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Abstract— In this paper, we study the global stability prop-
erties of a multi-agent model of natural resource consumption
that balances ecological and social network components in
determining the consumption behavior of a group of agents.
The social network is assumed to be leaderless, a condition that
ensures that no single node has a greater influence than any
other node on the dynamics of the resource consumption. It is
shown that any network structure can be made leaderless by the
social preferences of the agents. The ecological network com-
ponent includes a quantification of each agent’s environmental
concern, which captures each individual agent’s threshold for
when a resource becomes scarce. We show that leaderlessness
and a mild bound on agents’ environmental concern are jointly
sufficient for global asymptotic stability of the consumption
network to a positive consumption value, indicating that ap-
propriately configured networks can continuously consume a
resource without driving its value to zero. The behavior of
these leaderless resource consumption networks is verified in
simulation.

I. INTRODUCTION

In the face of an ever-changing natural climate, under-
standing the behavior of renewable natural resources and
the impact of human consumption on those resources is
important for ensuring long term resource consumption [1],
[2]. Modeling of natural resources allows the prediction
of consumption behavior and offers valuable insights into
the relationship between various system components. In this
paper we study network structure and resource consumption.
Of particular interest is the equilibrium behavior of these
models, as equilibria can help describe the long term sus-
tainability of natural resources [3]. The discussion of long
term system behavior must be preceded by an understanding
of the stability properties of the system.

This paper focuses on the study of an agent-based model
of natural resource consumption previously introduced and
studied in [4]–[6]. This model captures insights from the
social sciences on the consumption behavior of humans in a
form that can be analyzed mathematically. Past work on this
model has sought to understand the behavior of the model
and has considered stability of this model in the two agent
case. This paper extends the consideration of stability to
consider n agents interacting over a network.
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The overall system consists of an ecological sub-model,
which describes the dynamics of the resource, and a social
sub-model, describing the dynamics of the agents’ consump-
tion. The ecological sub-model is based on the Gordon
Schaefer model, which represents a class of well studied
systems associated with dynamic processes in population
biology, ecological economics and other related disciplines
[7], [8]. The stability of the Gordon-Schaefer model, as
well as similar logistic growth models, has been studied
extensively in isolation from the social processes which drive
human consumption behavior [9]–[12].

The social component of the model describes the cognitive
decision making process of the agents regarding change
in their consumption. This process is influenced both by
the state of the resource and the consumption of other
neighboring agents. The influence of the agents on each
others’ consumption is similar to how agents influence each
other in mathematical models of opinion formation [13]
and consensus in cooperative multi-agent systems [14]. The
dependence of the agents’ resource consumption on the
state of the resource appears as an exogenous factor or
time-varying bias in the overall dynamics (see [15], [16]
for similar models). An important component of the social
process is the underlying social network structure, which
greatly influences the ability of a community to successfully
manage its natural resources [17], [18].

This paper studies the behavior of a consumption network
under the assumption that it is leaderless: that one agent will
not drive the social network component of the model more
than any other agent in the network. This assumption allows
an aggregation of individual state nodes [5], facilitating an
understanding of the system-level behavior. Discussing a
consuming population in aggregate is a common tool for the
study of resource consumer social networks [19] and allows
for the design of actions taken to change behavior, which
often happen at the community level [18]. The leaderless
assumption, as will be shown, also captures a wide array of
systems and a rich class of stable system behaviors.

The rest of the paper is organized as follows. Section II in-
troduces the consumption model and discusses its properties.
Section III discusses the leaderless condition and presents
a Lyapunov based proof for global stability of the system.
In Section IV the behavior of leaderless systems is studied
in simulation, with a discussion in Section V. The paper
concludes in Section VI.

II. SYSTEM DYNAMICS

This section presents the dynamics governing the re-
source quantity and consumer behavior in the coupled socio-
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ecological system. We first discuss each sub-model and then
give an aggregate leaderless consumption model.

A. The Ecological Sub-model

The ecological component of the system is assumed to
consist of a single renewable resource with quantity at time
τ represented by R(τ). In the absence of consumption,
the resource grows at intrinsic growth rate r and saturates
at carrying capacity Rmax. The resource is connected to
a consuming population consisting of n individuals. Each
individual can harvest the resource by exerting consumption
effort ei(τ), where i ∈ {1, . . . ,n} represents a single
consumer. The resource dynamics are assumed to follow the
standard Gordon-Schaefer model [8] with catch coefficient
equal to one, which is given as

dR(τ)

dτ
= rR(τ)

(
1− R(τ)

Rmax

)
−R(τ)

n∑
i=1

ei(τ). (1)

B. The Social Sub-model

The social sub-model is based on Festinger’s theory of
social comparison processes [20], which postulates that hu-
man beings evaluate their decisions, opinions and abilities
by reflecting on both objective and social information. In
the context of natural resource consumption, objective in-
formation corresponds to the state of the resource and social
information corresponds to the consumption of other socially
connected individuals [21]. To balance between objective and
social information, the change in consumption effort of the
agent is given as a weighted sum of both ecological and
social factors.

The ecological factor for consumer i is given by R(τ)−Ri,
where Ri ∈ R represents the perceived scarcity threshold
of i, below which agent i considers the resource to be
scarce, and above which she considers it to be abundant.
The ecological factor is weighed by ai ∈ (0,∞), which
represents the set of factors to which agent i attributes the
state of the natural resource. An ecological attribution ai → 0
represents a consumer that attributes the state of the resource
entirely to the actions of the consuming society (including
the agent itself), while increasing values of ai correspond to
the individual attributing the current state of the resource to
natural causes (droughts, wildfires, heavy rain, etc).

The ecological factor is balanced by a social component,

given by
n∑

i=1

ωij(ej(τ) − ei(τ)), which is the difference

between i’s consumption and that of the other socially con-
nected consumers in the population. The graph connectivity
is captured by ωij ≥ 0 which is the strength of the social

tie directed from j to i. We assume that
n∑

j=1

ωij = 1 and

ωii = 0 ∀ i ∈ {1, . . . ,n}. The social factor is weighed by
si ∈ (0,∞), the social-value orientation of i. Social-value
orientations si → 0 represent extremely non-cooperative
individuals, which will ignore the actions of their network
neighbors. Conversely, increasing values of si correspond to
increasingly cooperative individuals.

Combining the social and ecological component gives the
dynamics of the consumption effort for consumer i as

dei(τ)

dτ
= ai(R(τ)− Ri) + si

n∑
j=1

ωij(ej(τ)− ei(τ)), (2)

where the ecological and social factors have been weighed in
accordance with findings in social psychological research on
consumer behavior [4]. In particular, individuals that attribute
blame to natural causes tend to give more importance to
ecological information and vice versa. Similarly, cooperative
individuals are more concerned with maximizing equality in
consumption than non-cooperative ones, and as such will be
further influenced by the social factor (see [4] and included
references for more details).

C. Non-dimensionalized Socio-Ecological System

In order to reduce the dimensionality of the parame-
ter space, the system given by Eq. (1) and (2) is non-
dimensionalized. The process of non-dimensionalization has
an added benefit of allowing comparison between system
parameters. The dynamics of the non-dimensionalized state

of the resource x =
R(τ)

Rmax
and the non-dimensionalized

consumption yi =
ei
r

are given as follows

ẋ = (1− x)x− x
n∑

i=1

yi,

ẏi = bi

(1− νi)(x− ρi) + νi
n∑

j=1

ωij(yj − yi)

 ,

(3)

where i ∈ {1, . . . ,n},

bi =
aiRmax + rsi

r2
, νi =

rsi
aiRmax + rsi

,

and the derivatives ẋ and ẏi are taken with respect to the
non-dimensional time t = rτ . The non-dimensionalized
threshold ρi =

Ri

Rmax
is called the environmentalism of i.

The parameter bi is the sensitivity of i, which represents
i′s openness to change in her consumption. The final pa-
rameter, νi, is called the socio-ecological relevance of i and
represents the importance that i gives to social information
relative to ecological information in the process of changing
consumption behavior.

D. Influence and Leadership

The consumption of i is influenced by the consumption of
all other agents that are socially connected to her. This notion
of connectivity is captured in Eq. (3) via the parameters ωij ,
which denote the strength of the social tie directed from j
to i. If ωij = 0 this implies that there is no social link
from j to i, allowing the collection of ωij’s to specify the
topology of the underlying social network. The aggregate
influence of the rest of the agents on i’s consumption is
given by

∑n
j=1 biνiωij and is called the in-influence of i.

The aggregate influence that i exerts on the other agents in
the network is given by

∑n
j=1 bjνjωji and is called the



out-influence of i. The difference between the out-influence
and the in-influence is called the net-influence of i and
determines the role of i in the network as a leader (positive
net-influence), a follower (negative net-influence) or neutral
(zero net-influence). In this paper, we consider cases in which
all agents in the network are neutral.

III. GLOBAL ASYMPTOTIC STABILITY OF LEADERLESS
NETWORKS

In this section, two assumptions on the network and
parameters are introduced before transforming the non-
dimensionalized dynamics in Eq. (3) into a form more
amenable to stability analysis. Then the equilibrium point
of the transformed dynamics is computed and a coordinate
shift is applied to move this equilibrium point to the origin.
Finally global asymptotic stability of the origin is proven,
which implies stability of the non-dimensionalized dynamics
in Equation (3).

A. Transformed Leaderless Aggregate Dynamics
In this section, two assumptions on the model parameters

are introduced.
Assumption 1: The network under consideration is lead-

erless, i.e.,
n∑

j=1

(
ωijbiνi −ωjibjνj

)
= 0

for all i ∈ {1, . . . ,n}. 4
Note that this assumption is the same used in defining

homogeneous consumer networks in [5]. Below, the network-
level dynamics will be derived by considering the new state
variables

z = log x and u =

n∑
i=1

yi.

In doing so the following assumption, which bounds the
maximum possible value of ρi for each agent, will be
enforced.

Assumption 2: For all i ∈ {1, . . . ,n}, ρi ∈ (0, 2). 4
Because ρi is the normalized value of Ri, Assumption 2

implies that Ri ∈ (0, 2Rmax). This is therefore a rather weak
assumption as few agents are expected to have Ri > Rmax
because this implies that agent i’s scarcity threshold is larger
than the resource carrying capacity Rmax.

B. Leaderless Networks
Before deriving the modified network level dynamics of

the system, this section considers Assumption 1 in more de-
tail. First, we consider the existence of a leaderless dynamic.

Lemma 1: For any set of network weights ωij , there
exists a set of social orientations that renders the network
leaderless.

Proof: Consider the matrix of edge weights,

W =



−
(∑n

j=2ω1j

)
ω21 . . . ωn1

ω12 −
(∑n

j=1
j 6=2

ω2j

)
. . . ωn2

...
...

. . .
...

ω1n ω2n . . . −
(∑n−1

j=1 ωnj

)


.

The leaderless condition is equivalent to W having a non-
trivial null space. Notice that the matrix WT has rows
that sum to 0, which implies that the vector 1n is an
eigenvector with eigenvalue 0. As W and WT have the
same eigenvalues [22], W also has an eigenvalue at 0 and
therefore a non-trivial null space. Then there must be a
vector of normalized social orientation bv ∈ null(W ) and
such a vector renders the network leaderless.
Figure 1 shows two examples of a leaderless network for a
set of uniform weights on a line graph and a cycle graph.
Lemma 1 shows that any graph, including those commonly
found in complex networks such as scale free [23] and
small world [24] networks, can be rendered leaderless by
the appropriate social orientation. As such, Assumption 1
is widely applicable. The behavior of the natural resource
dynamic over a leaderless network will be further studied
in Section IV, after the stability of the system has been
established.
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Fig. 1: 2 Leaderless Networks: a line graph (1a) and a cycle
graph (1b). Each edge is labeled with its edge weight ωij

and each node is labeled with its social attribution bivi.

C. Dynamics
With these assumptions in place, the transformed network

level dynamics will be derived. Computing the time deriva-
tive of z gives

ż =
ẋ

x
= 1− x−

n∑
i=1

yi = 1− ez − u.

Differentiating u with respect to time and expanding gives

u̇ =

n∑
i=1

ẏi,

u̇ =

n∑
i=1

(
biαix− biαiρi

)
−

n∑
i=1

n∑
j=1

biνiωij(yi − yj)



=

n∑
i=1

(
biαie

z − biαiρi
)

−
n∑

i=1

[ n∑
j=1

(
ωijbiνi −ωjibjνj

)]
yi

=

n∑
i=1

biαie
z −

n∑
i=1

biαi −
n∑

i=1

biαi(ρi − 1),

where the sum containing yi has vanished due to Assump-
tion 1. Continuing,

u̇ =

[ n∑
i=1

biαi

]
(ez − 1)−

n∑
i=1

biαi(ρi − 1)

= K1(e
z − 1)−K2,

where

K1 :=

n∑
i=1

biαi and K2 :=

n∑
i=1

biαi(ρi − 1).

From these definitions, K1 is manifestly positive because
it is a sum of positive terms. Under Assumption 2, it also
follows that

|K2| =
∣∣∣∣∣

n∑
i=1

biαi(ρi − 1)

∣∣∣∣∣ ≤ max
i∈{1,...,n}

|ρi − 1|
n∑

i=1

biαi

= K1 max
i∈{1,...,n}

|ρi − 1| ≤ K1,

where the last inequality follows from Assumption 2.
The (z, u) dynamics thus take the form

ż = 1− ez − u
u̇ = K1(e

z − 1)−K2.

Next, the equilibrium of the (z, u) system is computed in
order to translate this system into one whose equilibrium is
at the origin.

D. Equilibrium

The following lemma provides the uniqueness and value
of the (z, u) system’s equilibrium point.

Lemma 2: The (z, u) system has a unique equilibrium
point located at

z0 = log

(
K2

K1
+ 1

)
u0 = −K2

K1
.

Proof: Setting u̇ = 0 we find

u̇ = K1(e
z − 1)−K2 = 0,

which immediately provides

z0 = log(K2/K1 + 1).

Setting ż = 0 gives

ż = 1− ez − u = 0,

where setting z = z0 results in

ż = 1−
(
K2

K1
+ 1

)
− u = 0.

Solving for u0 then provides

u0 = −K2

K1
.

By Lemma 2, the equilibrium value of the resource, R0,
(in the coordinates of Eq. (3)) is

R0 =

(
K2

K1
+ 1

)
Rmax.

If K2 > 0, which corresponds to at least one agent having
Ri > Rmax, then R0 is larger than Rmax. This occurs as the
agents with Ri > Rmax will work to increase R beyond Rmax.
Alternatively, if K2 is negative then R0 is smaller than Rmax,
though R0 is always positive because |K2| < K1 and thus
K2/K1 + 1 > 0 always. Similarly, if K2 > 0, then u0 > 0,
corresponding to a net effort to increase the available quantity
of resource, while K2 < 0 causes u0 < 0, which corresponds
to active resource consumption at steady state.

Having computed the equilibrium point of the system, we
define a coordinate shift by

v = z − z0, w = u− u0,

resulting in the dynamics

v̇ = ż = 1− ez − u = 1− ev+z0 − (w + u0),

= −evez0 − w + 1 +
K2

K1
= −evez0 − w + ez0 ,

= −ez0(ev − 1)− w,

where we have used ez0 = K2/K1 + 1.
For w, the dynamics are governed by

ẇ = u̇ = K1(e
z − 1)−K2

= K1e
v+z0 −K1 −K2

= K1e
v

(
1 +

K2

K1

)
−K1 −K2

= K1e
v +K2e

v −K1 −K2

= (K1 +K2)(e
v − 1).

The final system dynamics to be analyzed are

v̇ = −ez0(ev − 1)− w (5)
ẇ = (K1 +K2)(e

v − 1),

whose unique equilibrium point is the origin.

E. Global Stability

The following theorem demonstrates asymptotic stability
of the system in Equation (5) to the origin.

Theorem 1: Under Assumptions 1 and 2 the origin is
globally asymptotically stable in Equation 5.

Proof: Consider the Lyapunov function

V (v, w) = ev − v − 1 +
(K1 +K2)

−1

2
w2,



which is positive definite, satisfies V (0, 0) = 0, and is
radially unbounded. Differentiating V with respect to time,

V̇ = ev v̇ − v̇ + (K1 +K2)
−1wẇ

= ev(−ez0(ev − 1)− w) + ez0(ev − 1)

+ w + w(ev − 1)

= − ez0ev(ev − 1)− evw + ez0(ev − 1)

+ w + w(ev − 1)

= −ez0(ev − 1)2 + w(ev − 1)− w(ev − 1)

= −ez0(ev − 1)2 ≤ 0.

Here, LaSalle’s invariance principle can be used to prove
global asymptotic stability of (0, 0) by showing that the set
V0 = {(v, w) | V̇ (v, w) = 0} contains only the trivial
trajectory

(
v(t), w(t)

)
≡ (0, 0) [25].

To do so, observe that V̇ (v, w) = 0 for all trajectories of
the form (0, w). Plugging this into the system dynamics in
Equation (5) implies

v̇ = −w, ẇ = 0.

Then the only invariant point in V0 has w = 0 because v̇ = 0
must hold to ensure that the system remains in V0.

IV. SIMULATIONS

This section considers the behavior of leaderless network
topologies in simulation, focusing specifically on the case
of the star graph. The star graph, also known as a hub,
is of central importance to the study of complex networks
[26]. The star graph also has a node, the center of the star,
that might be expected to be the leader of a social network.
Despite this, there are many leaderless social networks that
can evolve over the star graph. Three leaderless networks on
the same star topology are shown in Figure 2.

The resource was assumed to have a carrying capacity
Rmax = 1, a growth rate r = 1, and a random initial condition
that was fixed across simulations. The network was run with
an ecological attribution a and a set of thresholds R where

a =


0.4340
0.2046
0.1891
0.6935
0.2108

 , R =


0.2262
0.4788
0.4582
1.1745
0.8483

 .
The time history of the resource level was identical for all
3 systems and is shown in Figure 3. The individual usages
for each of the 3 systems are shown in Figure 4.

V. DISCUSSION

For each leaderless network considered here the aggregate
resource consumption is identical, however the individual us-
age changes dramatically for the various weighting schemes.
Further, given that the form of the individual consumption
effort given in Eq. (2) is similar to the consensus dynamic
[13], [14], it is reasonable to expect that individual con-
sumption converges to a single uniform steady-state usage as
happens under consensus on a connected graph. This does
not occur in leaderless consumption networks, showing that
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Fig. 2: 3 Leader-Less Star Graphs for (2a) random weights,
(2b) uniform weights, (2c) skewed weights. Each edge is
labeled with its weight and each node is labeled with its
social orientation.

R(t)

t

0
0

1.4

25

Fig. 3: Level of the Natural Resource over time of the three
5 node leaderless star graphs shown in Figure 2.

this model addresses a need for social models that do not
reach consensus [27].

To see why this behavior occurs, first note that the model
allows negative resource usage and that stability of the equi-
librium point requires that an agent (here agent 4 as shown
in Figure 4) contributes resource to ensure balance with the
usage of the other agents. As the network is leaderless, the
equilibrium behavior of the system depends on the ecological
component. Agent 4 has a threshold, R4 = 1.17, which is
significantly higher than the thresholds of its neighbors. This
higher threshold drives the agent to contribute resource to
balance out the usage of the agents that have lower thresholds
and which therefore consume the resource.
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Fig. 4: Evolution of Individual Resource Consumption for 3
Leader-Less Star Graphs: (4a) the random weighted graph
shown in (2a). (4b) the uniform weighted graph shown in
(2b). (4c) the skew weighted graph shown in (2c). (4d) maps
the position of the nodes to trajectories

While this system is stable, as shown by Theorem 1 and
displayed in Figure 3, this system level behavior would be
worrying as the progress of a natural resource. Imagine,
for example, the panic of a populace if the level of the
local water reservoir were to change as indicated in Figure
3: The reservoir shifts quickly from being almost empty
to overflowing and then starts heading back down towards
empty before reaching equilibrium.

The issue raised in the preceding paragraph points to the
fact that stability, while vital for understanding the behavior
of a system, is not the only property of a natural resource
system which must be understood. There are other questions,
those related to sustainability, which must be addressed
about these models before they are used to inform decision
making in resource governance problems. For example, can
humans use this resource in the short term without risking
the depletion of the resource in the long term? Future work
is required to bridge this gap between stability tools and the
characterization of an ecological system as sustainable.

VI. CONCLUSION

In this paper, a model of natural resource consumption was
considered. Stability was shown under the assumption that
the network is leaderless and that the individual thresholds
are in (0, 2Rmax). The stability of the system was verified in
simulation and it was shown that while the system is stable
it is not necessarily sustainable.
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