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Distributed Optimization for Second-Order Multi-Agent Systems with

Dynamic Event-Triggered Communication

Xinlei Yi, Lisha Yao, Tao Yang, Jemin George, and Karl H. Johansson

Abstract— In this paper, we propose a fully distributed algo-
rithm for second-order continuous-time multi-agent systems to
solve the distributed optimization problem. The global objective
function is a sum of private cost functions associated with the in-
dividual agents and the interaction between agents is described
by a weighted undirected graph. We show the exponential
convergence of the proposed algorithm if the underlying graph
is connected, each private cost function is locally gradient-
Lipschitz-continuous, and the global objective function is re-
stricted strongly convex with respect to the global minimizer.
Moreover, to reduce the overall need of communication, we then
propose a dynamic event-triggered communication mechanism
that is free of Zeno behavior. It is shown that the exponential
convergence is achieved if the private cost functions are also
globally gradient-Lipschitz-continuous. Numerical simulations
are provided to illustrate the effectiveness of the theoretical
results.

I. INTRODUCTION

Distributed optimization in multi-agent systems is an

important class of distributed optimization problems and

has received great attention in recent years due to its wide

application in wireless networks, sensor networks, smart

grids, and multi-robot systems.

From a control point of view, distributed convex optimiza-

tion in multi-agent systems is the optimal consensus problem,

where the global objective function is a sum of private

convex cost functions associated with the individual agents

and the interaction between agents is described by a graph.

Although classical distributed algorithms based on consensus

theory and (sub)gradient method are discrete-time [1]–[3],

continuous-time algorithms have attracted much attention

recently due to the development of cyber-physical systems

and the well-developed continuous-time control techniques.

For example [4]–[13] propose continuous-time distributed

algorithms to solve (constrained or unconstrained) optimal

consensus problems and analyze the convergence properties

via classic stability analysis.

However, all these existing continuous-time algorithms

require continuous information exchange between agents,
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which may be impractical in physical applications. The

event-triggered communication and control mechanism is

introduced partially to tackle this problem [14], [15]. Event-

triggered communication and control mechanisms for multi-

agent systems have been studied recently [16]–[22]. Key

challenges are how to design the control law, determine the

event threshold, and avoid Zeno behavior. Zeno behavior

means that there are an infinite number of triggers in a finite

time interval [23].

There are few works on the optimal consensus problem

with event-triggered communication. In [24], the authors

design a distributed continuous-time algorithm for first-order

multi-agent systems with event-triggered communication. In

[25], the authors extend the zero-gradient-sum algorithm

proposed in [6] with event-triggered communication. In [26],

the authors propose a distributed continuous-time algorithm

for second-order multi-agent systems with event-triggered

communication. However, these algorithms are not fully dis-

tributed since the gain parameters of the algorithms depends

on some global parameters, such as the eigenvalues of the

graph Laplacian matrix.

In this paper, we consider the distributed optimization

problem for second-order multi-agent systems with undi-

rected and connected topologies. In particular, double-

integrator dynamics are considered since they are widely ap-

plied to mechanical systems. For example, Euler-Lagrangian

systems with exact knowledge of nonlinearities can be

converted into double integrators and they can be used to

describe many mechanical systems, such as autonomous

vehicles, see [27], [28]. Moreover, the considered distributed

optimization problem has many applications, such as the tar-

geted agreement problem for a group of Lagrangian systems

[29]. A fully distributed continuous-time algorithm is first

proposed to solve the problem. One related existing work

is [8], which also proposes a continuous-time distributed

algorithm for second-order multi-agent systems. However,

in [8], the parameters of the algorithm depend on some

global information and the speed information of each agent

has to be exchanged between neighbors, and only asymp-

totic convergence is established for the case where private

cost functions are strongly convex and globally gradient-

Lipschitz-continuous. In contrast, in this paper, no global

information is needed to be known in advance and each

agent does not need its neighbors’ speed information. For

the case where private cost functions are convex, we show

the asymptotic convergence. Furthermore, we establish the

exponential convergence for the case where each private

cost function is locally gradient-Lipschitz-continuous and the
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global objective function is restricted strongly convex with

respect to the global minimizer. Note that not all private cost

functions need to be so or strongly convex, which is a less

restricted condition compared with that in [8]. To reduce the

overall need of communication, inspired by the distributed

dynamic event-triggered control mechanism for multi-agent

systems proposed in [22], we then extend our algorithm

with dynamic event-triggered communication. The proposed

dynamic event-triggered communication mechanism is also

fully distributed since no global information, such as the

Laplacian matrix, is required. We show that the proposed

dynamic event-triggered communication mechanism is free

of Zeno behavior by a contradiction argument. Moreover,

we also show that the extended algorithm with the pro-

posed event-triggered communication mechanism exponen-

tially converges to the global minimizer when each private

cost function is globally gradient-Lipschitz-continuous and

the global objective function is restricted strongly convex.

The rest of this paper is organized as follows. Section II

introduces the preliminaries. The main results are stated in

Sections III and IV. Simulations are given in Section V.

Finally, the paper is concluded in Section VI.

Notations: ‖ · ‖ represents the Euclidean norm for vectors

or the induced 2-norm for matrices. 1n denotes the column

vector with each component being 1 and dimension n.

In is the n-dimensional identity matrix. Given a vector

[x1, . . . , xn]
⊤ ∈ R

n, diag([x1, . . . , xn]) is a diagonal matrix

with the i-th diagonal element being xi. The notation A⊗B

denotes the Kronecker product of matrices A and B. ρ(·)
stands for the spectral radius for matrices and ρ2(·) indicates

the minimum positive eigenvalue for matrices having positive

eigenvalues. Given two symmetric matrices M,N , M ≥ N

means that M −N is positive semi-definite.

II. PRELIMINARIES

In this section, we present some definitions from algebraic

graph theory [30] and the problem formulation.

A. Algebraic Graph Theory

Let G = (V , E , A) denote a weighted undirected graph

with the set of vertices (nodes) V = {1, . . . , n}, the set of

links (edges) E ⊆ V ×V , and the weighted adjacency matrix

A = A⊤ = (aij) with nonnegative elements aij . A link

of G is denoted by (i, j) ∈ E if aij > 0, i.e., if vertices i

and j can communicate with each other. It is assumed that

aii = 0 for all i ∈ V . Let Ni = {j ∈ V | aij > 0} and

degi =
n
∑

j=1

aij denotes the neighbor index set and weighted

degree of vertex i, respectively. The degree matrix of graph

G is Deg = diag([deg1, · · · , degn]). The Laplacian matrix is

L = (Lij) = Deg−A. A path of length k between vertices

i and j is a subgraph with distinct vertices i0 = i, . . . , ik =
j ∈ V and edges (ij , ij+1) ∈ E , j = 0, . . . , k − 1. An

undirected graph is connected if there exists at least one

path between any two vertices.

B. Problem Formulation

Consider a network of n agents and the underlying inter-

action between agents is described by a weighted undirected

graph G = (V , E , A). Each agent is described by a double

integrator

ẍi(t) = ui(t), i ∈ V , t ≥ 0, (1)

where xi ∈ R
p is the state and ui ∈ R

p is the control input

of agent i. Each agent i is also associated with a private

convex cost function fi(xi) : R
p 7→ R.

The goal of the distributed optimization problem is to

design an algorithm, i.e., design the control input ui for every

agent, so that all agents find an optimizer x∗ that minimizes

the sum of the fi’s collaboratively in a distributed manner,

i.e.,

x∗ ∈ argmin
x∈Rp

n
∑

i=1

fi(x). (2)

The existence of the global minimizer x∗ is guaranteed by

the following assumption.

Assumption 1. (Convex) For each i ∈ V , the function fi is

continuously differentiable and convex.

Moreover, if the following assumption also holds, then the

global minimizer x∗ is unique.

Assumption 2. (Restricted strongly convex, see [31]) The

global objective function
∑n

i=1 fi(x) is restricted strongly

convex with respect to its global minimizer x∗ with convexity

parameter mf > 0, i.e., for all x ∈ R
p,

n
∑

i=1

(∇fi(x) −∇fi(x
∗))⊤(x− x∗) ≥ mf‖x− x∗‖2.

Remark 1. Assumption 2 is weaker than the assumption that

the global object function is strongly convex, thus it is also

weaker than the assumption that each private convex cost

function is strongly convex.

In addition, same as the existing literature, we assume that

each private cost function has a locally (globally) Lipschitz

continuous gradient.

Assumption 3. (Locally gradient-Lipschitz-continuous) For

each i ∈ V , for any compact set D ⊆ R
p, there exists

a constant Mi(D) > 0, such that ‖∇fi(a) − ∇fi(b)‖ ≤
Mi(D)‖a− b‖, ∀a, b ∈ D.

Assumption 4. (Globally gradient-Lipschitz-continuous) For

each i ∈ V , there exists a constant M i > 0, such that

‖∇fi(a)−∇fi(b)‖ ≤ M i‖a− b‖, ∀a, b ∈ R
p.

III. DISTRIBUTED CONTINUOUS-TIME ALGORITHMS

In this section, we propose a distributed continuous-time

algorithm to solve the optimization problem stated in (2) and

analyze its convergence.

For each agent i ∈ V , we first design the following

algorithm,

v̇i(t) =β

n
∑

j=1

Lijxj(t),

n
∑

i=1

vi(0) = 0, (3a)



ui(t) =− γẋi(t)− αβ

n
∑

j=1

Lijxj(t)− θvi(t)

− α∇fi(xi(t)), t ≥ 0, (3b)

where α > 0, β > 0, γ > 0, and θ > 0 are gain parameters.

Remark 2. In the design of right-hand side in (3b), −γẋi(t)
is to ensure the convergence of (3), −αβ

∑n
j=1 Lijxj(t)

is to ensure the consensus among agents, −α∇fi(xi(t)) is

to optimize each agent’s private cost function, and −θvi(t)
together with

∑n
i=1 vi(0) = 0 and (3a) are to maintain the

equilibrium point at the optimal point. Moreover, by setting

vi(0) = 0, ∀i ∈ V , the coordination between agents to let
∑n

i=1 vi(0) = 0 can be avoided.

Denote yi(t) = ẋi(t). Then we can rewrite (1) and (3) as

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (4a)

ẏi(t) =− γyi(t)− αβ

n
∑

j=1

Lijxj(t)− θvi(t)

− α∇fi(xi(t)), ∀yi(0), (4b)

v̇i(t) =β

n
∑

j=1

Lijxj(t),

n
∑

i=1

vi(0) = 0. (4c)

Remark 3. If there is only one agent, the algorithm (4)

becomes the heavy ball with friction system [32]:

ẍ+ γẋ+ α∇f(x) = 0.

Denote x = [x⊤
1 , · · · , x⊤

n ]
⊤, y = [y⊤1 , · · · , y⊤n ]⊤, v =

[v⊤1 , · · · , v⊤n ]⊤, and f(x) =
∑n

i=1 fi(xi). Then, we can

rewrite (4) in the following compact form:

ẋ(t) =y(t), ∀x(0), t ≥ 0, (5a)

ẏ(t) =− γy(t)− αβ(L ⊗ Ip)x(t)− θv(t)

− α∇f(x(t)), ∀y(0), (5b)

v̇(t) =β(L ⊗ Ip)x(t),
n
∑

i=1

vi(0) = 0, (5c)

The following result establishes sufficient conditions on

the private cost function fi; the gain parameters α, γ, θ;

and the underlying graph to guarantee the (exponential)

convergence of (4).

Theorem 1. Suppose that Assumption 1 holds, and that

the underlying undirected graph G is connected. If every

agent i ∈ V runs the distributed algorithm with continuous-

time communication given in (4) and θ < αγ, then every

individual solution xi(t) asymptotically converges to one

global minimizer. Moreover, if Assumptions 2 and 3 are also

satisfied, then every individual solution xi(t) exponentially

converges to the unique global minimizer x∗ with a rate no

less than ε3
2ε4

, where

ε1 =min{γ(1− ε0), αγε0m1} > 0, (6)

ε2 =max
{γ

α
+

γ2

θ
+

θ

α2
,
α2(M(D))2

θ

}

> 0, (7)

ε3 =min
{

ε1,
εθ

2

}

> 0, (8)

ε4 =max
{

1 +
εε2

ε1
+

ε

α
,

(1 +
εε2

ε1
)(γ2ε0 + αβρ(L) +

αM(D)

2
) +

εM(D)

2
,

(1 +
εε2

ε1
)

θγε0

βρ2(L)
+ εα

}

> 1, (9)

where ε > 0 and ε0 ∈ ( θ
αγ

, 1) are design parameters

and can be freely chosen in the given intervals, m1 =

min
{

mf

2 ,
ρ2(L)m2

fαγε0

2(αγε0−θ)(m2

f
+16M2(D))

}

> 0 and M(D) =

maxi∈V{Mi(D)} > 0 are constants, and D ⊆ R
p is a

compact convex set and its definition is given in the proof.

Proof. Due to the space limitations, the proof is omitted here,

but can be found in [33]. The proof is based the Lyapunov

stability analysis. A novel Lyapunov function is constructed,

which is different from those in the existing literature.

Remark 4. The algorithm (4) is fully distributed in the sense

that it does not require any global parameters to design the

gain parameters α, β, γ, and θ. On the other hand, the

algorithms proposed in [8], [11] do not have such a property.

Remark 5. We could also construct an alternative algo-

rithm:

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (10a)

ẏi(t) =− γyi(t)− αβ

n
∑

j=1

Lijxj(t)

− θ

n
∑

j=1

Lijvj(t)− α∇fi(xi(t)), ∀yi(0), (10b)

v̇i(t) =β

n
∑

j=1

Lijxi(t), ∀vi(0). (10c)

Similar results as shown in Theorem 1 could be given and

proven. We omit the details due to space limitations.

Different from the requirement that
∑n

i=1 vi(0) = 0 in

the algorithm (5), vi(0) can be arbitrarily chosen in the

algorithm (10). In other words, the algorithm (10) is robust

to the initial condition vi(0). However, the algorithm (10)

requires additional communication of vj in (10b), compared

to the algorithm (5).

IV. EVENT-TRIGGERED COMMUNICATION

To implement the distributed algorithm (4), every agent

i ∈ V has to know the continuous-time state xj(t), ∀j ∈
Ni. In other words, continuous communication between

agents is needed. However, distributed networks are nor-

mally resources-constrained and communication is energy-

consuming. To avoid continuous communication, inspired

by the idea of event-triggered control for multi-agent sys-

tems [16], we consider event-triggered communication. More

specifically, we extend the algorithm (4) with event-triggered

communication mechanism as:

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (11a)



ẏi(t) =− γyi(t)− αβ

n
∑

j=1

Lijxj(t
j

kj(t)
)− θvi(t)

− α∇fi(xi(t)), ∀yi(0), (11b)

v̇i(t) =β

n
∑

j=1

Lijxj(t
j

kj(t)
),

t ∈ [tik, t
i
k+1), k = 1, 2, . . . ,

n
∑

i=1

vi(0) = 0, (11c)

where the increasing sequence {tik}∞k=1, ∀i ∈ V to be

determined later is the triggering times and t
j

kj(t)
=

max{tjk : t
j
k ≤ t}. We assume t

j
1 = 0, ∀j ∈ V . For

simplicity, let x̂j(t) = xj(t
j

kj(t)
) and exj (t) = x̂j(t)− xj(t).

Denote x̂ = [x̂⊤
1 , · · · , x̂⊤

n ]
⊤ and e

x =
[(ex1)

⊤, · · · , (exn)⊤]⊤. Then, we can rewrite (11) in the

following compact form:

ẋ(t) =y(t), ∀x(0), t ≥ 0, (12a)

ẏ(t) =− γy(t)− αβ(L ⊗ Ip)x̂(t)− θv(t)

− α∇f(x(t)), ∀y(0), (12b)

v̇(t) =β(L ⊗ Ip)x̂(t),
n
∑

i=1

vi(0) = 0. (12c)

In the following theorem, we propose a dynamic event-

triggered law to determine the triggering times such that the

solution of the distributed optimization problem can still be

reached exponentially.

Theorem 2. Suppose that Assumptions 1, 2, and 4 hold,

and that the underlying undirected graph G is connected.

Suppose that each agent i ∈ V runs the distributed algorithm

with event-triggered communication given in (11) and θ <

αγ. Given the first triggering time ti1 = 0, every agent i ∈
V determines the triggering times {tik}∞k=2 by the following

dynamic event-triggered law:

tik+1 =min
{

t : κi

(

‖exi (t)‖2 −
(αγε0 − θ)βσi

4ϕi

q̂i(t)
)

≥ χi(t), t ≥ tik

}

, k = 1, 2, . . . (13)

q̂i(t) =− 1

2

∑

j∈Ni

Lij‖x̂j(t)− x̂i(t)‖2 ≥ 0, (14)

χ̇i(t) =− δi

(

‖exi (t)‖2 −
(αγε0 − θ)βσi

4ϕi

q̂i(t)
)

− φiχi(t), ∀χi(0) > 0, (15)

where σi ∈ [0, 1), φi > 0, δi ∈ [0, 1], and κi > 1−δi
φi

are

design parameters and can be freely chosen in the given

interval; and

m2 =min
{mf

2
,

4ρ2(L)m
2
fα

(αγε0 − θ)β(m2
f + 16M

2
)

}

, (16)

ε5 =min
{γ(1− ε0)

2
, m2α

}

> 0, (17)

ε6 =max
{ γ

α
+

γ2

θ
+

θ

α2
,
α2M

2

θ

}

> 0, (18)

ε7 =1 +
εε6

ε5
> 1, (19)

ε8 =
ε

4ε7
> 0, (20)

ϕi =
(αγε0 − θ)β

4
Lii + (αγε0 − θ)βLii +

γ2θε20
4ε8

+
α2β2

γ(1− ε0)

(

Lii −
n
∑

j=1,j 6=i

LjjLij

)

(21)

with M = maxi∈V{M i} is a constant, ε > 0 and ε0 ∈
( θ
αγ

, 1) are design parameters, then (i) there is no Zeno be-

havior, and (ii) every individual solution xi(t) exponentially

converges to the unique global minimizer x∗ with a rate no

less than ε9
2ε10

, where

ε9 =min
{

ε5,
εθ

4
, kd

}

> 0, (22)

ε10 =max
{

ε7 +
ε

α
, ε7

(

γ2ε0 + αβρ(L) +
αM

2

)

+
εM

2
,

ε7
θγε0

βρ2(L)
+

εα

ρ2(L)

}

> 1, (23)

with kd = mini∈V
{

φi − 1−δi
κi

}

> 0.

Proof. Due to the space limitations, the proof is omitted here,

but can be found in [33].

Remark 6. The proposed dynamic event-triggered commu-

nication has several nice features: i) the exchange of xi(t)
only occurs at the discrete time points {tik, i ∈ V}∞k=1, ii)

it is free of Zeno behavior, and iii) the implementation does

not require any global information such as the Laplacian

matrix. One potential drawback of the proposed dynamic

event-triggered law is that when determining ϕi the global

parameters ρ2(L), mf , and M are needed. One solution to

overcome this drawback is let σi = δi = 0, i ∈ V , since in

this case we do not need to know ϕi.

Remark 7. If we let δ1 = · · · = δn = 0 and φ1 = · · · =
φn ∈ (0, ε9

ε10
] in (15), where ε9 and ε10 is defined in (22)

and (23), respectively, then similar to the proof of Theorem

3.2 in [17], for each agent i ∈ V , we can find a positive

constant τi, such that tik+1 − tik ≥ τi, k = 1, 2, . . . . Since

the proof is similar, we omit the detailed analysis here.

V. SIMULATIONS

In this section, we illustrate and validate the proposed

algorithm through numerical examples and compare the

results with other existing algorithms. Consider a simple

network of n = 3 agents with the Laplacian matrix

L =





1 −1 0
−1 2 −1
0 −1 1



 .

We first consider the case that the private cost functions fi
and the global objective function

∑n
i=1 fi(x) are just convex.

We choose fi(x) =
1
2 (x− ai)

⊤Ai(x− ai),

A1 =





2 −1 −1
−1 1.5 −0.5
−1 −0.5 1.5



 , A2 =





3 −3 0
−3 4 −1
0 −1 1



 ,



0 5 10 15 20 25 30 35 40 45 50

 t

0

0.5

1

1.5

2

2.5

3
 t

2
|f

(x
)-

f(
x* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]

Fig. 1: Simulation results for non-strongly convex private

cost and global objective functions.

A3 =





2.5 0 −2.5
0 10 −10

−2.5 −10 12.5



 , a1 =





0.6132
−0.5278
1.2416



 ,

a2 =





−0.1576
−1.3736
0.8708



 , a3 =





−1.5685
−1.8443
0.2884



 .

Fig. 1 shows the comparison between the distributed algo-

rithm (4) with α = β = 2, γ = 6, θ = 5; algorithm

(3) in [24] with α = β = 2; algorithm (6) in [8] with

α = β = 2, k = 6; and algorithm (3) in [11] with k = 6.

It can be seen that distributed gradient descent algorithm

(algorithm (3) in [24]) cannot achieve a O( 1
t2
) convergence

when the global objective and all the private cost functions

are just convex.

We then consider the case that the private cost functions

fi are just convex but
∑n

i=1 fi(x) is strongly convex. We

choose fi(x) = ‖x− bi‖4 with x ∈ R
3,

b1 =





0
0
0



 , b2 =





2.5
2
3



 , b3 =





−3.5
−2.7
−1



 .

Fig. 2 shows the comparison between the distributed algo-

rithm (4) with α = β = 2, γ = 6, θ = 5; algorithm

(3) in [24] with α = β = 2; algorithm (6) in [8] with

α = β = 2, k = 6; and algorithm (3) in [11] with k = 6.

We can see that the proposed algorithm (4) achieves a faster

convergence in this simulation.

Next, we consider the case where all private cost functions

fi are strongly convex. In particular, fi(x) =
1
2x

⊤Cix+a⊤i x
with

C1 =





4.7471 1.2843 0.5836
1.2843 5.0861 −2.4209
0.5836 −2.4209 2.2270



 ,

C2 =





1.3528 0.5141 −2.1684
0.5141 1.2333 −0.5857

−2.1684 −0.5857 4.0361



 ,

0 10 20 30 40 50 60 70 80 90 100

 t

-12

-10

-8

-6

-4

-2

0

2

4

6

 ln
|f

(x
(t

))
-f

(x
* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]

Fig. 2: Simulation results for non-strongly convex private

cost functions but strongly convex global objective function.

0 5 10 15 20 25 30 35 40 45 50

 t

-20

-15

-10

-5

0

 ln
|f

(x
(t

))
-f

(x
* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]
 Algorithm (11)

Fig. 3: Simulation results for strongly convex private cost

functions.

C3 =





1.0223 1.2630 −0.4907
1.2630 2.1391 −0.1378

−0.4907 −0.1378 0.7207



 .

Fig. 3 shows the comparison between the distributed al-

gorithm (4) with α = β = 2, γ = 6, θ = 3.5;

algorithm (3) in [24] with α = β = 2; algorithm (6) in

[8] with α = β = 2, k = 6; algorithm (3) in [11] with

k = 6; and the distributed event-triggered algorithm (11)

with dynamic event-triggered communication determined by

(13). In our simulation, the sample length is 0.01. During

time interval [0, 50], agents 1–3 triggered 1199, 139, and

664 times, respectively, under our dynamic event-triggered

communication mechanism. Therefore, our dynamic event-

triggered communication mechanism is very efficient and

avoids about 85% sampling in this simulation.

VI. CONCLUSION

In this paper, we considered the distributed optimization

problem for second-order continuous-time multi-agent sys-



tems. We first proposed a fully distributed continuous-time

algorithm that does not require to know any global informa-

tion in advance. We established the asymptotic convergence

when the private cost functions are convex and exponen-

tial convergence when each private cost function is locally

gradient-Lipschitz-continuous and the global objective func-

tion is restricted strongly convex with respect to the global

minimizer. To avoid continuous communication, we then

extended the continuous-time algorithm with dynamic event-

triggered communication. We again showed that the global

minimizer can be reached exponentially when each private

cost function is globally gradient-Lipschitz-continuous and

the global objective function is restricted strongly convex.

Furthermore, the dynamic event-triggered communication

was shown to be free of Zeno behavior. Future research

directions include quantifying the convergence speed when

the private cost functions are just convex.
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APPENDIX

A. Useful Lemmas

For a connected graph, we have the following results.

Lemma 1. ( [21, Lemma 2.1]) Let Kn = In − 1
n
1n1

⊤
n and

assume graph G is connected, then its Laplacian matrix L

is positive semi-definite, Kn1n = 0 and KnL = LKn = L.



Moreover, we have

ρ(Kn) = 1 and 0 ≤ ρ2(L)Kn ≤ L. (24)

Lemma 2. Assume graph G is connected, then there exists an

orthogonal matrix Q =
[

r R
]

∈ R
n×n with r = 1√

n
1n

and R ∈ R
n×(n−1) such that

L =
[

r R
]

[

0 0
0 Λ1

] [

r⊤

R⊤

]

, (25)

L
1

2 =
[

r R
]

[

0 0
0

√
Λ1

] [

r⊤

R⊤

]

, (26)

R(
√

Λ1)
−1R⊤L = LR(

√

Λ1)
−1R⊤ = Kn, (27)

R(Λ1)
−1R⊤L = LR(Λ1)

−1R⊤ = Kn, (28)

1

ρ(L)
Kn =

1

ρ(L)
RR⊤ ≤ R(Λ1)

−1R⊤, (29)

R(Λ1)
−1R⊤ ≤ 1

ρ2(L)
RR⊤ =

1

ρ2(L)
Kn, (30)

where Λ1 = diag([λ2, . . . , λn]) with 0 < λ2 ≤ · · · ≤ λn are

the eigenvalues of L, and
√
Λ1 = diag([

√
λ2, . . . ,

√
λn]).

Proof. (25) follows from Theorem 1 in [34] and Corollary

8.4.6 in [35]. (26)–(30) directly follows from (25), Q is an

orthogonal matrix, and the definition of Λ1.

From Proposition 3.6 in [31], we have the following

lemma, which plays an important role in the proof of

exponential convergence later.

Lemma 3. Suppose that Assumptions 1, 2, and 4 hold, and

that the underlying undirected graph G is connected, then

for any r > 0,

(∇f(x)−∇f(x∗))⊤(x− x
∗) + rx⊤(L⊗ Ip)x

≥m‖x− x
∗‖2, ∀x ∈ R

np,

where x = [x⊤
1 , · · · , x⊤

n ]
⊤, f(x) =

∑n
i=1 fi(xi), x

∗ = 1n⊗
x∗, m = min

{

mf − 2Mι,
ρ2(L)

2r(1+ 1

ι2
)

}

, M = maxi∈V{M̄i},

and ι ∈ (0,
mf

2M
).

B. Proof of Theorem 1

The proof is carried out in three steps.

(i) In this step, we show that the global objective function

achieves its minimum value at the equilibrium points of the

multi-agent system (5).

By pre-multiplying (5c) with (1T
n ⊗ Ip), we obtain

n
∑

i=1

v̇i(t) ≡ 0.

Thus,

n
∑

i=1

vi(t) ≡
n
∑

i=1

vi(0) = 0, ∀t ≥ 0. (31)

Consider the equilibrium points (v̄, x̄, ȳ) of (5). They

must satisfy

ȳ = 0, (32a)

−θv̄ − α∇f(x̄) = 0, (32b)

(L⊗ Ip)x̄ = 0. (32c)

Since the graph is connected, it follows from (32c) that

x̄ = 1n ⊗ x0, x0 ∈ R
p, which means that consensus is

achieved.

From (31), we have

n
∑

i=1

v̄i = 0. (33)

By pre-multiplying (32b) with (1T
n ⊗ Ip), we obtain

n
∑

i=1

∇fi(x
0) = 0,

which means that the global optimality is achieved. Thus,

the equilibrium point x0 is an optimal global minimizer.

Moreover, from (31) and (33), we have

x̄
⊤(v(t)− v̄) = 0,

(Kn ⊗ Ip)(v(t) − v̄) = v(t)− v̄, ∀t ≥ 0. (34)

(ii) In this step, we use the Lyapunov analysis method

to show that any equilibrium points of (5) are globally

asymptotically stable, which establishes that the proposed

distributed algorithm converges to the optimal consensus

state asymptotically.

Consider

W1(x) = f(x)−∇f(x̄)⊤x− f(x̄). (35)

Due to Assumption 1, it is easy to check that W1(x) is

convex and minx W1(x) = W1(x̄) = 0. The derivative of

W1 along the trajectories of (5a) is

Ẇ1 = ∇f(x)⊤y −∇f(x̄)⊤y. (36)

Consider

W2(v,x,y)

=
1

2
‖y‖2 + γ2ε0

2
‖x− x̄‖2 + γε0(x− x̄)⊤y

+
θγε0

2β
(v − v̄)⊤(R(Λ1)

−1R⊤ ⊗ Ip)(v − v̄)

+ θ(v − v̄)⊤(Kn ⊗ Ip)x+
αβ

2
x
⊤(L⊗ Ip)x, (37)

where ε0 ∈ ( θ
αγ

, 1). Then,

W2(v,x,y)

=
1−√

ε0

2
‖y‖2 + γ2ε0(1−

√
ε0)

2
‖x− x̄‖2

+

√
ε0

2
‖y‖2 + γ2ε0

√
ε0

2
‖x− x̄‖2 + γε0(x− x̄)⊤y

+ (
θγε0

2β
− θ2

2αβ
)(v − v̄)⊤(R(Λ1)

−1R⊤ ⊗ Ip)(v − v̄)

+
θ2

2αβ
(v − v̄)⊤(R(Λ1)

−1R⊤ ⊗ Ip)(v − v̄)

+ θ(v − v̄)⊤(Kn ⊗ Ip)x+
αβ

2
x
⊤(L⊗ Ip)x

=
1−√

ε0

2
‖y‖2 + γ2ε0(1−

√
ε0)

2
‖x− x̄‖2



+
∥

∥

∥

√
2

2
(ε0)

1

4y +

√
2

2
(ε0)

3

4 γ(x− x̄)
∥

∥

∥

2

+ (
θγε0

2β
− θ2

2αβ
)(v − v̄)⊤(R(Λ1)

−1R⊤ ⊗ Ip)(v − v̄)

+
∥

∥

∥

θ√
2αβ

(R(
√

Λ1)
−1R⊤ ⊗ Ip)(v − v̄)

+

√
αβ√
2
(L

1

2 ⊗ Ip)x
∥

∥

∥

2

≥1−√
ε0

2
‖y‖2 + γ2ε0(1−

√
ε0)

2
‖x− x̄‖2

+ (
θγε0

2β
− θ2

2αβ
)(v − v̄)⊤(R(Λ1)

−1R⊤ ⊗ Ip)(v − v̄)

≥1−√
ε0

2
‖y‖2 + γ2ε0(1−

√
ε0)

2
‖x− x̄‖2

+
1

ρ(L)
(
θγε0

2β
− θ2

2αβ
)(v − v̄)⊤(Kn ⊗ Ip)(v − v̄)

=
1−√

ε0

2
‖y‖2 + γ2ε0(1−

√
ε0)

2
‖x− x̄‖2

+
1

ρ(L)
(
θγε0

2β
− θ2

2αβ
)‖v − v̄‖2 ≥ 0, (38)

where the second equality holds since (27) and KnKn =
Kn, the second inequality holds due to (29), the last equality

holds since (34), and the last inequality holds due to
√
ε0 < 1

and θγε0 > θ2

α
. The derivative of W2 along the trajectories

of (5) satisfies

Ẇ2 =y
⊤
{

− γy − αβ(L ⊗ Ip)x− θv − α∇f(x)
}

+ γ2ε0(x− x̄)⊤y + γε0(x− x̄)⊤
{

− γy

− αβ(L ⊗ Ip)x− θv − α∇f(x)
}

+ γε0y
⊤
y + θγε0(v − v̄)⊤(Kn ⊗ Ip)x

+ θ(v − v̄)⊤(Kn ⊗ Ip)y + θβx⊤(L⊗ Ip)x

+ αβx⊤(L ⊗ Ip)y

=y
⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ γε0(x− x̄)⊤
{

− θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ γε0y
⊤
y + θγε0(v − v̄)⊤x

+ θ(v − v̄)⊤y − (αγε0 − θ)βx⊤(L ⊗ Ip)x

=− γ(1− ε0)y
⊤
y + αy⊤(∇f(x̄)−∇f(x))

− (αγε0 − θ)βx⊤(L⊗ Ip)x

− αγε0(x− x̄)⊤(∇f(x)−∇f(x̄)), (39)

where the first equality holds since R(Λ1)
−1R⊤L =

LR(Λ1)
−1R⊤ = Kn as shown in (28), and the second

equality holds since (32b) and (34), and the last equality

holds since x̄
⊤(L ⊗ Ip) = 0.

Consider the following Lyapunov function

V1(v,x,y) = αW1(x) +W2(v,x,y). (40)

From (36) and (39), we know that the derivative of V1 along

the trajectories of (5) satisfies

V̇1 =− γ(1− ε0)y
⊤
y − (αγε0 − θ)βx⊤(L⊗ Ip)x

− αγε0(x− x̄)⊤(∇f(x)−∇f(x̄)) ≤ 0. (41)

Noting that V1(v,x,y) is radially unbounded due to (38),

then by LaSalle’s Invariance Principle [36], we know that

xi(t) asymptotically converges to {x1 ∈ R
p :

∑n
i=1(x

1 −
x̄)(∇fi(x

1)−∇fi(x
0)) = 0}. Noting that

∑n
i=1 ∇fi(x

0) =
0, we have

∑n
i=1(x

1 − x0)(∇fi(x
1) − ∇fi(x

0)) = 0 is

equivalent to
∑n

i=1 ∇fi(x
1) = 0, i.e., x1 is a global min-

imizer. Thus, xi(t) asymptotically converges to one global

minimizer.

(iii) In this step, we use the Lyapunov analysis method to

show that the converge speed is exponential if Assumptions

2 and 3 hold.

If Assumption 2 holds, then the equilibrium point x0 is

the unique optimal consensus state x∗. Then from (38) and

(41), we know that

γ2ε0(1−
√
ε0)

2
‖xi(t)− x∗‖2

≤ γ2ε0(1−
√
ε0)

2
‖x(t)− x̄‖2

≤ V1(v(t),x(t),y(t))

≤ V1(v(0),x(0),y(0)), ∀i ∈ V , ∀t ≥ 0.

Denote

D = conv
{

a ∈ R
p : ‖a− x∗‖2 ≤ 2V1(v(0),x(0),y(0))

γ2ε0(1 −
√
ε0)

}

,

(42)

where conv denotes the convex hull. It is straightforward

to see that D ⊆ R
p is compact and convex, and xi(t) ∈

D, ∀i ∈ V , ∀t ≥ 0.

If Assumption 3 holds, then

‖∇f(x̄)−∇f(x)‖ ≤ M(D)‖x̄− x‖, (43)

W1(x) ≤
M(D)

2
‖x̄− x‖2, ∀x ∈ D. (44)

Moreover, by letting r = αγε0−θ
αγε0

and ι =
mf

4M(D) in

Lemma 3, we have

αγε0(x− x̄)⊤(∇f(x)−∇f(x̄))

+ (αγε0 − θ)x⊤(L⊗ Ip)x ≥ αγε0m1‖x̄− x‖2, (45)

where m1 = min
{

mf

2 ,
ρ2(L)m2

fαγε0

2(αγε0−θ)(m2

f
+16M2(D))

}

. Then,

from (41) and (45), we have

V̇1 ≤− γ(1− ε0)‖y‖2 − αγε0m1‖x− x̄‖2

≤− ε1

{

‖y‖2 + ‖x− x̄‖2
}

, (46)

where ε1 is defined in (6).

Consider

W3(v,x,y)

=
ε

2α
‖y‖2 + ε(v − v̄)⊤(Kn ⊗ Ip)y

+
εα

2
(v − v̄)⊤(Kn ⊗ Ip)(v − v̄) + εW1(x), (47)

where ε > 0 is a constant. The derivative of W3 along the

trajectories of (5) satisfies

Ẇ3



=
ε

α
y
⊤
{

− γy − αβ(L ⊗ Ip)x− θv − α∇f(x)
}

+ ε(v − v̄)⊤(Kn ⊗ Ip)
{

− γy − αβ(L ⊗ Ip)x

− θv − α∇f(x)
}

+ εβx⊤(L⊗ Ip)y

+ εαβ(v − v̄)⊤(L⊗ Ip)x+ εy⊤(∇f(x)−∇f(x̄))

=
ε

α
y
⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ ε(v − v̄)⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ εy⊤(∇f(x)−∇f(x̄))

=− ε(γ +
θ

α
)(v − v̄)⊤y − εθ(v − v̄)⊤(v − v̄)

− εγ

α
‖y‖2 + εα(v − v̄)⊤(∇f(x̄)−∇f(x))

≤εθ

4
‖v − v̄‖2 + ε

(1

θ
(γ +

θ

α
)2 − γ

α

)

‖y‖2

− εθ‖v − v̄‖2 + εθ

4
‖v − v̄‖2 + εα2

θ
‖∇f(x̄)−∇f(x)‖2

≤− εθ

2
(v − v̄)⊤(v − v̄) + εε2

{

‖y‖2 + ‖x− x̄‖2
}

, (48)

where ε2 is defined in (7), and the first equality holds since

KnL = LKn = L as shown in Lemma 1, the second equality

holds since (32b) and (34), the first inequality holds since

the Young’s inequality, and the last inequality holds due to

(43).

Consider

V2(v,x,y) = (1 +
εε2

ε1
)V1(v,x,y) +W3(v,x,y).

Noting that ε0 < 1, similar the way to get (38), we have

W2(v,x,y) ≥
γ2ε0(1 − ε0)

2
‖x− x̄‖2. (49)

Then, from (49), we have

V2(v,x,y) ≥ (1 +
εε2

ε1
)W2(v,x,y) ≥ ε̃1‖x− x̄‖2 ≥ 0,

(50)

where ε̃1 = (1 + εε2
ε1

)γ
2ε0(1−ε0)

2 . From (46) and (48), we

know that the derivative of V2 along the trajectories of (5)

satisfies

V̇2 ≤− ε1

{

‖y‖2 + ‖x− x̄‖2
}

− εθ

2
‖v − v̄‖2

≤− ε3

{

‖y‖2 + ‖x− x̄‖2 + ‖v − v̄‖2
}

, (51)

where ε3 is defined in (8).

From the Young’s inequality, (30), and (24), we have

W2 ≤‖y‖2 + γ2ε0‖x− x̄‖2 + θγε0

βρ2(L)
‖v − v̄‖2

+ αβρ(L)‖x− x̄‖2, (52)

W3 ≤ ε

α
‖y‖2 + εα‖v − v̄‖2 + εW1(x). (53)

Then, from (52), (53), and (44), we have

V2 =(1 +
εε2

ε1
)(αW1 +W2) +W3

≤ε4

{

‖y‖2 ++‖x− x̄‖2 + ‖v − v̄‖2
}

, (54)

where ε4 is defined in (9). Then,

V̇2(t) ≤− ε3

ε4
V2(t), ∀t ≥ 0. (55)

From (50) and (55), we know that

‖xi(t)− x∗‖ ≤ ‖x(t)− x̄‖

≤
√

1

ε̃1
V2(v(t),x(t),y(t))

≤
√

1

ε̃1
V2(v(0),x(0),y(0))e

− ε3
2ε4

t
, ∀i ∈ V , ∀t ≥ 0,

i.e., xi(t) exponentially converges to the unique global

minimizer x∗ with a rate no less than ε3
2ε4

> 0.

C. Proof of Theorem 2

The proof is carried out in two parts.

(i) In this part, we show that there is no Zeno behavior by

contradiction.

We first note that it follows from the way we determine

the triggering times by (13) that

κi

(

‖exi (t)‖2 −
(αγε0 − θ)βσi

4ϕi

q̂i(t)
)

≤ χi(t), ∀t ≥ 0.

(56)

This together with (15) implies that

χ̇i(t) ≥ −φiχi(t)−
δi

κi

χi(t), ∀t ≥ 0.

Therefore,

χi(t) ≥ χi(0)e
−(φi+

δi
κi

)t
> 0, ∀t ≥ 0.

Assume that there exists Zeno behavior. Then there exists

an agent i, such that limk→+∞ tik = T0 where T0 is a positive

constant. Noting that yi(t) is continuous with respect to time

t, there exists a positive constant M0 such that ‖ẋi(t)‖ =

‖yi(t)‖ ≤ M0, ∀t ∈ [0, T0]. Thus,
d‖exi (t)‖

dt
≤ ‖ėxi (t)‖ =

‖ẋi(t)‖ ≤ M0, ∀t ∈ [0, T0]. The rest of the proof to show

that there exists a contradiction under the assumption that

there exists Zeno behavior is similar to the proof in [22].

Thus, we omit the details here. Therefore, Zeno behavior is

excluded.

(ii) In this part, we use the Lyapunov analysis method

to show that each individual solution xi(t) exponentially

converges to the minimizer x∗

Consider V1(v,x,y) defined in (40) again. The derivative

of V1 along the trajectories of (12) satisfies

V̇1

=y
⊤
{

− γy − αβ(L ⊗ Ip)x̂− θv − α∇f(x)
}

+ γ2ε0(x− x̄)⊤y + γε0(x− x̄)⊤
{

− γy

− αβ(L ⊗ Ip)x̂− θv − α∇f(x)
}

+ γε0y
⊤
y + θγε0(v − v̄)⊤(Kn ⊗ Ip)x̂

+ θ(v − v̄)(Kn ⊗ Ip)y + θβx⊤(L⊗ Ip)x̂



+ αβx⊤(L ⊗ Ip)y − αy⊤(∇f(x̄)−∇f(x))

=y
⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ γε0(x− x̄)⊤
{

− αβ(L ⊗ Ip)x̂

− θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ γε0y
⊤
y + θγε0(v − v̄)⊤(x̂− x̄)

+ θ(v − v̄)y + θβx⊤(L ⊗ Ip)x̂

− αβ(ex)⊤(L⊗ Ip)y − αy⊤(∇f(x̄)−∇f(x))

=− γ(1− ε0)y
⊤
y − (αγε0 − θ)βx̂⊤(L⊗ Ip)x̂

+ (αγε0 − θ)β(ex)⊤(L⊗ Ip)x̂+ γθε0(e
x)⊤(v − v̄)

− α(x− x̄)⊤(∇f(x)−∇f(x̄))− αβ(ex)⊤(L⊗ Ip)y

≤− γ(1− ε0)y
⊤
y − (αγε0 − θ)βx̂⊤(L⊗ Ip)x̂

− (αγε0 − θ)β

4

n
∑

i=1

n
∑

j=1

Lij‖x̂j − x̂i‖2

+ (αγε0 − θ)β

n
∑

i=1

Lii‖exi ‖2 +
γ2θε20
4ε8

‖ex‖2

+ ε8θ‖v − v̄‖2 + γ(1− ε0)

2
y
⊤
y

− α(x− x̄)⊤(∇f(x)−∇f(x̄))

+
α2β2

γ(1− ε0)

n
∑

i=1

(

Lii −
n
∑

j=1,j 6=i

LjjLij

)

‖exi ‖2

=− γ(1− ε0)

2
y
⊤
y − (αγε0 − θ)β

2
x̂
⊤(L⊗ Ip)x̂

− α(x− x̄)⊤(∇f(x)−∇f(x̄))

+ ε8θ‖v − v̄‖2 +
n
∑

i=1

ϕ̃i‖exi ‖2

≤− γ(1− ε0)

2
y
⊤
y − (αγε0 − θ)β

4
x̂
⊤(L⊗ Ip)x̂

−m2α‖x− x̄‖2 + ε8θ‖v − v̄‖2 +
n
∑

i=1

ϕi‖exi ‖2

≤− ε5(‖y‖2 + ‖x− x̄‖2)− (αγε0 − θ)β

2
x̂
⊤(L⊗ Ip)x̂

+ ε8θ‖v − v̄‖2 +
n
∑

i=1

ϕi‖exi ‖2, (57)

where ϕ̃i = (αγε0 − θ)βLii +
γ2θε2

0

4ε8
+ α2β2

γ(1−ε0)

(

Lii −
∑n

j=1,j 6=i LjjLij

)

, and m2, ε5, and ε8 are defined in (16),

(17), and (20), respectively; the last equality holds due to

the property that
∑n

i=1 q̂i(t) = x̂
⊤(L ⊗ Ip)x̂; the first

inequality holds due to Young’s inequality and the following

inequalities

(ex)⊤(L⊗ Ip)x̂ =

n
∑

i=1

n
∑

j=1

Lij(e
x
i )

⊤x̂j

=

n
∑

i=1

n
∑

j=1,j 6=i

Lij(e
x
i )

⊤(x̂j − x̂i)

≤−
n
∑

i=1

n
∑

j=1,j 6=i

Lij

{

‖exi ‖2 +
1

4
‖x̂j − x̂i‖2

}

=

n
∑

i=1

Lii‖exi ‖2 −
1

4

n
∑

i=1

n
∑

j=1

Lij‖x̂j − x̂i‖2,

−αβ(ex)⊤(L⊗ Ip)y ≤ α2β2

2γ(1− ε0)
(ex)⊤(L2 ⊗ Ip)e

x

+
γ(1− ε0)

2
y
⊤
y,

and

(ex)⊤(L2 ⊗ Ip)e
x =

n
∑

i=1

∥

∥

∥

n
∑

j=1,j 6=i

Lij(e
x
j − exi )

∥

∥

∥

2

≤
n
∑

i=1

{

n
∑

j=1,j 6=i

(−Lij)

n
∑

j=1,j 6=i

(−Lij)‖exj − exi ‖2
}

≤− 2

n
∑

i=1

Lii

n
∑

j=1,j 6=i

Lij(‖exj ‖2 + ‖exi ‖2)

=

n
∑

i=1

2(Lii −
n
∑

j=1,j 6=i

LjjLij)‖exi ‖2;

and the second inequality holds due to (58) and (59) in the

following.

Noting that

x
⊤(L ⊗ Ip)x ≤ 2x̂⊤(L⊗)x̂+ 2(ex)⊤(L⊗)ex

≤2x̂⊤(L⊗)x̂+ 2
n
∑

i=1

Lii‖exi ‖2,

we have

− (αγε0 − θ)β

4
x̂
⊤(L⊗)x̂ ≤ − (αγε0 − θ)β

8
x
⊤(L ⊗ Ip)x

+
(αγε0 − θ)β

4

n
∑

i=1

Lii‖exi ‖2. (58)

By letting r = (αγε0−θ)β
8α and ι =

mf

4M
in Lemma 3, we have

α(x− x̄)⊤(∇f(x)−∇f(x̄))

+
(αγε0 − θ)β

8
x
⊤(L⊗ Ip)x ≥ αγm2‖x̄− x‖2, (59)

where m2 is defined in (16).

Consider W3(v,x,y) defined in (47) again. The derivative

of W3 along the trajectories of (12c) and (12b) satisfies

Ẇ3

=
ε

α
y
⊤
{

− γy − αβ(L ⊗ Ip)x̂− θv − α∇f(x)
}

+ ε(v − v̄)⊤(Kn ⊗ Ip)
{

− γy − αβ(L ⊗ Ip)x̂

− θv − α∇f(x)
}

+ εβx̂⊤(L⊗ Ip)y

+ εαβ(v − v̄)⊤(L⊗ Ip)x̂+ εy⊤(∇f(x)−∇f(x̄))

=
ε

α
y
⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}

+ ε(v − v̄)⊤
{

− γy − θ(v − v̄) + α∇f(x̄)− α∇f(x)
}



+ εy⊤(∇f(x)−∇f(x̄))

≤− εθ

2
(v − v̄)⊤(v − v̄) + εε6

{

‖y‖2 + ‖x− x̄‖2
}

, (60)

where ε6 is defined in (18).

Consider

W4(v,x,y) = ε7V1(v,x,y) +W3(v,x,y).

From (57), (60), and ε7 = 1 + εε6
ε5

, we know that the

derivative of W4 along the trajectories of (12) satisfies

Ẇ4

≤− ε5

{

‖y‖2 + ‖x− x̄‖2
}

− ε7
(αγε0 − θ)β

4
x̂
⊤(L ⊗ Ip)x̂

+ ε7ε8θ‖v − v̄‖2 +
n
∑

i=1

ε7ϕi‖exi ‖2 −
εθ

2
‖v − v̄‖2

=− ε5

{

‖y‖2 + ‖x− x̄‖2
}

− ε7
(αγε0 − θ)β

4
x̂
⊤(L⊗ Ip)x̂

+

n
∑

i=1

ε7ϕi‖exi ‖2 −
εθ

4
‖v − v̄‖2, (61)

where the equality holds since ε8 = ε
4ε7

.

Denote χ = [χ1, · · · , χn]
⊤. Consider the following Lya-

punov function

V3(v,x,y,χ) = W4(v,x,y) + ε7

n
∑

i=1

ϕiχi.

This together with (56) and (61) imply that the derivative

of V3 along the trajectories of (12) and (15) satisfies

V̇3

≤− ε5

{

‖y‖2 + ‖x− x̄‖2
}

− ε7
(αγε0 − θ)β

4
x̂
⊤(L ⊗ Ip)x̂

+
n
∑

i=1

ε7ϕi‖exi ‖2 −
εθ

4
‖v − v̄‖2 −

n
∑

i=1

ε7ϕiφiχi(t)

−
n
∑

i=1

ε7ϕiδi

(

‖exi (t)‖2 −
(αγε0 − θ)βσi

4ϕi

q̂i(t)
)

≤− ε5

{

‖y‖2 + ‖x− x̄‖2
}

− εθ

4
‖v − v̄‖2 −

n
∑

i=1

ε7ϕiφiχi(t)

+

n
∑

i=1

ε7ϕi(1− δi)
(

‖exi (t)‖2 −
(αγε0 − θ)βσi

4ϕi

q̂i(t)
)

≤− ε5

{

‖y‖2 + ‖x− x̄‖2
}

− εθ

4
‖v − v̄‖2

−
n
∑

i=1

ε7ϕikdχi(t)

≤− ε9

{

‖y‖2 + ‖x− x̄‖2 + ‖v − v̄‖2 +
n
∑

i=1

ε7ϕiχi(t)
}

,

(62)

where ε9 is defined in (22).

Similar to (50), we have

W4(v,x,y) ≥ ε̃2‖x− x̄‖2 ≥ 0,

where ε̃2 = ε7
γ2ε0(1−ε0)

2 . Thus,

V3(v,x,y, χ) > W4(v,x,y) ≥ ε̃2‖x− x̄‖2 ≥ 0. (63)

Similar to (54), we have

W4 ≤ε10(‖y‖2 + ‖x− x̄‖2 + ‖v − v̄‖2),
where ε10 is defined in (23). Thus,

V3 ≤ε10

{

‖y‖2 + ‖x− x̄‖2 + ‖v − v̄‖2 +
n
∑

i=1

ε7ϕiχi(t)
}

.

Then,

V̇3(t) ≤− ε9

ε10
V3(t), ∀t ≥ 0. (64)

From (63) and (64), we know that

‖xi(t)− x∗‖ ≤ ‖x(t)− x̄‖

≤
√

1

ε̃2
V3(v(t),x(t),y(t),χ(t))

≤
√

1

ε̃2
V3(v(0),x(0),y(0),χ(0))e

− ε9
2ε10

t
, ∀i ∈ V , ∀t ≥ 0,

i.e., xi(t) exponentially converges to the unique global

minimizer x∗ with a rate no less than ε9
2ε10

> 0.
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