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Asynchronous Distributed Optimization with

Heterogeneous Regularizations and Normalizations

Stefan Hochhaus?,† and Matthew T. Hale?

Abstract

As multi-agent networks grow in size and scale, they become increasingly difficult to synchronize, though agents

must work together even when generating and sharing different information at different times. Targeting such cases,

this paper presents an asynchronous optimization framework in which the time between successive communications

and computations is unknown and unspecified for each agent. Agents’ updates are carried out in blocks, with each

agent updating only a small subset of all decision variables. To provide robustness to asynchrony, each agent uses an

independently chosen Tikhonov regularization. Convergence is measured with respect to a weighted block-maximum

norm in which convergence of agents’ blocks can be measured in different p-norms and weighted differently to

heterogeneously normalize problems. Asymptotic convergence is shown and convergence rates are derived explicitly

in terms of a problem’s parameters, with only mild restrictions imposed upon them. Simulation results are provided

to verify the theoretical developments made.

I. INTRODUCTION

Distributed optimization techniques have been applied in many areas ranging from sensor networks [1], [2], [3]

and communications [4], [5], to robotics [6] and smart power grids [7]. With this diversity in applications, there have

emerged correspondingly diverse problem formulations which address a wide variety of practical considerations.

As multi-agent systems become increasingly complex, a key practical consideration is the ability to tightly couple

agents and the timing of their behaviors. Often, perfect synchrony among agents’ communications and computations

is difficult or impossible because closely coupling all agents in large networks is also difficult or impossible. Instead,

one must sometimes utilize information that is asynchronously generated and shared. This paper examines how to

do so in a distributed optimization setting.

There is a significant existing literature on distributed optimization, including a large corpus of work on asyn-

chronous optimization. One common approach is to assume that delays in communications and computations are

bounded, and this approach is used for example in [8], [9], [10], [11], [12], [13], [14], [15], [16], and the delay

bound parameter explicitly appears in convergence rates in [8], [11], [12], [14], [16]. However, in some cases, delay

bounds cannot be enforced. For example, agents with mutually interfering communications may be unable to ensure

that delay lengths stay below a certain threshold because delays are outside their control. Similarly, agents facing

anti-access/area-denial (A2AD) measures may be unable to predict when transmissions will be received or even
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measure delay lengths at all. As a result, some works have addressed asynchronous optimization with unbounded

delays. Early work in this area includes [17], as well as [18], which gives a textbook-level treatment and simplified

proof of the main results in [17].

Work in [17] was expanded upon in [19], where it was shown that a fixed Tikhonov regularization implies the

existence of the nested sets required in [17] for asymptotic convergence. However, developments in [19] require

every agent to apply the same regularization, which can be difficult to enforce and verify in practice, especially in

large decentralized networks. Moreover, convergence in [19] is measured with respect to the same un-weighted norm

for all agents. There is a wide variety of statistical and machine learning problems which must be normalized due

to disparate numerical scales across potentially many orders of magnitude [20], and which may require measuring

convergence of different components in different norms. While such problems are commonly solved using distributed

optimization techniques, they are not accounted for by the work in [19]. Therefore, a fundamentally new approach is

required to account for heterogeneous regularizations and normalizations in the setting of distributed optimization.

In this paper we develop an asynchronous optimization framework to address this gap. In particular, we ex-

amine set-constrained optimization problems with potentially non-separable cost functions, and we allow agents’

communications and computations to be arbitrarily asynchronous, subject only to mild assumptions. Agents are

permitted to independently choose regularization parameters with no restrictions on the disparity between them.

Under these conditions, agents’ convergence is measured with respect to a weighted block-maximum norm which

allows for heterogeneous normalizations of agents’ distance to an optimum in order to accommodate problems with

different numerical scales. Convergence rates are developed in terms of agents’ communications and computations

without specifying when they must occur. The framework developed in this paper uses a block-based update scheme

in which each agent updates only a subset of all decision variables in a problem in order to provide a scalable

update law for large convex programs. The contributions of this paper therefore consist of a scalable optimization

framework that accommodates heterogeneous regularizations and normalizations, together with its convergence rate.

The rest of the paper is organized as follows. Section II defines the optimization problems to be solved and

regularizations used. Next, Section III defines the block-based multi-agent update law, and Section IV proves its

convergence and derives its convergence rate. After that, Section V presents simulation results and Section VI

provides concluding remarks.

II. TIKHONOV REGULARIZATION AND PROBLEM STATEMENT

In this section we describe the class of problems to be solved and the assumptions imposed upon problem data.

We then introduce heterogeneous regularizations and the need for heterogeneous normalizations. Then we give a

formal problem statement that is the focus of the remainder of the paper.

We consider convex optimization problems spread across teams of agents. In particular, we consider teams

comprised of N agents, where agents are indexed over i ∈ [N ] := {1, . . . , N}. Agent i has a decision variable

xi ∈ Rni , ni ∈ N, which we refer to as its state, and we allow for ni 6= nj when i 6= j. The state xi is subject

to the set constraint xi ∈ Xi ⊂ Rni , which can represent, e.g., that a mobile robot must stay in a given area. We

April 26, 2022 DRAFT



3

make the following assumption about each Xi.

Assumption 1: For all i ∈ [N ], the set Xi ⊂ Rni is non-empty, compact, and convex. 4

Towards making a formal problem statement, we aggregate agents’ set constraints by defining X := X1×· · ·×XN ,

and Assumption 1 ensures that X is also non-empty, compact, and convex. We further define the ensemble state

as x :=
(
xT1 , . . . , x

T
N

)T ∈ X ⊂ Rn, where n =
∑

i∈[N ]

ni. We consider problems in which each agent has a local

objective function fi to minimize, which can represent, e.g., a mobile robot’s desire to minimize its distance to a

target location; only agent i needs to know fi. The agents are also collectively subject to a coupling cost c, which

can represent the cost of communication congestion in a network, and we allow for c to be non-separable. We then

make the following assumption about the functions fi and c.

Assumption 2: The functions fi, i ∈ [N ], and c are convex and C2 (twice continuously differentiable) in xi and

x, respectively. 4

In particular, ∇f is Lipschitz and we denote its Lipschitz constant by L. The sum of these costs then gives the

aggregate cost function

f (x) := c (x) +
∑
i∈[N ]

fi (xi) ,

and the agents will jointly minimize f . For simplicity of the forthcoming analysis, we assume that f has a unique

minimizer. To endow f with an inherent robustness to asynchrony, we will regularize it before agents start optimizing.

In particular, we regularize f on a per-agent basis, where agent i uses the regularization parameter αi > 0 and

where we allow αi 6= αj when i 6= j. Regularizing f makes it strongly convex, and this will be shown to provide

robustness to asynchrony below. The regularized form of f is denoted fA, and is defined as

fA (x) := f (x) +
1

2
xTAx,

where A = diag (α1In1
, . . . , αNInN

) , and where Ini
is the ni × ni identity matrix.

In some optimization settings, some decision variables evolve at drastically different numerical scales [20]. To

more meaningfully evaluate the convergence of agents with respect to one another, it would be useful to normalize

each agent’s distance to an optimum to prevent the error of one agent dominating the convergence analysis. Allowing

heterogeneous normalizations would therefore give a more useful estimate of the distance to an optimum, and this

should be accounted for by our framework. Moreover, each agent may wish to evaluate the convergence of its own

state using a particular p-norm. Therefore, our framework should accommodate agents measuring the distance to

an optimum in different norms. Bearing these criteria in mind, we now state the problem that is the focus of the

rest of the paper.

Problem 1: For a team of N agents,

minimize
x∈X

fA (x)

while measuring convergence with heterogeneous normalization constants and norms across the agents. ♦

Section III specifies the structure of the asynchronous communications and computations used to solve Problem 1.
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III. BLOCK-BASED MULTI-AGENT UPDATE LAW

To define the exact update law for each agent’s state, we must describe what information is stored and how

agents communicate. Each agent will store a vector containing its own states and those of agents it communicates

with. Each agent only updates its own states within the vector it stores onboard. States stored onboard agent i

which correspond to other agents’ states are only updated when those agents send their states to agent i. This type

of block-based update can be used to capture, for example, when an agent does not have the information required

to update other agents’ states, or when it is desirable to parallelize updates to reduce each agent’s computational

burden.

Formally, we will denote agent i’s full vector of states by xi. Agent i’s own states in this vector are then denoted

by xii. The current values stored onboard agent i for agent j are denoted by xij . At timestep k, agent i’s full state

vector is denoted xi (k), with its own states denoted xii (k) and those of agent j denoted xij (k). At any single

timestep, agent i may or may not update its states due to asynchrony in agents’ computations, and the times of

these updates must be accounted for. We define the set Ki to be the collection of time indices k at which agent i

updates xii; agent i does not compute an update for time indices k /∈ Ki. Using this notation, agent i’s update law

can be written as

xii (k + 1) =

 xii (k)− γ∇ifA
(
xi (k)

)
k ∈ Ki

xii (k) k /∈ Ki
,

where agent i uses stepsize γ > 0, which will be bounded below. Here ∇ifA := ∂fA
∂xi

is the gradient of the

regularized cost function with respect to xi. The significance of agent i’s choice of regularization parameter can

be seen by expanding ∇ifA
(
xi (k)

)
as ∇ifA

(
xi (k)

)
= ∇if

(
xi (k)

)
+ αix

i
i (k), where αi > 0 is set by agent i

alone.

In order to account for communication delays we use τ ij (k) to denote the time at which the value of xij (k)

was originally computed by agent j. For example, if agent j computes a state update at time ka and immediately

transmits it to agent i, then agent i may receive this state update at time kb > ka due to communication delays.

Then τ ij is defined so that τ ij (kb) = ka, the time at which agent j originally computed the update just received by

agent i. Concerning Ki and τ ij (k), we have the following assumption.

Assumption 3: For all i ∈ [N ], the set Ki is infinite. Moreover, for all i ∈ [N ] and j ∈ [N ] \ {i}, if {kd}d∈N is

a sequence in Ki tending to infinity, then

lim
d→∞

τ ij (kd) =∞.

4

Assumption 3 is quite mild in that it simply requires that no agent ever permanently stop updating and sharing

information. For i 6= j, the sets Ki and Kj need not have any relationship because agents’ updates are asynchronous.

The entire update law for all agents can then be written as follows.
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Algorithm 1: For all i ∈ [N ] and j ∈ [N ] \ {i}, execute

xii(k+1)=

xii (k)− γ∇ifA
(
xi (k)

)
k ∈ Ki

xii (k) k /∈ Ki

xij(k+1)=

x
j
j

(
τ ij (k + 1)

)
i receives j’s state at k+1

xij (k) otherwise
.

�

In Algorithm 1 we see that xij changes only when agent i receives a transmission from agent j; otherwise it

remains constant. Agent i can therefore reuse old values of agents j’s state many times and can reuse different

agents’ states different numbers of times. Showing convergence of this update law must take these delays into

account, and that is the subject of the next section.

IV. CONVERGENCE OF ASYNCHRONOUS OPTIMIZATION

In this section we prove the convergence of the multi-agent block update law in Algorithm 1. We first define

the block-maximum norm used to measure convergence and then define a collection of nested sets that will be

used to show asymptotic convergence of all agents adapted from the approach in [19]. Then a convergence rate is

developed using parameters from these sets.

A. Block-Maximum Norms

We begin by analyzing the convergence of the optimization algorithm using block maximum norms similar to

those defined in [17], [18], and [19], and we do so to accommodate the need for heterogeneus normalizations and

norms in Problem 1. Due to asynchrony in agents’ communications, we will generally have xi (k) 6= xj (k) for all

agents i and j and all timesteps k. We will refer to xii as the ith block of xi and xij as the jth block of xi. With

these blocks defined we next define the block-maximum norm that will be used to measure convergence below.

Definition 1: Let x ∈ Rn consist of N blocks, with xi ∈ Rni being the ith block. The ith block is weighted by

some normalization constant wi ≥ 1 and is measured in the pi-norm for some pi ∈ [1,∞]. The norm of the full

vector x is defined as the maximum norm of any single block, i.e.,

‖x‖max := max
i∈[N ]

‖xi‖pi

wi
.

4

The following lemma allows us to upper-bound the induced block-maximum matrix norm by the Euclidian matrix

norm, which will be used below in our convergence analysis. In this lemma, we use the notion of a block of an

n × n matrix. Given a matrix B ∈ Rn×n, where n =
∑N

i=1 ni, the ith block of B, denoted B[i], is the ni × n

matrix formed by rows of B with indices
∑i−1

k=1 nk + 1 through
∑i

k=1 nk. We then have the following result.

Lemma 1: Let pmin := mini∈[N ] pi and let wmin = mini∈[N ] wi. Then for all B ∈ Rn×n,

‖B‖max ≤

 n(p−1
min−

1
2 )w−1min ‖B‖2 pmin < 2

1
wmin

‖B‖2 pmin ≥ 2
.
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Proof: For B[i] the ith block of B and any x ∈ Rn, by definition we have∥∥B[i]x
∥∥
pi

wi
=

1

wi

 ni∑
k=1

∣∣∣∣∣∣
n∑

j=1

B
[i]
k,jxj

∣∣∣∣∣∣
pi


1
pi

. (1)

From the definition of a p-norm, the right side of Equation (1) will always be non-negative. Thus summing the

right-hand side over every block results in∥∥B[i]x
∥∥
pi

wi
≤

N∑
i=1

 1

wi

 ni∑
k=1

∣∣∣∣∣∣
n∑

j=1

B
[i]
k,jxj

∣∣∣∣∣∣
pi


1
pi

 .

Next, recalling that ‖x‖q ≤ ‖x‖r for all vectors x ∈ Rn and all q ≥ r > 0, we find that∥∥B[i]x
∥∥
pi

wi
≤ 1

wmin

N∑
i=1

 ni∑
k=1

∣∣∣∣∣∣
n∑

j=1

B
[i]
k,jxj

∣∣∣∣∣∣
pi


1
pi

≤ 1

wmin

N∑
i=1

 ni∑
k=1

∣∣∣∣∣∣
n∑

j=1

B
[i]
k,jxj

∣∣∣∣∣∣
pmin


1

pmin

.

This then allows us to express the sum over all rows of B via∥∥B[i]x
∥∥
pi

wi
≤ 1

wmin

 n∑
l=1

∣∣∣∣∣∣
n∑

j=1

Bl,jxj

∣∣∣∣∣∣
pmin


1

pmin

.

If pmin ≥ 2, then
∥∥B[i]x

∥∥
pi
≤
∥∥B[i]x

∥∥
2

for all pi. If pmin < 2, we recall that ‖x‖l ≤ ‖x‖pmin
≤ n(p−1

min−l
−1) ‖x‖l,

which follows from Hölder’s inequality for 0 < pmin < l, and observe that
∥∥B[i]x

∥∥
pi
≤
∥∥B[i]x

∥∥
pmin

≤

n(p−1
min−

1
2 ) ‖Bx‖2. Combining these inequalities we find that∥∥B[i]x

∥∥
pi

wi
≤

 n(p−1
min−

1
2 )w−1min ‖Bx‖2 pmin < 2

1
wmin

‖Bx‖2 pmin ≥ 2

for all i. Thus the weighted block maximum norm of Bx for any x ∈ Rn can be bounded as

‖Bx‖max = max
i∈[N ]

∥∥B[i]x
∥∥
pi

wi

≤

 n(p−1
min−

1
2 )w−1min ‖Bx‖2 pmin < 2

1
wmin

‖Bx‖2 pmin ≥ 2
,

and the lemma follows by taking the supremum over all unit vectors x.

B. Convergence Via Nested Sets

We now begin the convergence analysis for the block-based update law in Algorithm 1 where agents are

asynchronously optimizing. In order for this system to converge using the communications described in the previous

section, we construct a sequence of sets, {X (s)}s∈N, based on work in [17] and [18]. Below we use the notation

x̂A := arg minx∈X fA (x) to specify the minimizer of the regularized cost function fA. We state the conditions
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imposed upon these sets as an assumption, and this assumption will be shown below to be satisfied using the

heterogeneous regularization applied by A.

Assumption 4: The sets {X (s)}s∈N satisfy:

1) · · · ⊂ X (s+ 1) ⊂ X (s) ⊂ · · · ⊂ X

2) lim
s→∞

X (s) = {x̂A}

3) Xi (s) ⊂ Xi for all i ∈ [N ] and s ∈ N such that X (s) = X1 (s)× · · · ×XN (s)

4) θi (y) ∈ Xi (s+ 1), where θi (y) := yi − γ∇ifA (y) for all y ∈ X (s) and i ∈ [N ]. 4

Assumptions 4.1 and 4.2 together show that these sets are nested as they converge to the minimum x̂A.

Assumption 4.3 allows for the blocks to be updated independently by the agents, and Assumption 4.4 ensures

that state updates always progress down the chain of nested sets such that only forward progress toward x̂A is

made. It is shown in [17] and [18] that the existence of such a sequence of sets implies asymptotic convergence of

the asynchronous update law in Algorithm 1, and we therefore use this construction to show asymptotic convergence

in this paper. Defining the Lipschitz constant of ∇ifA as Li, we further define Lmax := max
i∈[N ]

Li, and then define

the constant

q = max

{
max
i∈[N ]

|1− γαi| ,max
i∈[N ]

|1− γLi|
}
.

Letting γ ∈
(

0, 2
Lmax

)
and α ∈ (0, Lmax), we find q ∈ (0, 1); a proof for this can be seen in [21]. We then proceed

to define Do as

Do := max
i∈[N ]

∥∥xi (0)− x̂A
∥∥
max

,

which is the worst-performing block onboard any agent with respect to distance to x̂A at timestep 0. We then define

the sequence of sets {X (s)}s∈N as

X (s) = {y ∈ X : ‖y − x̂A‖max ≤ q
sDo} , (2)

and this construction is shown in the following theorem to satisfy Assumption 4, thereby ensuring asymptotic

convergence of Algorithm 1.

Theorem 1: The collection of sets {X (s)}s∈N as defined in Equation (2) satisfies Assumption 4.

Proof: For Assumption 4.1 we see that

X (s+ 1) =
{
y ∈ X : ‖y − x̂A‖max ≤ q

s+1Do

}
.

Since q ∈ (0, 1), we have qs+1 < qs, which results in ‖y − x̂A‖max ≤ qs+1Do < qsDo. Then y ∈ X (s+ 1)

implies y ∈ X (s) and X (s+ 1) ⊂ X (s) ⊂ X , as desired.

From Assumption 4.2 we find

lim
s→∞

X (s) = lim
s→∞

{y ∈ X : ‖y − x̂A‖max ≤ q
sDo}

= {y ∈ X : ‖y − x̂A‖max ≤ 0}

= {x̂A} ,
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and Assumption 4.2 is therefore satisfied. The structure of the weighted block-maximum norm then allows us to

see that ‖y − x̂A‖max ≤ qsDo if and only if 1
wi
‖yi − x̂A,i‖pi

≤ qsDo for all i ∈ [N ]. It then follows that

Xi (s) =

{
yi ∈ Xi :

1

wi
‖yi − x̂A,i‖pi

≤ qsDo

}
,

which shows X (s) = X1 (s)× · · · ×XN (s), thus satisfying Assumption 4.3.

In order to show Assumption 4.4 is satisfied we recall the following exact expansion of ∇fA:

∇fA (y)−∇fA (x̂A) =

∫ 1

0

∇2fA (x̂A + τ (y − x̂A)) (y − x̂A) dτ

=

(∫ 1

0

∇2fA (x̂A + τ (y − x̂A)) dτ

)
· (y − x̂A)

=: H (y) (y − x̂A) ,

(3)

where we have defined

H (y) =

∫ 1

0

∇2fA (x̂A + τ (y − x̂A)) dτ.

We then see that for y ∈ X (s),

‖θi (y)− x̂A,i‖pi

wi
=

1

wi
‖yi − γ∇ifA (y)− x̂A,i + γ∇ifA (x̂A)‖pi

≤ max
i∈[N ]

1

wi
‖yi − γ∇ifA (y)− x̂A,i + γ∇ifA (x̂A)‖pi

= ‖y − x̂A − γ∇fA (y) + γ∇fA (x̂A)‖max

= ‖y − x̂A − γ (∇fA (y)−∇fA (x̂A))‖max

= ‖y − x̂A − γH (y) (y − x̂A)‖max

≤ ‖I − γH (y)‖max ‖y − x̂A‖max

≤


n(pmin− 1

2 )
wmin

‖I−γH(y)‖2 ‖y − x̂A‖max pmin < 2

1
wmin

‖I − γH (y)‖2 ‖y − x̂A‖max pmin ≥ 2

,

where we have used Equation (3) in the fourth equality and Lemma 1 in the third inequality. We then define the

vector ∇fA = (∇1fA, . . . ,∇NfA)
T which has a Lipschitz constant of M =

√∑N
i=1 L

2
i . It then follows from the

definition of fA that A � H (·) � MI , which implies that the eigenvalues of H (·) are bounded below by the

smallest diagonal entry of A and above by M . Since H (y) is a symmetric matrix it follows that

‖I − γH (y)‖2 = max {|λmin (I − γH (y))| , |λmax (I − γH (y))|}

= max

{
max
i∈[N ]

|1− γαi| ,max
i∈[N ]

|1− γLi|
}

= q,
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where λmin (·) and λmax (·) are the minimum and maximum eigenvalues of a matrix, respectively. Using the

hypothesis that y ∈ X (s), we find

‖θi (y)− x̂A,i‖pi

wi
≤

 n(p−1
min−

1
2 )w−1minq ‖y − x̂A‖max pmin < 2

1
wmin

q ‖y − x̂A‖max pmin ≥ 2

≤

 n(p−1
min−

1
2 )w−1minq

s+1Do pmin < 2

1
wmin

qs+1Do pmin ≥ 2

≤

 qs+1Do

qs+1Do

,

where the bottom case follows from wmin ≥ 1 and the top case follows from wmin ≥ 1 and p−1min − 1
2 < 1. Then

θi (y) ∈ Xi (s+ 1) and Assumption 4.4 is satisfied.

As noted above, the fact that the construction in Equation (2) satisfies Assumption 4 implies asymptotic convergence

of Algorithm 1 for all i ∈ [N ] from [17] and [18]. With this in mind, we next derive a rate of convergence for

Algorithm 1.

C. Convergence Rate

The structure of the sets {X (s)}s∈N allows us to determine a convergence rate. However, to do so we must

first define the notion of a communication cycle. Starting at time k = 0, one cycle occurs when all agents have

calculated a state update and this updated state has been sent to and received by each other agent. It is only then

that each agents’ copy of the ensemble state is moved from X (0) to X (1). Once another cycle is completed the

ensemble state is moved from X (1) to X (2). This process repeats indefinitely, and coupled with Assumption 4,

means the convergence rate is geometric in the number of cycles completed, which we show now.

Theorem 2: Let Assumptions 1-4 hold and let γ ∈
(

0, 2
Lmax

)
. At time k, if c (k) cycles have been completed,

then ∥∥xi (k)− x̂A
∥∥
max
≤ qc(k)Do

for all i ∈ [N ].

Proof: From the definition of Do, for all i ∈ [N ] we have xi (0) ∈ X (0). If agent i computes a state update,

then θi
(
xi (0)

)
∈ Xi (1) and after one cycle is completed, say at time k, we have xi (k) ∈ X (1) for all i. Iterating

this process, after c
(
k̄
)

cycles have been completed by some time k̄, xi
(
k̄
)
∈ X

(
c
(
k̄
))

. The result follows by

expanding the definition of {X (s)}s∈N.

Theorem 3 can be used by a network operator to bound agents’ convergence by simply observing them and

without specifying when or how often agents should generate or share information. Having shown convergence of

Algorithm 1, we next demonstrate its performance in practice.

V. SIMULATION

In this section we present a problem to be solved using Algorithm 1. The simulation uses a network consisting

of 8 nodes and 9 edges, where we define the set ε := [9] as the set of indices of the edges. There are N = 8
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agents that are users of this network and they are each tasked with routing a flow between two nodes. The network

itself is shown in Figure 1; we emphasize that the nodes in the network are not the agents themselves, but instead

are simply source/destination pairs for users to route flows between. The starting and ending nodes as well as the

edges traversed for each agents’ flow are listed in Table I.

1

2

3

4

5

6

7

8

e1

e2 e3
e4

e5

e7

e8

e9

e6

Fig. 1: The network through which eight agents must route a flow between two nodes

Agent Number Start Node→End Node Edges Traversed

1 1→ 7 e1, e3, e6

2 2→ 8 e4, e7, e8

3 3→ 4 e2, e4, e7, e5

4 5→ 6 e3, e4, e7

5 1→ 4 e1, e3, e6, e7, e5

6 3→ 8 e2, e4, e9

7 4→ 5 e5, e8, e9, e6

8 6→ 2 e7, e4

TABLE I: Edges traversed by each agent’s flow

The cost function of agent i is fi (xi) = −100 log (1 + xi), and the coupling cost is c (x) = 1
20x

TCTCx, where

the network connection matrix is defined as

Ck,i =

 1 if flow i traverses edge k

0 otherwise
.

This problem was then implemented such that agent i had its own regularization parameter αi > 0, nor-

malization constant wi ≥ 1, and pi norm with pi ∈ [1,∞]. In particular, these parameters were chosen using

w = [12, 8, 6, 7, 6, 10, 9, 10] and p = [∞, 20, 3, 90, 6, 12, 2, 9], where wi is the ith element in w and pi is defined

analogously. All agents’ behaviors were randomized to give each agent a 10% chance of computing an update at any

timestep and to give each pair of agents a 10% chance of communicating at each timestep. Three total simulation

runs were executed using the three different choices of A listed to demonstrate its effects upon convergence, with

A1 = diag[3×10−4, 1×10−4, 9×10−4, 2×10−4, 0.001, 0.001, 5×10−4, 4×10−4]

A2 = diag[0.01, 0.01, 0.003, 0.005, 0.002, 0.01, 0.005, 0.002]

A3 = diag[0.08, 0.1, 0.1, 0.09, 0.009, 0.1, 0.08, 0.04].
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A plot of error versus iteration count for a run with A1 is shown in Figure 2, which shows that the regularization

provided by A1 can provide robustness to asynchrony without significantly impacting the final point obtained by

Algorithm 1. In addition, close convergence to a minimizer is attained in a reasonable number of iterations, even

when agents infrequently generate and share information.
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0.8

0.9

1

Fig. 2: Regularized and unregularized error for agent 1 where ‖A1‖ = 0.001. Here, the regularized error is shown

as a line and the unregularized error is shown by the circles. As expected, both errors converge to small final values,

indicating close convergence to both x̂ and x̂A when ‖A‖ is small.

To demonstrate the impact of larger regularizations, a simulation was run with A2, and an error plot for this run

is shown in Figure 3.
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Fig. 3: Regularized and unregularized error for agent 1 where ‖A2‖ = 0.01. The regularized error is shown as a

line and the unregularized error is shown by the circles. Because ‖A‖ is larger, the agents converge to a minimum

faster, though there is a larger discrepancy between x̂ and x̂A, as evidenced by the asymptotic disagreement between

the two curves shown here.
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To further illustrate the effects of regularizing, a third and final simulation was run with A3, and a plot of error

in this case is shown in Figure 4.
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Fig. 4: Regularized and unregularized error for agent 1 where ‖A3‖ = 0.1. The regularized error is shown as a

line and the unregularized error is shown by the circles. As expected, this run converges faster (because its value

of q smaller), but with the largest error in the final solution obtained, indicating that a significant acceleration in

convergence comes in exchange for a less accurate solution.

To enable numerical comparisons of these convergence results, final error values for all three runs are shown in

Table II, where we see that larger values of ‖A‖ do indeed lead to larger errors.

‖A‖ Final Regularized Error Final Unregularized Error

0.001 2.2575× 10−8 2.9558× 10−4

0.01 2.1837× 10−8 8.4922× 10−4

0.1 7.9827× 10−10 0.0848

TABLE II: Errors for agent 1

VI. CONCLUSION

This work presented an asynchronous optimization framework which allows for arbitrarily delayed communica-

tions and computations. Future extensions to this work include incorporating constraints in order to accommodate

broader classes of problems [22], and using time-varying regularizations to always reach exact solutions. Future

applications include use in robotic swarms where communications are unreliable and asynchrony is unavoidable.
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[13] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Transactions on

Automatic Control, vol. 55, no. 4, pp. 922–938, April 2010.

[14] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus and averaging,” SIAM J. Control Optim., vol. 48, no. 1,

pp. 33–55, Feb. 2009.

[15] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions

on Automatic Control, vol. 50, no. 5, pp. 655–661, May 2005.
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[19] M. T. Hale, A. Nedić, and M. Egerstedt, “Asynchronous multiagent primal-dual optimization,” IEEE Transactions on Automatic Control,

vol. 62, no. 9, pp. 4421–4435, Sept 2017.

[20] C. Bishop, Neural Networks for Pattern Recognition, ser. Advanced Texts in Econometrics. Clarendon Press, 1995.

[21] B. T. Polyak, “Introduction to optimization. translations series in mathematics and engineering,” Optimization Software, 1987.

[22] M. Hale and Y. Wardi, “Mode scheduling under dwell time constraints in switched-mode systems,” in 2014 American Control Conference,

June 2014, pp. 3954–3959.

April 26, 2022 DRAFT


	I Introduction
	II Tikhonov Regularization and Problem Statement
	III Block-Based Multi-Agent Update Law
	IV Convergence of Asynchronous Optimization
	IV-A Block-Maximum Norms
	IV-B Convergence Via Nested Sets
	IV-C Convergence Rate

	V Simulation
	VI Conclusion
	References

