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Abstract— For some problems, such as monocular visual
odometry (VO), vector measurements are given with unknown
magnitude. In VO, the magnitude can be found by recognizing
features with known position, or with an extra sensor such as
an altimeter. This article presents a nonlinear observer that
uses the derivative of the vector as an additional measurement
for estimating the magnitude of a vector. For the VO example,
this means that the velocity can be estimated by fusing the
normalized velocity vector with acceleration measurements. The
observer exploits the fact that the dynamics of the normalized
vector is dependent on the magnitude of the vector. The
observer employs methods from nonlinear/adaptive estimation;
filters the unit vector on the unit sphere, and retrieves the
magnitude of the vector. The observer is shown to be uniformly
semi-globally asymptotically (USGAS) stable and uniformly
exponentially stable (UES) in a defined region. The observer is
applied to the bearing-only SLAM filter problem as an example.

Index Terms— Nonlinear observer, skew-symmetric system,
direction measurement, bearing, simultanous localization and
mapping, ego-motion estimation

I. INTRODUCTION

In some estimation problems, the measurements available
can be of a vector with unknown magnitude, which we then
want to estimate. This is especially relevant for bearing-only
localization or tracking, in which the scale from a monoc-
ular camera is ambigous without any further knowledge or
sensors [1]. In other words, the direction of the velocity can
be measured [2], but not the magnitude. In the simultaneous
localization and mapping (SLAM) literature, there are many
solutions to fusing bearing mesurments with different sensors
and assumptions to find the scale, howerver, there is a lack
of theoretical stability proof on many of the most popular
solutions, which either use a version of extended Kalman
filter (EKF) [3], [4], probability graphs [5] or particle filters
[6]. These are optimization based solutions often resulting
in accurate estimates, however, they are computationally
demanding, and guaranteed stability can often be difficult
if not impossible to acquire. This has given some motivation
to attack the SLAM filter problem with nonlinear observers
(NLO), as they usually have complimentary characteristics
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to the mentioned methods: defined stability traits with de-
fined region of attraction, low computational cost, although
lacking optimality when they handle noisy measurements
[7], [8]. Other NLO approaches for the SLAM problem are
presented in [9]–[11], where [10] and [11] assume velocity
measurement or biased velocity measurement, while in [9]
the authors present a NLO for fusing measurements from the
homography with IMU data.

In this article we present a novel observer for estimating
the magnitude of a time varying vector. We prove that if
we assume a lower bound on the magnitude of the vector,
and a persistently exciting vector measurement, the vector
magnitude observer is uniformly semi-globally asymptoti-
cally stable (USGAS) and uniformly locally exponentially
stable (ULES) and will hence estimate the magnitude of
the vector. We employ the vector magnitude observer to the
bearing-only SLAM problem with AHRS measurements, and
this also demonstrates two instances of the vector magnitude
observer working in cascade; once for velocity and once for
range to landmark estimation.

In Section II we present notation and preliminaries. Sec-
tion III presents the stability analysis of the observer. Section
IV presents how the the novel observer can be applied to the
bearing-only SLAM filter problem, with related simulations.
Section V concludes the work.

II. NOTATION AND PREVIOUS WORK
A. Notation

Scalars are in lower case a, x, ω; vectors are lower case
bold a,x,ω; sets are upper case A,X,Ω; matrices are bold
upper case A,X,Ω. The 0 denotes the scalar zero, while 0
is the matrix zero where dimensions are implicitly given by
the context. The matrix I is the identity matrix, and size is
given by context. The accents •̂, •̃, •̇, •̄, •̄, denotes estimate,
estimate error, time derivative, upper bound and lower bound
respectively. Some common mathematical expressions which
will be used are: The Euclidean norm for vectors and
frobenius norm for matrices, ‖ • ‖, absolute value, | • | and
the transpose, •>. The representation of index sets will be
done with {1, ..., n} = {x ∈ Z|x ≤ n}.
A vector is said to be on the unit sphere u• ∈ S3 =
{u• ∈ R3| ‖u•‖ = 1}. and will stay on the unit sphere
if its derivative is always orthogonal to itself u•(t + t0) ∈
S3 ∀t+ t0 ⇐⇒ {u•(t) : R→ R3| ‖u•(t0)‖ = 1, u•(t0 +
t)>u̇•(t0 + t) = 0 ∀t ≥ 0}. A vector can be represented in
different coordinate systems, the representation is denoted
with the superscripts •b, •n which represents the body-fixed
and earth-fixed (inertial) coordinate systems, and will be
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Fig. 1: Vector dynamics in inertial-frame

called body-frame and inertial-frame. Lower case will denote
the indices of a landmark, vector or matrix •i and •ij .

Rotation is the attitude change between two coordinate
systems. Rotation from coordinate system b to n can be
represented with a rotation matrix
Rnb ∈ {R3×3| RnbR>nb = I, det(Rnb) = 1}
which means Rnb ∈ SO(3). The rotation vector transfor-
mation is calculated by xn = Rnbx

b. The cross product is
presented in matrix form S(x)y = x× y, where S(•) is a
skew-symmetric matrix

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (1)

which gives S(•) = −S(•)>,x>S(•)x = 0, x>S(x) =
0, ∀x, S(x)y = −S(y)x. Moreover the cross-product gives
the difference in angle-axis between two vectors

S(x)y = ‖x‖‖y‖ sin(θ)u (2)

where θ is the angle between the vectors, and u is the axis
of the rotation, which is orthogonal to the two vectors. The
dynamics of a rotation matrix Rnb, from body b to inertia
frame n, is described by

Ṙnb = RnbS(ω) (3)

where ω = ωbnb is the angular velocity of the frame b relative
to n decomposed in b.

B. Unit Vector Dynamics
Directional measurements of a vector x can be provided as

a unit vector ux = x
‖x‖ . This can be for instance the bearing

vector to a landmark or a velocity direction from a camera.
These measurements can be measured in the inertial-frame
unx or body frame ubx. The real vector corresponding to the
directional measurement will have a magnitude, and a time
derivative in the inertial-frame

z = ‖xn‖ ẋn = wn
x (4)

The derivative can correspond to the velocity of the vehicle,
if the vector is a distance vector from the vessel to a station-
ary point. Alternatively, it can correspond to acceleration, if
the vector is inertial velocity.

By combining (3) and (4) we can get the dynamic of the
vector magnitude and unit vector in inertial- and body-frame,
visualized in Figure 1,

z2 = (x)>x (5)

2zż = 2(x)>ẋ (6)

ż = (unx)>wn
x = (ubx)>wb

x (7)

These results will then be used for deriving the dynamics of
the unit vector

u̇nx =
ẋn

z
− x

n

z2
ż =

wn
x

z
− u

n
x

z
(unx)>wn

x (8)

=
1

z
(I − unx(unx)>)wn

x (9)

u̇nx = −1

z
S(unx)2wn

x (10)

where it is clear that the unit vector will be maintained on
the unit sphere since (unx)>u̇nx = 0. For the dynamics of the
unit vector in body coordinates we need to take into account
the rotation of the body coordinate frame

xb = (Rnb)
>xn (11)

⇓
ẋb = −S(ω)xb +wb

x (12)

which gives the unit vector dynamics

u̇bx =
ẋb

z
− x

b

z2
ż (13)

=
−S(ω)xb +wb

x

z
− x

b

z2
(ubx)>wb

x (14)

= −S(ω)ubx +
1

z
(I − ubx(ubx)>)wb

x (15)

= −S(ω)ubx −
1

z
S(ubx)2wb

x (16)

This unit vector is also maintained on the unit sphere by the
same argument. The inverted magnitude d = 1

z will have the
dynamic

ḋ = d2(unx)>wn
x = d2(ubx)>wb

x (17)

III. VECTOR MAGNITUDE OBSERVER

The main goal of the observer is to estimate the magnitude
of a vector, given that its unit vector (direction) is measured
together with the time derivative of the vector. The observer
using measurements in the inertial frame is

˙̂unx = −S(kσ)ûnx − d̂S(ûnx)S(unx)wn
x (18)

˙̂
d = Projd(−γ(wn

x)>S(unx)2S(ûnx)σ)

+ Projd(d̂
2(unx)>wn

x))

σ = S(unx)ûnx (19)

where unx is the unit vector measurement with corresponding
estimate ûnx ; the input wn

x is the vector derivative; the
estimate d̂ is the estimate of the unknown inverted magnitude
d; k and γ are positive tuning parameters. Projd(•) is the
projection operator from [12, Lemma E.1] working as a
continuous saturation ensuring

¯
d < d̂ < d̄. All the functions

and inputs are continuous in all parameters and locally
Lipschitz so that a unique solution is guaranteed. We note
that the estimate ûnx will be maintained on the unit sphere if
it starts on the unit sphere, since (ûnx)> ˙̂unx = 0. We continue



by investigating the error dynamics of the observer, defined
by the error variables ũnx = S(unx)ûnx , d̃ = d− d̂

˙̃unx = S(unx) ˙̂unx − S(ûnx)u̇nx (20)

=S(unx)(−S(kσ)ûnx − d̂S(ûnx)S(unx)wn
x)

+ dS(ûnx)S(unx)2wn
x

(21)

=kS(unx)S(ûnx)ũnx − d̂S(unx)S(ûnx)S(unx)wn
x

+ (d̃+ d̂)S(ûnx)S(unx)S(unx)wn
x

(22)

=kS(unx)S(ûnx)ũnx + d̃S(ûnx)S(unx)S(unx)wn
x (23)

+ d̂S(S(unx)wn
x)ũnx

where we note that S(unx)S(ûnx)− S(ûnx)S(unx) = S(ũnx)
is utilized. We then get the following expression for the error
dynamics

˙̃unx = kS(unx)S(ûnx)ũnx + d̂S(S(unx)wn
x)ũnx

+ S(ûnx)S(unx)S(unx)wn
x d̃

(24)

˙̃
d = d2(unx)>wn

x

− Projd(−γ(wn
x)>S(unx)S(unx)S(ûnx)ũnx)

− Projd(d̂
2(unx)>wn

x)

(25)

We will also use the the angle error θ̃ between unx and ûnx ,
with ‖ũnx‖ = sin(θ̃) and (unx)>ûnx = cos(θ̃).

For the guaranteed stability of the observers error dynamic,
we need the unit vector derivative and the vector magnitude
to be non zero, this will ensure that the system is persistently
excited

Lemma 1: Consider the function

Bu(t) = B(t,unx , û
n
x ,w

n
x) = S(ûnx)S(unx)S(unx)wn

x (26)

representing the skew-symmetric part of the error dynamics
(24)-(25). If there exist a constant

¯
u such that ‖u̇nx‖ ≥ ¯

u > 0
and the magnitude of the vector satisfies z >

¯
z > 0 and there

is an ε so that (ûnx)>unx > cos(ε), then there exists a µ > 0
so that

Bu(t)>Bu(t) > µ (27)
Proof: If we substitute (10) into (26), we get

Bu(t) = zS(ûnx)u̇nx (28)

We know that u̇nx is orthogonal to unx and will therefore not
be parallel to ûnx . Using (2) we see that the norm ‖Bu(t)‖
will be bounded from below as long as ‖u̇nx‖ and z are
bounded from below

Bu(t)>Bu(t) ≥ cos ε2
¯
z2

¯
u2 > µ (29)

More specific assumptions on the system are
A1 The vector measurement is so that the constants from

Lemma 1 ‖u̇nx‖ ≥ ¯
u, z >

¯
z(d < d̄) exists. The input

derivative is also bounded from above ‖wn
x‖ < w̄.

A2 There exist an arbitrary small angle 0 < ε < π, and the
tuning parameters γ and k are chosen to satisfy

k > max(
d̄w̄

sin(ε)
,

4w̄3d̄

cos(ε)
,
w̄2d̄

µ
− ρ̄δ
w̄
,

2w̄3d̄2

ďµ
) (30)

w̄3d̄

(kw̄ + ρ̄δ)2
< δ < min(

µ

4w̄3d̄
,
k cos(ε)µ

4(kw̄ + ρ̄δ)2
) (31)

2d̄w̄

µδ
< γ <min(

1

w̄2δ2
,

2(kw̄ + ρ̄δ)
2

w̄2µ
) (32)

where the details of the constants δ, ε, ď and ρ̄δ are
seen in the proof of Theorem 1.

Theorem 1: Consider the vector xn with the unknown
time varying magnitude z = 1

d . Assume its unit vector
unx = xn

‖xn‖ is measured together with its derivative vector
ẋn = wn

x , and the assumptions A1-A2 holds. Then the error
dynamics of the observer (18)-(19) will be UAS for every
initial condition satisfying (ûnx)>unx > − cos(ε), d̂ ≤ d̄ and
UES for d ≤ d̂ ≤ d̄ and (ûnx)>unx > cos(ε), so that the errors
(ûnx)>unx → 1, ũnx = S(unx)ûnx → 0 and d̃ = d− d̂→ 0 as
t→∞

The proof will be structured in the following way:
Outline of the proof:

A) First prove that the the errors of the observer (18)-(19)
is bounded so the angular error θ̃ between unx and ûnx
is bounded away from |θ̃| < π − ε and converges in
finite time to the set |θ̃| ≤ ε.

B) Define a Lyapunov function candidate and its derivative
C) Utilise the conditions and bounds from the assumptions,

and prove that the Lyapunov function candidate deriva-
tive is negative definite in the set |θ̃| ≤ ε found in A)

D) Verify that it is maintained negative definite when
projection is activated.
Proof:
A): We know that the estimate d̂ is bounded by the pro-

jection, and we have assumed that d < d̄ since z >
¯
z, which

means the d̃ is also bounded. To obtain the boundedness of
the error θ̃ we use the Lyapunov-like function

V1 = 1− (unx)>ûnx = 1− cos(θ̃) (33)

which is clearly positive definite for 0 < |θ̃| < π. Its
derivative is

V̇1 = −(u̇nx)>ûnx − (unx)> ˙̂unx (34)

= −(dS(unx)2wn
x)>ûnx · · ·

− (unx)>(−S(kσ)ûnx + d̂S(ûnx)S(unx)wn
x) (35)

= (unx)>S(kσ)ûnx + d̃(unx)>(S(ûnx)S(unx)wn
x) (36)

= −k‖ũnx‖2 + d̃(ũnx)>S(unx)wn
x (37)

≤ −‖ũnx‖(k‖ũnx‖ − d̄w̄) (38)

We know that θ̃ = π − ε corresponds to an error ‖ũnx‖ =
sin(ε). So for any arbitary small ε > 0 there exists

¯
k > d̄w̄

sin(ε)

so that any k ≥
¯
k will ensure that V̇1 < 0; hence we can

conclude that the error is bounded away from θ̃ = ±π and
that the unit vector estimate will converge to the set |θ̃| ≤ ε
in finite time [13, Theorem 3.18]. From here we will use that
this bound holds, which implies that ‖ũnx‖ < 1 ⇔ |θ̃| < π

2 ,



and ‖ũnx‖ = 0⇔ |θ̃| = 0. We will then show that the system
is UES when |θ̃| ≤ ε.

B): We choose the Lyapunov function candidate

V2(t, ũnx , d̃) =
1

2
(ũnx)>(ũnx) +

1

2γ
d̃2 − δ(ũnx)>Bu(t)d̃

(39)

with δ > 0. To ensure that the Lyapunov function candidate
is positive definite, we impose the constraint δ2 < 1

γw̄2

since we know that w̄ ≥ ‖Bu(t)‖ by Assumption A1. If
we then take the time-derivative along the trajectory of the
error dynamics (24)-(25) we get

V̇2 = (ũnx)>(kS(unx)S(ûnx)ũnx + d̂S(S(unx)wn
x)ũnx)

+ (ũnx)>Bu(t)d̃+
1

γ
d̃d2(unx)>wn

x

− 1

γ
d̃Projd(d̂

2(unx)>wn
x)− 1

γ
d̃Projd(γBu(t)>ũnx))

− δũnxḂu(t)d̃− δd̃Bu(t)>Bu(t)d̃

+ δd̂(ũnx)>S(S(unx)wn
x)Bu(t)d̃

+ δk((unx)>ûnx)(ũnx)>Bu(t)d̃

− δ(ũnx)>Bu(t)d2(unx)>wn
x

+δ(ũnx)>Bu(t)(Projd(d̂
2(unx)>wn

x) + Projd(γBu(t)>ũnx))
(40)

where we use the vector product to get S(unx)S(ûnx)ũnx =
−((unx)>ûnx)ũnx ,

C): First we assume that projection is not being ac-
tivated. We use the bounds in the assumption A1, where
there exists positive constants ρ̄2 = w̄, ρ̄4 = 2d̄w̄ and
ρ̄5 = d̄w̄. From the Lipschitz property a constant b̄d >
‖Ḃu(t)‖ exist, and from the boundedness from paragraph
A) there is a maximum angle ε between unx and ûnx so that
kε = k cos(ε) < k(ûnx)>unx . In addition, the ε combined
with the assumptions in A1 guarantee that Lemma 1 will
hold, hence we can use (27). With these bounds we can
rearrange V̇2 to the inequality

V̇2 ≤ −kε‖ũnx‖2 + δγρ̄2
2‖ũnx‖2 − δµd̃2 +

1

γ
d̃2ρ̄4

+ δb̄d‖ũnx‖d̃+ δ‖ũnx‖d̃ρ̄2(ρ̄4 + ρ̄5)

(−k(unx)>ûnx + (
1

2
− 1

2
)(min(kε, δµγ))δ(ũnx)>Bu(t)d̃

where the last zero term is added to easier see the exponen-
tial result, and by using k > k(unx)>ûnx − 1

2 min(kε, δµγ),
the inequality can be reorganized to

V̇2 <− ‖ũnx‖2
kε
4
− d̃2 δµ

4
(41)

+
1

2
min(kε, δµγ)δ(ũnx)>Bu(t)d̃

− ‖ũnx‖2(
kε
2
− δγρ̄2

2)− d̃2(
δµ

2
− ρ̄4

γ
)

−1

2

[‖ũnx‖
d̃

]> [ kε
2 −δ(kρ̄2 + ρ̄δ)

−δ(kρ̄2 + ρ̄δ)
δµ
2

] [‖ũnx‖
d̃

]
(42)

where ρ̄δ = b̄d + ρ̄2(ρ̄4 + ρ̄5). We see that we need
the variables and tuning parameters to satisfy the following
inequalities,

k > max(
d̄w̄

sin(ε)
,

2δγρ̄2
2

cos(ε)
) (43)

δ2 <
1

γρ̄2
2

,
2ρ̄4

γµ
< δ <

k cos(ε)µ

4(kρ̄2 + ρ̄δ)2
(44)

to ensure that V̇2 ≤ − 1
2 min(kε, δµγ)V2. We can reorganize

the inequaleties

k > max(
d̄w̄

sin(ε)
,

2ρ̄2
2ρ̄4

µ cos(ε)
,
ρ̄2ρ̄4

µ
− ρ̄δ
ρ̄2

) (45)

2ρ̄2
2ρ̄4

4(kρ̄2 + ρ̄δ)2
< δ < min(

k cos(ε)µ

4(kρ̄2 + ρ̄δ)2
,

µ

2ρ̄2
2ρ̄4

) (46)

2ρ̄4

µδ
< γ < min(

1

δ2ρ̄2
2

,
2(kρ̄2 + ρ̄δ)

2

µρ̄2
2

) (47)

by substituting the ρ̄• with their corresponding bounds,
we see that this will hold by assumption A2. Hence, we can
conclude that δ and γ can be choosen if k is high enough so
that the system is uniformly exponentially stable when the
projection is not activated, and it will have converges rate of
1
2 min(kε, δµγ).

D): There are four projections in (40). By using

−y>Γ−1Projy(τ) ≤ −y>Γ−1(τ)

‖Projy(τ)‖ < ‖τ‖
from [12, E.1], three of the terms can be handled trivially.

− 1

γ
d̃Projd(d̂

2(unx)>wn
x) < − 1

γ
d̃d̂2(unx)>wn

x (48)

− 1

γ
d̃Projd(γBu(t)>ũnx)) < − 1

γ
d̃γBu(t)>ũnx (49)

‖δ(ũnx)>Bu(t)Projd(γBu(t)>ũnx)‖ < (50)

‖δ(ũnx)>Bu(t)γBu(t)>ũnx‖ (51)

Which gives the same inequality terms as in (42). The fourth
projection term is

δ(ũnx)>Bu(t)Projd(d̂
2(unx)>wn

x) (52)

which cancels out term

−δ(ũnx)>Bu(t)d2(unx)>wn
x (53)

when the projection is not activated; utilizing (d2 − d̂2) <
2d̃d̄. When the projection (52) is activated, the projection
term becomes zero, meaning that another term is needed to
handle (53). However, since the projection (52) is activated,
it implies that d̃d̂2(unx)>wn

x < 0 ⇔ 1
γ d̃d

2(unx)>wn
x < 0,

which is available as the projection counter part (48) is zero,
since it is also activated. This term can therefore be used
against (53), meaning that if the inequality

‖ 1

γ
d̃d̂2(unx)>wn

x‖ > ‖δ(ũnx)>Bu(t)d2(unx)>wn
x‖ (54)



holds, inequality (42) will also hold when the projection is
activated. By utilizing that the d̃ is non zero as the projection
is activated, and the bound ũnx < sin(ε) we see that this
inequality is equivalent to

sin(ε) <
|d̃|
γδρ̄2

⇒ k >
2w̄3d̄2

ďµ
(55)

where ď is the minimum error |d̃| can be while the projection
is activated. Thus we see that the derivative of the Lyapunov
function candidate is maintained negative definite while the
projection is activated. Proving that the observer converges
to zero exponentially fast when |θ̃| ≤ ε. In addition, we
proved in A) that the error will converge to this set |θ̃| ≤ ε
in finite time, so combining these results the observer is UAS
for the error dynamics for all initial conditions according to
Theorem 1, and and UES when |θ̃| ≤ ε.
From the proof we see that the region of attraction for
the observer is determined by a parameter ε, which can
be arbitrary small while increasing k, so the stability is in
practice semi-global on the sphere. From the proof we also
see that the exponential convergence rate is 1

2 min(kε, δµγ),
although as can be seen in the proof it is a conservative
estimate. We also note that the larger the k is, the smaller
δ will be, so k should be set large enough, however, if the
k is too large, this can limit the convergence of the d̃. The
observer is also be presented in body coordinates, where the
difference is the added rotation of the vehicle

˙̂ubx = −S(ω + kσ)ûbx − d̂S(ûbx)S(ubx)wb
x (56)

˙̂
d = Projd(−γ(wb

x)>S(ubx)2S(ûbx)σ)

+ Projd(d̂
2(ubx)>wb

x)

σ = S(ubx)ûbx (57)

Theorem 2: Consider the vector xb with the unknown
time varying magnitude z = 1

d . If the assumptions A1-A2
holds in addition to the angular rate being bounded ‖ω‖ < ω̄.
Then given the unit vector ubx and the derivative ẋb = wb

x,
the error dynamics of the observer (56)-(57) will be UAS for
every initial condition satisfying (ûbx)>ubx > − cos(ε), d̂ ≤
d̄ and UES for d < d̂ < d̄ and (ûbx)>ubx > cos(ε) , so
that the errors (ûbx)>ubx → 1, ũbx = S(ubx)ûbx → 0 and
d̃ = d− d̂→ 0 as t→∞

Proof: Bounded error dynamics follows from

V̇ b1 =≤ ‖ũbx‖(k‖ũbx‖ − d̄w + ω̄) (58)

The error dynamics are now

˙̃ubx = kS(ubx)S(ûbx)ũbx − d̂S(S(ubx)wb
x)ũbx

− S(ûbx)S(ubx)S(ubx)wb
xd̃+ S(ω)ũbx

(59)

˙̃
d = d2(ubx)>wb

x (60)

− Projd(−γ(wb
x)>S(ubx)S(ubx)S(ûbx)ũbx) (61)

− Projd(d̂
2(ubx)>wb

x)

where we see that the difference in error dynamic is the
additional skew-symmetric term S(ω)ũbx. We also note that
the skew-symmetric part between ũbx and d̃ is equal to the

one from Lemma 1, only that it is in body coordinates, and
we know that the norm is preserved by coordinate change,
implying that Lemma 1 also applies for the magnitude
observer in body coordinates. The only difference of the
derivative of V b2 along this trajectory will be the constant
ρ̄5 > wd̄ + ω̄. So similar stability as in Theorem 1 can
be concluded for the system (56)-(57), with straight forward
change to the proof.

Cascade

The next result shows that two instances of the observer
can be used in cascade, this means that the output of
one observer can be the input of the next observer. One
motivation for this can be seen in bearing only SLAM. The
first observer is then used to estimate the velocity vector; this
vector can then be considered the input of a second observer
used for estimating the distance to a landmark.

Theorem 3: Consider two vectors x1 and x2, with cor-
responding derivatives wx1 and wx2. Assume directional
vectors ux1, ux2 and the derivative wx1 are measured, and
the first directional vector ux1 = wx2

‖wx2‖ . Let two observers
either according to Theorem 1 or Theorem 2 be in cascade,
where the second observer has the input ŵx2 = ûx1

d̂1
. We

assume assumptions A1-A2 to be true for both observer,
in addition, the gain k in the second observer is chosen
large enough, and d̂1 >

¯
d1 is bounded from below by the

projection in the first observer. Then the error dynamics of
the whole system will be UAS for every initial condition
satisfying (ûxi)

>uxi > − cos(ε) and d̂i < d̄i for both
observers i ∈ {1, 2}.

Proof: From cascade theory [14], [15] we know that
two sub-systems in cascade being USGAS combined with
whole system being bounded implies the whole system being
USGAS. What is crucial is to show that regardless of the
error from the first observer in cascade, the error in the
second observer has the states bounded in the region of
attraction, and will not be destabilized. From Theorem 1 or
2 we know that the first observer in the cascade will output
an estimate with bounded errors

w̃x2 = wx2 − ŵx2 (62)

with the bound |w̃x2| ≤ w̄ ≤ 1

¯
d1

. We continue by investi-
gating if the second observer in the cascade is still bounded
when exposed to this error. For this proof we investigate the
boundedness of the observer in Theorem 1, although similar
procedure can be done for an observer in Theorem 2, with
similar results. We already know that the inverse magnitude
estimate d̂2 < d̄2 and its error d̃2 < d̄2 is bounded by
the projection operator. We re-examine the Lyapunov-like
function V1 = 1− (unx)>ûnx which will have the derivative

V̇1 = −(u̇nx)>ûnx − (unx)> ˙̂unx

=− (dS(unx)2wn
x)>ûnx · · ·

− (unx)>(−S(kσ)ûnx + d̂S(ûnx)S(unx)ŵn
x)



=(unx)>S(kσ)ûnx + (unx)>S(ûnx)S(unx)(dwn
x − d̂ŵn

x)

=− k‖ũnx‖2 + (ũnx)>S(unx)(w̃n
x d̃+ w̃n

x d̂+ ŵn
x d̂)

≤− ‖ũnx‖(k‖ũnx‖ − 3d̄w̄)

and with the same argument as from Theorem 1 we can
choose a k so that the unit vector estimates are bounded
away from |θ̃| < π − ε, and the ε can be chosen arbitrary
small by increasing k. Clearly the estimates are maintained
in the region of attraction of the observer, resulting in the
observer error ũn2 → 0 and d̃2 → 0 as the error w̃x2 → 0
converges to zero.
Usually in cascade stabillity, a growth condition [14], [15]
is introduced to show that the error from a previous system
in a cascade will not push the following system out of its
region of attraction. For our system this growth condition
is not satisfied for the d̃, but due to the projection on this
parameter, the observer will not be destabalized. As for the
previous results, since ε can be chosen arbitrary small we
call this USGAS. However, the peaking phenomenon should
be in mind [16] [14] when tuning the observer in cascade,
meaning the second part should be tuned modestly to avoid
unnecessary transient error for the second observer.

IV. EXAMPLE: BEARING-ONLY SLAM

To illustrate how the vector magnitude observer may be
used, we apply it to the bearing-only SLAM problem. For
an overview of the SLAM problem, the readers are refered
to [17], [18] and references therein. For our SLAM problem,
we want to estimate the ranges %i = ‖δi‖ from the vehicle
to different landmarks, where δi are the relative position
vectors from the vehicle pose to the different landmarks.
We assume that we have line of sight (LOS) measurements
ubiδ =

δbi
‖δbi‖

from these landmarks, in addition, we assume
that measurements from an IMU and an attitude heading
reference system (AHRS) [19] is available. The AHRS can
potentially also estimate the gyro bias, and be viewed as
a cascade into the vector magnitude observer, although the
setup we present for velocity estimation will be sensitive to
attitude error, hence the attitude error should be small. We
see that if the LOS measurements are rotated in the earth-
fixed frame

uniδ = Rnbu
b
iδ (63)

the derivative of the corresponding relative position vectors
is the velocity in the inertial-frame

δ̇n = −vn (64)

which raises the need of a velocity estimate to use the vector
magnitude observer to estimate the different ranges.

We assume that we can measure the normalized velocity
ubv = vb

‖vb‖ ; this being for instance available from a camera
using methods from optical flow or using homography [9],
essential matrix [2] or visual odometry [20]. To estimate
the magnitude ‖vn‖, we noticing that we can rotate the
vector into the inertial-frame unv = Rnbu

b
v . In addition, the

derivative of the velocity in the inertial-frame is available
through the IMU and AHRS

v̇n = Rnbf
b
IMU − gn (65)

where f bIMU is the specific force measurements from the
IMU, and gn is the known gravity vector in inertia frame.
Meaning the observer can estimate the velocity. The observer
is summarized in the following equations

unv = Rnb
vb

‖vb‖ , wn
v = Rnbf

b
IMU − gn, dv =

1

vn

˙̂unv = −S(kvσv)û
n
v + d̂vS(ûnv )S(unv )wn

v

˙̂
dv = γ(wn

v )>S(unv )2S(ûnv )σv + d̂2
v(u

n
v )>wn

v

σv = S(unv )ûnv , v̂n =
ûnv

d̂v

(66)

where we for each landmark with index i have

unδi = Rnbu
b
iδ, ŵn

δ = − û
n
v

d̂v
, dδi =

1

%i
˙̂unδi = −S(kδiσδi)û

n
δi + d̂δiS(ûnδi)S(unδi)ŵ

n
δ

˙̂
dδi = γ(ŵn

δ )>S(unδi)
2S(ûnδi)σδi + d̂2

δi(u
n
δi)
>ŵn

δ

σδi = S(unδi)û
n
δi, δ̂ni =

ûnδi
d̂δi

(67)

The cascade structure of this bearing only SLAM with 4
landmarks can be seen in Figure 2. By the theorems in the
previous chapters the error dynamics of this system is US-
GAS under certain assumptions. One of these assumptions
is that the velocity vector is bounded from below, meaning
that the USGAS of the velocity magnitude observer is lost
when the velocity goes to zero.

Remark 1: For this setup we have assumed available
AHRS measurements. Although, an equivilant setup is pos-
sible in the body-frame with observers from Theorem 2, if a
gravity vector estimate is available in body-frame as in [9].

A. Position estimate

As we have no knowledge of absolute position, we will
only care about relative position change. The position esti-
mate is derived from the estimated relative position vectors

p̂n(t) =

m∑
i=1

wi(t)(δ̂
n
i (0)− δ̂ni (t)) (68)

where wi are gains that sum up to one
m∑
i=1

wi = 1. The

estimate of the pose will converge as the relative position
vector estimates converge, although there will be a constant
offset due to the initial position estimate error

B. Simulation Results

The observer was tested in simulations. The scenario
presented in this section is a vehicle travelling in a circle
in 3D-space at constant velocity vb = [0.5, 0, 0][m/s]. The
trajectory of the vessel, with the landmarks positions, can be
seen in Figure 3. The simulator is implemented using Euler
integration, having step length h = 0.025[s] and lasts for
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Fig. 2: Block diagram of the cascade structure of the speed observer (66)
and range observer (67), for Bearing Only SLAM with 4 landmarks
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Fig. 3: The figure shows the trajectory of the vehicle, and the landmarks.
The green arrow represent the normalized velocity measurement; the blue
arrows represent the LOS measurements; the red dashed arrows represent
the estimated distance vectors using 1

d̂xi
ûn
xi at the end of the simulation.

40[s]. Four landmarks were placed in the corners of a box
with sides of 4[m]. The IMU measurements were corrupted
by white noise with standard deviation σω = I0.02[rad/s]
and σf = I0.02[m/s2], which is meant to resemble a low
cost MEMS IMU. The noise in the bearing measurements
was σu = I0.00314[rad], resembeling a pixel error for
a camera with 90o field of view and 500 pixels image
height/width; the AHRS noise was σR = I0.0116[rad]
giving a 3σ value of 2o; the velocity direction had a white
noise of σv = I0.1060[rad], which is what you can expect
from a Homography with the above image [9]. The bearing
noise is orthogonal to the bearing un = S(unx)wu, in which
the noise wu is a white noise vector wu = N (0,σu), the
same is applied to the noise of the normalized velocity.

The speed observer was tuned with kv = 2
√
α and γv =

α/‖Bu(t)‖, with α = 0.5. The range observers were tuned
with kδi = 2

√
2 and γδi = 2. The tuning is based on [21].

The observers were also implemented using the Euler method
with h = 0.025[s]; the unit vector estimates should be
normalized for every iteration to compensate for numerical
errors. In Figure 4, we note that since the acceleration input
is found by subtracting the gravity from the rotated specific
force, most of the noise comes from the noisy attitude
measurements. In Figure 5 we see how the velocity direction
estimates are smooth compared to the measurents. Further,
in Figure 6 we see how the velocity magnitude estimate
converges, and in Figures 7 and 8 we see how the range and
position estimates converge; this confirms that the observers
can be used in cascade.

The authors still want to emphasise that there are assump-
tions for this scenario which are often broken when bearing
only SLAM is used. The landmarks are assumed to be
observed for the entire period; the attitude is only corrupted
by white noise, so gravity is removed from the specific force.

0 5 10 15 20 25 30 35 40

[s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[m
/s

2
]

Acceleration Input

Fig. 4: The figure shows the acceleration input to the velocity magnitude
observer. The red is the true acceleration, and the blue is the input for the
velocity observer.
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Fig. 6: The upper plot shows the velocity magnitude estimate combined
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However, the setup is able to estimate the position of the
vessel, and the distance to the landmarks by only having
IMU, AHRS, bearing and optical flow measurements, and
without dead reckoning. This also shows the duality between
the range estimation problem, and speed estimation problem;
implying that other globally stable observers can be used for
velocity estimation fusing camera with IMU and AHRS data
[7], [8], [11], making velocity measurements redundant.
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Fig. 8: The figure shows the position estimates for x, y and z direction,
and the lowermost plot shows the norm of the position error. To make
comparison between the position estimate and the true position easier, the
position estimate is shifted so that there is zero position error at time t =
20[s]

V. CONCLUSION
We presented a novel vector magnitude observer, which

uses unit vector measurement and derivative. The observer
was proven to be uniformly semi-globally stable (USGAS)
and UES in a defined region, moreover, the stability was
of multiple instances, and in cascade. The vector magni-
tude framework was then applied to a bearing-only SLAM
filter problem with AHRS, which demonstrated the filter-
ing properties and convergence of the observer. This also
demonstrated how a velocity estimation could be performed
with camera, IMU and AHRS, making velocity measurement
possibly redundant when these sensors are available.
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