q = 0, ∀t ≥ TD, then q-th fault is isolated.

IV. ROBUSTNESS ANALYSIS

In this section we are going to analyze the performance

of the estimation, fault detection and isolation algorithm in

presence of additive disturbances on both the measurement

and the process. We consider the following noise-perturbed

model2.
{

ẋd(t) = Axd(t) +Bu(t) + Ef(t, x, u) + dx(t, x, u)

yd(t) = Cxd(t) + dy(t)
(22)

where we assume both the disturbances are bounded at each

time step by two constants, i.e.

‖dx(t, x, u)‖ ≤ d̄x, ‖dy(t)‖ ≤ d̄y .

The effect of the measurement noise directly appears on

η1(t) and η2(t). With
[

η⊤d,1(t) η
⊤
d,2(t)

]⊤

= S−1yd(t). This

results in the error on the reconstruction of ζ1,d(t):

|ǫζ1(t)| , |ζ̂1(t)− ζ1,d(t)| ≤ ‖C11‖‖SI,1‖d̄y , ǭζ1 .

We define the following error vector:

|ǫη2(t)| = |η̂2(t)− η2,d(t)| ≤ ‖SI,2‖d̄y , ǭη2 . (23)

Considering the perturbed subsystem Sζ2,d,

ζ̇2,d(t) = A21ζ1,d(t) +A22ζ2,d(t) +B2u(t) + dx,2(t, x, u)
(24)

with T−1dx = [d⊤x,1(t) d
⊤
x,2(t)] and dx,2(t) =

[dx,2,n⋆−1(t), . . . , dx,2,0(t)]
⊤ ∈ R

n⋆ . Thus, in the noisy

case, we obtain

ǫζ2(t) , |ζ̂2(t)− ζ2,d(t)|

=
∣

∣

∣
P−1Γ(t)−1

[

ǫµ0(t), ǫµ1(t), . . . , ǫµn⋆−1(t)
]⊤

∣

∣

∣

(25)

with

ǫµh
(t) , |µ̂h(t)− µh(t)|

= (−1)(n⋆)[VK(n⋆)ǫη2 ](t)−

n⋆−1
∑

i=0

ai(−1)i[VK(i)ǫη2 ](t)

−

n⋆−1
∑

i=0

(−1)iαi[VK(i)ǫζ1 ](t)−

n⋆−1
∑

i=0

(−1)i[VK(i)dx,2,n⋆−1−i](t).

Moreover, we notice that the BF-NK can be reshaped as

K(t, τ) = e−ωht

n⋆
∑

q=0

(

n⋆

q

)

(ωh − qω̄)ie(ωh−qω̄)τ . (26)

Therefore, the BF-NK Volterra images of the signals admit

upper bounds

[V
K

(i)
h

⋆](t) ≤ ⋆̄

∫ t

0

|K(t, τ)|dτ ≤ ⋆̄wi−1
h , ξ̄⋆,i,h, (27)

2Variables with the subscript d denotes the noisy counterparts of the
variables in (1).

where ⋆(t) and ⋆̄ represents the signals ǫζ1(t), ǫζ2(t), dx,2(t)
and their corresponding upper bounds. Remarkably, ωh can

be properly tuned to reduce the bound, thus obtaining a

tighter bound.

Remark 4.1: The computation of the estimation error

bound (25) at the beginning of the simulation could have

numerical issues as Γ(t) is nearly singular close to the initial

time instant, and therefore ‖Γ(t)−1‖ may have very large

values at the beginning. Therefore, we deploy a threshold θa
to activate the fault detection mechanism after a short period

at t = Ta when det(Γ(t)) ≥ θa. Ta is adjustable by tuning

ω̄ in terms of the converging speed of the kernels.

Therefore, the afore-defined error (25) admits the bound

ǫζ2(t)≤‖P−1Γ(ta)
−1‖

∥

∥

∥

[

ǭµ0, ǭµ1, . . . , ǭµnξ−1

]

⊤
∥

∥

∥
, ǭζ2 ,

(28)

∀t ≥ Ta, where

ǭµh
= ξ̄ǫη2 ,n⋆,h +

n⋆−1
∑

i=0

|ai|ξ̄ǫη2 ,i,h

+

n⋆−1
∑

i=0

|αi|ξ̄ǫη1 ,i,h +

n⋆−1
∑

i=0

‖T−1‖ξ̄d̄x,i,h
.

Consequently, the estimation error of the state is bounded by

‖ǫx‖ , ‖x̂(t)− xd(t)‖

≤ ‖T1‖‖ǭζ1‖+ ‖T2‖‖ǭζ2‖ , ǭx.
(29)

By recalling (15), we can then define the error on the

estimation of the fault image

ǫχf,0
(t)= |χ̂f,0(t)− χf,0(t)| =

∣

∣

∣

∣

∣

E−1
1

[

−[VF (1)ǫζ1 ](t)

−A11[VF ǫζ1 ](t)−A12[VF ǫζ2 ](t)− [VF dx,1](t)
]

∣

∣

∣

∣

∣

.

(30)

Considering the Volterra images induced by BC-NK,

[VF ⋆ ](t) ≤ ⋆̄

(

1− e−2ωt

2ω
− te−ωt

)

, χ̄⋆,0(t),

[VF (1) ⋆](t)≤ ⋆̄

∫ t

0

|F (1)(t, τ)|dτ = ⋆̄
(e−ωt − 1)2

2
, χ̄⋆,1(t).

(31)

Then, the estimation error of the fault image ǫχf,0
satisfies

‖ǫχf,0
(t)‖ ≤ ‖E−1

1 ‖‖χ̄ǫζ1 ,1
(t)‖+ ‖E−1

1 A11‖‖χ̄ǫζ1,0
(t)‖

+‖E−1
1 A12‖‖χ̄ǫζ2 ,0

(t)‖+‖E−1
1 ‖‖T−1‖‖χ̄dx,0(t)‖,σFD(t),

(32)

which can be used as a threshold for fault detection σFD in

the noisy scenario.

Proposition 4.1: A fault occurring in the system is de-

tected by the proposed fault detection scheme at time t = TD

once the fault detection residual rFD(t) exceeds the fault

detection threshold σFD(t), i.e. rFD(TD) > σFD(TD).
For what concerns the fault isolation problem in the noisy

scenario, we can show that the images computed based on



the noisy measurements are bounded by

[V̆F ⋆ ](t) ≤ χ̄⋆,0(t− TD) , ¯̆χ⋆,0(t)

[V̆F (1) ⋆ ](t) ≤ χ̄⋆,1(t− TD) , ¯̆χ⋆,1(t).
(33)

Moreover, let us note the fact that the upper bounds of

Volterra images defined in (27) and (33) is either constant

or will increasingly converge to certain computable constant

values. Therefore, it is reasonable to assume the reconstruc-

tion error of the fault functions in F , introduced by the state

estimation error, to have computable upper bounds

ǭφr,i
, sup

∀t>Ta

‖φ̂i(τ, x̂, u)− φi(τ, xd, u)‖, (34)

for all i ∈ {0, . . . , NF − 1}.

Therefore, the fault isolation residual for the i-th fault

rFI,i = ‖[V̆F φ̂i](t)− [V̆F φ̂](t)‖

≤‖[V̆F φ̂i](t)− [V̆Fφ](t)‖ + ‖[V̆Fφ](t)− [V̆F φ̂](t)‖.
(35)

Recall the fact that

[V̆F φ̂](t) =
∣

∣

∣
E−1

1

(

− [V̆F (1) ζ̂1](t)−A11[V̆F ζ̂1](t)

−A12[V̆F ζ̂2](t)−B1[V̆Fu](t)
)
∣

∣

∣

[V̆Fφ](t) =
∣

∣

∣
E−1

1

(

− [V̆F (1)ζd,1](t) −A11[V̆F ζd,1](t)

−A12[V̆F ζd,2](t)−B1[V̆Fu](t)− [V̆F dx,1]
)∣

∣

∣

which turns out that

‖[V̆Fφ](t) − [V̆F φ̂](t)‖=
∣

∣

∣
E−1

1

(

− [V̆F (1)ǫζ1 ](t)

−A11[V̆F ǫζ1 ](t)−A12[V̆F ǫζ2 ](t)− [V̆F dx,1]
)∣

∣

∣
.

(36)

Therefore, by substituting (36) and (34) into (35), the fault

isolation residual for the i-th fault in F can be bounded by

rFI,i(t)≤‖ ¯̆χǭφi
(t)‖+‖E−1

1 ‖‖ ¯̆χǫζ1,1
(t)‖+‖E−1

1 A11‖‖ ¯̆χǫζ1,0
(t)‖

+‖E−1
1 A12‖‖ ¯̆χǫζ2,0

(t)‖+‖E−1
1 ‖‖T−1‖‖ ¯̆χd̄x,0(t)‖,σFI(t),

(37)

thus obtaining the corresponding fault isolation thresholds,

for all i ∈ {0, . . . , NF − 1}.

Proposition 4.2: By using the fault isolation residual (35)

and the fault isolation threshold, the p-th fault is excluded

at TE,p if rFI,p(t) exceeds the corresponding threshold i.e.

∃TE,p ≥ TD such that rFI,i(TE,p) > σFI,p(TE,p). If all

the faults are excluded but one, i.e. rFI,q ≤ σFI,q(t), at

t = TI ≥ TD, then the q-th fault is isolated.

V. NUMERICAL EXAMPLE

In this section, we consider the following linear system as

in [17]

{

ẋ(t) = Ax(t) +Bu(t) + Ef(t, x, u)

y(t) = Cx(t)
(38)
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Fig. 1. Estimation of state variable x4(t) in noise-free scenario.
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Fig. 2. Fault detection residual rFD(t) in noise-free scenario.

with

A=















−0.6344 0.0022 −0.0001 0.9871 0.0010

0 −0.2912 0.1026 0 −0.3707

0 −6.2354 −0.4312 0 −4.1270

−0.5971 0.0003 0.0001 −0.5099 0.0006

0 −0.4528 −0.0481 0 −0.9513















,

B=















−0.0459

−0.0047

3.7830

−2.5115

−0.0453















, C=











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0











,

E=















−0.0395 −0.0133 −1.0000

0 0.0031 0

0 1.8255 −0.5000

−1.9042 −0.9494 −1.0000

0 −0.2081 0















,

and x(0) = [x0(0), . . . , x4(0)] = 05×1. The system is fed

by the signal u(t) = 10 sin (10t) + sin (2t). We assume two

possible faults in the fault set, i.e.

F=
{

φ1(t) = [x1(t) + x2(t), cos (x3(t)), cos (0.5x4(t))
]⊤

,

φ2(t)=
[

x1(t) + x2(t), 20e
(−|x3(t)|), sin (0.5x4(t))

]

⊤
}

,

and φ2(t) is the fault actually occurring at t = 5s,

i.e. f(t) = B(t− 5)φ2(t). For this system, it is readily seen

that p⋆ = 3 and n⋆ = 2. By choosing the proper order of the

kernel, with ω1 = 1, ω2 = 2, ω3 = 3 , ω̄ = 2.5 and ω = 1,

the performance of the proposed estimation and FDI scheme

in the noise-free scenario are depicted in Fig. 1-3.

Estimates of the x4 (the fifth and the only state variable

that does not appears in the output) is shown as an example

of state estimation in Fig. 1, instantaneous convergence can

be seen in the estimation of the state variable, non-sensitive

to the occurrence of the fault. Moreover, the fault detection

residual increases immediately after the occurrence of the

fault, thus achieving fast fault detection. The fault detection
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Fig. 3. Fault isolation residual rFI,i(t) in noise-free scenario.
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Fig. 4. Estimation of state variable x4(t) in noisy scenario.

decision activates the fault isolation estimator. Consequently,

the residual of φ1(t, x, u) increases and φ2(t, x, u) remains

at 0, indicating that it is φ2(t, x, u) affecting the system.

Then, we examine the estimator performance in a scenario

where the measurement y(t) is corrupted by a random ad-

ditive noise dy(t) ranging within [−0.5, 0.5] and the system

is perturbed with a process noise dx(t) ranging randomly

within [−0.2, 0.2]. We set the activation threshold θa = 0.7.

When the system is perturbed by both the measurement

and the process noises, the proposed estimator is still able

to provide fast estimates of the state variables albeit with

bounded estimation error (see Fig. 4). Meanwhile, with the

threshold σFD(t) in (32), the occurrence of the fault can be

detected at Td = 6.168s. In the fault isolation scheme, the

residual rFI,1(t) keeps increasing and crosses the threshold

σFI,1(t) at Ti = 11.755s while rFI,2(t) remains lower than

σFI,2(t), thus isolating the occurrence of φ2(t, x, u) and

excluding φ1(t, x, u).

VI. CONCLUDING REMARKS

In this paper, a fast fault detection and isolation scheme is

proposed based on Volterra integral operators. The estimation

of the state converges immediately to the true system state

insensitive to the occurrence of the fault in the ideal noise-

free case. Furthermore, based on the deadbeat estimation of

the Volterra image of the fault signal, the occurrence time and

the type of the fault can be identified immediately once the

fault occurs. In the noisy scenario, thresholds are calculated

based on the bound of the estimation error, to achieve robust

fault detection and isolation. Future research efforts will be

devoted to the fault detectability analysis and the extension

to a distributed FDI architectures.
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