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Distributed Robust Dynamic Average Consensus with

Dynamic Event-Triggered Communication

Jemin George, Xinlei Yi and Tao Yang

Abstract— This paper presents the formulation and analysis
of a fully distributed dynamic event-triggered communication
based robust dynamic average consensus algorithm. Dynamic
average consensus problem involves a networked set of agents
estimating the time-varying average of dynamic reference
signals locally available to individual agents. We propose an
asymptotically stable solution to the dynamic average consensus
problem that is robust to network disruptions. Since this robust
algorithm requires continuous communication among agents,
we introduce a novel dynamic event-triggered communication
scheme to reduce the overall inter-agent communications. It

is shown that the event-triggered algorithm is asymptotically
stable and free of Zeno behavior. Numerical simulations are
provided to illustrate the effectiveness of the proposed algo-
rithm.

I. INTRODUCTION

Consider a set of n networked agents, each with its own

reference signal φi(t)∈Rr. The dynamic average consen-

sus problem involves designing distributed algorithms that

would allow the agents to locally estimate the time-varying

average φ̄(t) , 1
n

n∑
i=1

φi(t). This estimator design prob-

lem has numerous applications in multi-agent systems [1],

[2]. For example, in the distributed optimization problem

min
x∈Rr

n∑
i=1

fi(x), φi(t) = ∇fi(·), in distributed estimation

problem, φi(t)s are local weighted measurement-residuals,

and in multi-agent coordination problems such as contain-

ment control, φi(t)s are the leader trajectories. Thus dynamic

average consensus is at the heart of numerous network

applications, such as distributed learning, distributed sensor

fusion, formation control, distributed optimization, and dis-

tributed mapping.

The main difficulty in designing distributed solutions to

dynamic average consensus problem is the lack of access

to any error signals. To be more specific, if xi(t) is the

ith-node’s estimate of φ̄(t), then none of the nodes have

access to the average-consensus error x̃i(t) = xi(t) − φ̄(t),
thus rendering the traditional feedback-control techniques

obsolete. Therefore solutions to dynamic average consensus

problem was first proposed for reference signals with steady-

state values [3] or slowly varying reference signals [4].

Assuming access to the dynamics that generate the reference

signal, an internal model based dynamic average consensus
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algorithms are presented in [5], [6]. Assuming access to the

time derivatives of the reference signals, a dynamic average

consensus algorithm built on singular perturbation theory

is given in [7]. However in real world applications, it is

not reasonable to assume knowledge of the reference signal

dynamics or presume access to its time derivatives.

Even though the agents don’t have direct access to the

error signal x̃i(t), they can calculate the local difference

or disagreement in the error, i.e., x̃i(t) − x̃j(t). Thus the

error signal is such that it sum to zero, then the dynamic

average consensus problem is solved if the agents reach

consensus on x̃i. In other words, if
n∑

i=1

x̃i(t) = 0 and

x̃i(t) = x̃j(t) for all (i, j) pairs, then x̃i(t) = 0 for

all i. Therefore there exists several solutions to dynamic

average consensus problems where an estimator is designed

such that the estimator structure along with an initialization

requirement provides the zero-sum condition x̃i(t) = 0
while the inputs to the estimator are selected such that the

agents reach consensus on the error signal. Examples of such

algorithms include the nonlinear dynamic average consensus

estimators for reference signals with bounded derivative

given in [8], [9], and [10]. The algorithms in [8], [9], and [10]

are shown to yield bounded average-consensus error even

for a directed network, but the error bounds are proportional

to the upper bound on the time derivatives of the reference

signals. Besides the continuous-time algorithms discussed so

far, there also exist several discrete-time dynamic average

consensus algorithms [11]–[16].

While the dynamic average consensus problem focus on

designing estimators, a combined estimator and controller

design problem to estimate and track the time-varying av-

erage signal is studied under the name distributed average

tracking (distributed average tracking) [17]–[26]. The prob-

lem formulation in distributed average tracking consists of

assuming a particular dynamic-model for individual agents

and then designing a distributed control law that allows the

agents to track the time-varying average. The main drawback

to considering a combined estimator/controller solution is

that it is tailored to specific node dynamics and therefore

only valid for the assumed dynamic-model. As a result,

there exist numerous distributed average tracking solutions

to the same average-consensus problem involving agents

with single-integrator dynamics [17], [18], double-integrator

dynamics [21], [23], Euler-Lagrange dynamics [20], [22],

known linear dynamics [19], nonlinear dynamics [24], het-

erogeneous dynamics [26], and so on. Furthermore, the

combined estimator/controller solution limits the utility of
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such algorithms for numerous network applications such

as distributed optimization. Besides, if the agents are able

to estimate the time-varying average, say using a DAC

estimator, then the control design problem is often trivial.

Dynamic average consensus algorithms in [8], [9], [10],

and [27] all require a specific initialization of its variables

to satisfy the condition
n∑

i=1

x̃i(t0) = 0. This requirement

seems benign at first because it can be easily satisfied by

selecting xi(t0) = φi(t0) for all i. However, when an agent

leaves the network or when the network split into several

small subgraphs, the condition
n∑

i=1

x̃i(t0) = 0 is violated.

This result in a nonzero steady-state error unless all the nodes

reinitialize the algorithm after every such network disruption.

This algorithm sensitivity to initialization, typically referred

to as the lack of robustness to initialization errors, is an

issue in most of the distributed average tracking approaches

[17], [18], [21], [23]. Currently, no systematic solution to

this problem that does not sacrifice algorithm performance

or introduce stringent assumptions on the reference signal or

its dynamics exists.

The continuous-time solutions given in [8], [10], [17]–

[26], [28] all assume continuous communication among

agents. This is not a reasonable assumption especially if the

agents are interacting via wireless communication network.

Even though discrete time algorithms are more docile to

implementation, none of the discrete time algorithms can

guarantee zero steady-state error for the types of reference

signals considered here. Furthermore, the use of a fixed

communication step-size in discrete time algorithms can be

a wasteful use of the network resources. Distributed event-

triggered communication provides a way to address some

of these challenges by locally designing inter-agent com-

munication times in an opportunistic manner. Thus, instead

of communicating continuously or periodically, the designed

communication times or event times, allows the agents to

determine when to communicate based on a specific trigger-

ing mechanism. Thus far references [9] and [27] constitutes

the only two literature on distributed event-triggered dynamic

average mechanism.

Here we first present a dynamic average consensus al-

gorithm that is robust to initialization errors (section IV).

The robust algorithm given in section IV makes use of

an adaptive gain which removes the explicit use of any

upper bounds on reference signals or its time-derivative in

the algorithm. We then present a distributed event triggered

version of the algorithm in section V which make use

of a dynamic triggering mechanism. The event-triggered

algorithm is shown to provide asymptotic convergence as

well as free of Zeno1 behavior. Compared to existing results,

the proposed algorithm is novel in the following sense:

• The proposed event-triggered algorithm is robust to net-

work disruptions since it does not require any specific

initialization criteria (see above discussion for details).

1For continuous-time multi-agent systems, Zeno behavior means that
there are infinite number of event triggers in a finite time interval [29].

• The proposed algorithm can theoretically guarantee zero

steady state error.

• The proposed triggering laws involve internal dynamic

variables which play an essential role in guaranteeing

that the triggering time sequence does not exhibit Zeno

behavior.

II. PRELIMINARIES

Notation

Let Rn×m denote the set of n×m real matrices. An n×
n identity matrix is denoted as In and 1n denotes an n-

dimensional vector of all ones. Let Rn
1

denote the set of all

n-dimensional vectors of the form κ1n, where κ ∈ R. For

two vectors x ∈ R
n and y ∈ R

n, x ≥ y (x ≤ y) implies

xi ≥ yi, (xi ≤ yi), ∀ i ∈ {1, . . . , n}. The absolute value of

a vector is given as |x| =
[
|x1| . . . |xn|

]T
. Let sgn{·}

denote the signum function, defined as

sgn{x} ,





+1, if x > 0;

0, if x = 0;

−1, if x < 0,

and ∀x ∈ R
n, sgn{x} ,

[
sgn{x1} . . . sgn{xn}

]T
. For

p ∈ [1, ∞], the p-norm of a vector x is denoted as ‖x‖p.

For matrices A ∈ R
m×n and B ∈ R

p×q , A⊗ B ∈ R
mp×nq

denotes their Kronecker product.

Network Model

For a connected undirected graph G (V , E) of order n,

V , {v1, . . . , vn} represents the agents or nodes. The

communication links between the agents are represented as

E , {e1, . . . , eℓ} ⊆ V × V . Here each undirected edge is

considered as two distinct directed edges and the edges are

labeled such that they are grouped into incoming links to

nodes v1 to vn. Let I denote the index set {1, . . . , n} and

∀i ∈ I; let Ni , {vj ∈ V : (vi, vj) ∈ E} denote the set

of neighbors of node vi. Let A , [aij ] ∈ {0, 1}n×n be

the adjacency matrix with entries aij = 1 if (vi, vj) ∈ E
and zero otherwise. Define ∆ , diag (A1n) as the degree

matrix associated with the graph and L , ∆−A as the graph

Laplacian. The incidence matrix of the graph is defined as

B = [bij ] ∈ {−1, 0, 1}n×ℓ
, where bij = −1 if edge ej leaves

node vi, bij = 1 if edge ej enters node vi, and bij = 0
otherwise.

For the connected undirected graph G (V , E), L is a

positive semi-definite matrix with one eigenvalue at 0 corre-

sponding to the eigenvector 1n. Since each undirected edge

is considered as two distinct directed edges, we have L =

1
2BB

T . Furthermore, we have M ,

(
In − 1

n
1n1

T
n

)
=

L (L)+ = BBT
(
BBT

)+
= B

(
BTB

)+
BT , where (·)+

denotes the generalized inverse (Lemma 3 [30]).

Remark 1. For all x ∈ R
n, such that 1T

nx = 0, we have

xTL (L)
+
x = xTx.



III. PROBLEM FORMULATION

Let φi(t) ∈ R
r denote the ith-node’s (vi’s) reference

signal at time t. The dynamic average consensus problem

involves each agent estimating the time-varying signal

φ̄(t) =
1

n

n∑

i=1

φi(t) =
1

n

(
1T
n ⊗ Ir

)
φ(t), (1)

where n is the number of agents, r is the size of reference

signals, and φ(t) ∈ R
nr ,

[
φT1 (t) . . . φTn (t)

]T
. Let

φ̇(t) ,
[
φ̇T1 (t) . . . φ̇Tn (t)

]T
. Now we make following

standing assumptions:

Assumption 1. The interaction topology of n networked

agents is given as a connected undirected graph G (V , E).
Assumption 2. For any two connected agents, the local

difference in signals φi(t) and their derivatives φ̇i(t) are

bounded such that there exist bounds ϕ and ϕ̇ that satisfy

sup
t∈[0,∞)

∀ i,j:(vi,vj)∈E

‖φi(t)− φj(t)‖∞ ≤ ϕ <∞, and (2)

sup
t∈[0,∞)

∀ i,j:(vi,vj)∈E

‖φ̇i(t)− φ̇j(t)‖∞ ≤ ϕ̇ <∞. (3)

Note that Assumption 2 is less strict than assuming

absolute bounds on signals φi(t) and their derivatives φ̇i(t).
Using vector notation (2) and (3) can be written as

sup
t∈[0,∞)

∥∥(BT ⊗ Ir
)
φ(t)

∥∥
∞

≤ ϕ, and (4)

sup
t∈[0,∞)

∥∥∥
(
BT ⊗ Ir

)
φ̇(t)

∥∥∥
∞

≤ ϕ̇. (5)

IV. ROBUST DYNAMIC AVERAGE CONSENSUS

ALGORITHM

A. Robust Algorithm

Let xi(t) ∈ R
r denote node vi’s estimate of φ̄(t). Here

we propose the following robust dynamic average consensus

algorithm:

ż(t) = −γ z(t) + u(t), z(t0) = z0, (6a)

x(t) = z(t) + φ(t), (6b)

where γ > 0 is a positive constant, x(t) ∈ R
nr ,[

xT1 (t) . . . xTn (t)
]T

is the estimate of φ̄(t) for the entire

network, z(t) ∈ R
nr ,

[
zT1 (t) . . . zTn (t)

]T
is the internal

state of the estimator for the entire network, and u(t) is the

input that needs to be designed.

Let x̃(t) , x(t)− 1n ⊗ φ̄(t) denote the dynamic average

consensus error. Now the error dynamics can be written as

˙̃x(t) = ż(t) + φ̇(t)− 1

n

(
1n1

T
n ⊗ Ir

)
φ̇(t),

= −γz(t) + u(t) + (M ⊗ Ir) φ̇(t).

Now adding and subtracting γ (M ⊗ Ir)φ(t) yields

˙̃x(t) = −γx̃(t) + u(t) + (M ⊗ Ir)
(
φ̇(t) + γφ(t)

)
. (7)

B. Convergence Result

The following theorem illustrates how to select the inputs

u(t) such that the average consensus-error asymptotically

converges to zero.

Theorem 1. Given Assumptions 1 and 2, the robust dynamic

average consensus algorithm in (6) guarantees that the

average consensus error, x̃(t), asymptotically decays to zero

for any initial condition z0, if the estimator input u(t) is

selected as

u(t) = − (B ⊗ Ir) K(t) sgn
{(
BT ⊗ Ir

)
x(t)

}
, (8)

where K(t) ∈ R
rℓ×rℓ is a diagonal gain matrix with

diagonal entries κj(t), j ∈ {1, . . . , rℓ} updated according

to

κ̇j(t) = |yj(t)|, κj(t0) ≥ 1, (9)

and y(t) ∈ R
rℓ ,

[
y1(t) . . . yrℓ(t)

]T
is defined as

y(t) =
(
BT ⊗ Ir

)
x(t).

Proof : The proof consists of two steps. The first step is

to show that the algorithm (6) exponentially satisfies the

zero-sum condition
n∑

i=1

x̃i(t) = 0r. The second step is to

show that x̃i(t) asymptotically reach consensus. If agents

asymptotically reach consensus on x̃i(t)s and x̃i(t)s satisfy

the zero-sum condition, then lim
t→∞

x̃i(t) = 0r for all i ∈ I.

Left multiplying the error x̃(t) = z(t) + (M ⊗ Ir)φ(t)

with
(
1T
n ⊗ Ir

)
yields

n∑
i=1

x̃i(t) =
n∑

i=1

zi(t), for all t. Now

taking the time-derivative by substituting (8) in (6a) and

using the fact that 1TB = 0 yields

d

dt

(
n∑

i=1

zi(t)

)
= −γ

n∑

i=1

zi(t).

Thus
n∑

i=1

zi(t), and therefore
n∑

i=1

x̃i(t) is exponentially de-

creasing to 0r with the rate γ. This concludes the first step

of the proof.

The second step is to show
(
BT ⊗ Ir

)
x̃(t) asymptotically

decays to zero, i.e., the agents reach consensus on x̃(t). Note

that
(
BT ⊗ Ir

)
x̃(t) =

(
BT ⊗ Ir

)
x(t) = y(t). Thus it is

equivalent to show the asymptotic stability of

ẏ(t) =
(
BT ⊗ Ir

) [
−γz(t) + u(t) + φ̇(t)

]
,

=
(
BT ⊗ Ir

) [
−γx̃(t) + u(t) + φ̇(t) + γφ(t)

]
,

where we used the equality condition BTM = BT .

Consider a nonnegative function of the form

V =
1

2
yT (t)

((
BTB

)+ ⊗ Ir

)
y(t) +

1

2

rℓ∑

j=1

(κj(t)− κ∗)
2
,

where κ∗ is a constant to be specified. Taking the time

derivative of V yields

V̇ = xT (t)
(
B
(
BTB

)+
BT ⊗ Ir

)[
− γx̃(t) + u(t) + φ̇(t)



+ γφ(t)

]
+

rℓ∑

j=1

κj(t)κ̇j(t)− κ∗
rℓ∑

j=1

κ̇j(t).

Since B
(
BTB

)+
BT = M and B

(
BTB

)+
BTB = B,

substituting (8) and (9) yields

V̇ = −γx̃T (t) (M ⊗ Ir) x̃(t)− κ∗ ‖y(t)‖1
+ yT (t)

((
BTB

)+ ⊗ Ir

) (
BT ⊗ Ir

) (
φ̇(t) + γφ(t)

)
,

≤ −γx̃T (t) (M ⊗ Ir) x̃(t)− κ∗ ‖y(t)‖1 + ‖y(t)‖1
×
∥∥∥
((
BTB

)+ ⊗ Ir

)∥∥∥
∞

∥∥∥
(
BT ⊗ Ir

)(
φ̇(t) + γφ(t)

)∥∥∥
∞

.

Note that

∥∥∥
((
BTB

)+ ⊗ Ir

)∥∥∥
∞

is upper bounded for

a connected undirected network under consideration.

Also from Assumption 2, we have bounded∥∥∥
(
BT ⊗ Ir

) (
φ̇(t) + γφ(t)

)∥∥∥
∞

. Therefore, if κ∗ is

such that

κ∗ ≥
∥∥∥
((
BTB

)+ ⊗ Ir

)∥∥∥
∞

∥∥∥
(
BT ⊗ Ir

) (
φ̇(t) + γφ(t)

)∥∥∥
∞

we have

V̇ ≤ −γyT (t)
((
BTB

)+ ⊗ Ir

)
y(t).

where we used the fact that

yT (t)
((
BTB

)+ ⊗ Ir

)
y(t) = x̃T (t) (M ⊗ Ir) x̃(t).

Thus V is upper bounded and therefore y(t) and K(t)
are bounded. Because of Assumption 2, boundedness of

y(t) and K(t) implies bounded ẏ(t). Since V is lower

bounded by zero and V̇ ≤ −γσ+
min

((
BTB

)+) ‖y(t)‖2,

where σ+
min (·) denotes the minimum non-zero singular value,

we have

∫ ∞

t0

(
yT (t)y(t)

)1/2
dt < ∞, i.e., y(t) is square-

integrable. Now based on the BarBălat’s Lemma (Lemma

3.2.5 [31]), we have lim
t→∞

y(t) = 0rℓ. This completes the

proof.

Remark 2. Note that the solution to

ẏ(t) =
(
BT ⊗ Ir

) [
−γx̃(t) + φ̇(t) + γφ(t)

]

−
(
BTB ⊗ Ir

)
K(t)sgn {y(t)} ,

(10)

is understood in the Filippov sense [32]. Define

a vector field f (t,y(t)) : R × R
rℓ 7→ R

rℓ ,(
BT ⊗ Ir

) [
−γx̃(t) + φ̇(t) + γφ(t)

]
−

(
BTB ⊗ Ir

)

K(t) sgn {y(t)}. Note that the Filippov set-valued map

for the vector field f (t,y(t)) is multiple-valued only at

the point of discontinuity, i.e., at the origin. Therefore, the

aforementioned stability analysis using a smooth Lyapunov

function is valid because the function V is decreasing along

every Filippov solution of (10) that starts on R
rℓ\{0}.

Thus, y(t) is globally asymptotically stable.

Remark 3. Note that the robust dynamic average consensus

algorithm in (6) only requires the existence of the upper

bound ϕ and ϕ̇. These bounds are not needed for the

implementation of the algorithm.

C. Implementation

Even though the vector notation used in previous section

makes the analysis of the algorithm much easier, it fails to

provide the intuition required for distributed implementation.

Therefore, here we discuss the distributed implementation of

the robust dynamic average consensus algorithm.

After substituting the control (8) the robust dynamic

average consensus algorithm (6) can be written as

ż(t) = −γz(t)− (B ⊗ Ir)K(t)sgn
{(
BT ⊗ Ir

)
x(t)

}
.

(11)

Here K(t) can be considered as a pseudo edge-weights

multiplying the terms2 sgn{xi(t)−xl(t)}, i, l ∈ I. In order

to compute the term (B ⊗ Ir)K(t)sgn
{(
BT ⊗ Ir

)
x(t)

}

in a distributed manner, agents need to either coordinate

among their neighbors to make sure that the gain multiplying

sgn{xi(t) − xl(t)} is the same as the gain multiplying

sgn{xl(t) − xi(t)} or constantly exchange their link gain

κj(t) along with their state xi(t). Due to the nature of

adaptive law (9), agents can easily coordinate their link gains

by simply exchanging the initial gains κj(t0). Note that when

r = 1, there is a single scaler gain κj(t) associated with the

link ej ∈ E , for all j ∈ {1, . . . , ℓ}. If the link ej is between

nodes vi and vl, i,e., ej = (vi, vl), then we can use the

notation µi,l(t) to denote κj(t). For r > 1, µi,l(t) is an r
dimensional vector with the adaptive law

µ̇i,l(t) = |xi(t)− xl(t)| , ∀ i, l : (vi, vl) ∈ E . (12)

Let µi,l(t) = 0 and µ̇i,l(t) = 0 for all t ≥ t0 and

i, l : (vi, vl) /∈ E . Note that the agents coordinate the initial

condition µi,l(t) to ensure that µi,l(t) = µl,i(t) for all t ≥ t0.

Now (11) can be written as ∀i ∈ I

żi(t) = −γzi(t)− 2
n∑

j=1

diag [µi,j(t)] sgn{xi(t)− xj(t)},

(13)

where diag [µi,j(t)] is an r × r diagonal matrix with µi,j(t)
as its diagonal entries. The constant 2 is a byproduct of

the way in which we defined B, i.e., each undirected edge

is considered as two distinct directed edges. Each agent

computes xi(t) as

xi(t) = zi(t) + φi(t). (14)

V. DYNAMIC EVENT-TRIGGERED ROBUST DYNAMIC

AVERAGE CONSENSUS ALGORITHM

In order to implement the distributed algorithms (13) and

(12), every agent vi ∈ V has to know the continuous-time

state xj(t) = zj(t) + φj(t); ∀vj ∈ Ni. In other words, con-

tinuous communication between agents is needed. However,

distributed networks are normally resources-constrained and

communication is energy consuming. In order to avoid con-

tinuous communication, here we propose an event-triggered

version of the robust dynamic average consensus algorithm.

2In order to simplify the analysis, readers may assume r = 1.



A. Dynamic Event-Triggered Algorithm

Inspired by the idea of event-triggered control for multi-

agent systems [33], we consider the following event-triggered

versions of the robust dynamic average consensus algorithm

and the adaptive law given in (13) and (12), respectively:

żi(t) = −γzi(t)− 2

n∑

j=1

diag [µi,j(t)] sgn{x̂i(t)− x̂j(t)},

(15)

µ̇i,j(t) = |x̂i(t)− x̂j(t)| , (16)

where x̂i(t) = xi(t
i
ki(t)

) denotes the last broadcasted es-

timate xi(t) of agent vi and tiki(t)
= max {tik : tik ≤ t}

and ti0, t
i
1, . . . , is the sequence of event times of agent vi.

Note that during inter-event time, the signals x̂i(t) are held

constant for all i ∈ I.

Define x̂(t) ,
[
x̂T1 (t) . . . x̂Tn (t)

]T
and ξ̂(t) ,[

ξ̂T1 (t) . . . ξ̂Tℓ (t)
]T

=
(
BT ⊗ Ir

)
x̂(t), where x̂i(t) ∈ R

r

for all i ∈ I and ξ̂j(t) ∈ R
r for all j ∈ {i, . . . , ℓ}. Let K̂(t)

denotes the adaptive gain obtained from (16). Now following

(7), the dynamic average consensus error can be written in

the following compact form:

˙̃x(t) = −γx̃(t)− (B ⊗ Ir) K̂(t)sgn
{
ξ̂(t)

}

+ (M ⊗ Ir)
(
φ̇(t) + γφ(t)

)
.

(17)

Define w(t) ∈ R
rn ,

[
wT

1 (t) . . . wT
n (t)

]T
=

(B ⊗ Ir) K̂(t) sgn
{
ξ̂(t)

}
. Now we have

˙̃x(t) = −γx̃(t)−w(t) + (M ⊗ Ir)
(
φ̇(t) + γφ(t)

)
. (18)

B. Convergence Result

Before we present the asymptotic convergence of the

event-triggered algorithm, we make the following assump-

tion:

Assumption 3. Each agent vi has a local gain βi such that

∀ i ∈ I

βi ≥ (γϕ+ ϕ̇) ‖
(
B
(
BTB

)+ ⊗ Ir

)
‖∞. (19)

Let ε(t) ,
[
εT1 (t) . . . εTn (t)

]T
= x(t) − x̂(t). Moti-

vated by [34] and [35], we introduce the following internal

dynamics to facilitate the design of dynamic triggering

mechanism:

η̇i(t) = −αi ηi(t)− δi
(
βi1

T
r |εi(t)| − wT

i (t)εi(t)
)
, i ∈ I,

(20)

where ηi(t0) > 0, αi > 0 and δi ≥ 1 are design parameters

and can be arbitrarily chosen. The internal variables ηi(t)
are incorporated into the triggering law as shown next.

Theorem 2. Given Assumptions 1, 2 and 3, the event-

triggered robust dynamic average consensus algorithm in

(15) and the adaptive law (16) guarantee that the average

consensus error, x̃(t), asymptotically decays to zero for any

initial condition z0, if ∀ i ∈ I, the triggering times
{
tik
}∞
k=1

are determined as ti1 = t0 and

tik+1 = min
{
t :

θi
(
βi1

T
r |εi(t)| − wT

i (t)εi(t)
)
≥ ηi(t), t ≥ tik

}
,

(21)

where θi ∈ (0, 1) is a positive scalar design parameter, βi
is defined in Assumption 3, and ηi(t) is from (20).

Proof : Define ξ(t) =
(
BT ⊗ Ir

)
x(t). Since(

BT ⊗ Ir
)
x(t) =

(
BT ⊗ Ir

)
x̃(t), from (17) we have

ξ̇(t) = −γξ(t)−
(
BTB ⊗ Ir

)
K̂(t)sgn

{
ξ̂(t)

}

+
(
BT ⊗ Ir

) (
φ̇(t) + γφ(t)

)
.

(22)

Now consider the following function

V =
1

2
ξT (t)

((
BTB

)+ ⊗ Ir

)
ξ(t)

+
1

2

n∑

i=1

n∑

j=1

(µi,j(t)− µ∗)
T
(µi,j(t)− µ∗) ,

(23)

where µ∗ ∈ R
r is to be determined. Now taking the time

derivative of V along (22) yields

V̇ = xT (t) (M ⊗ Ir)

[
− γx̃(t) + φ̇(t) + γφ(t)

− (B ⊗ Ir) K̂(t)sgn
{
ξ̂(t)

}]
+

n∑

i,j=1

(µi,j(t)− µ∗)
T
µ̇i,j(t).

Note that

xT (t) (B ⊗ Ir) K̂(t)sgn
{
ξ̂(t)

}
= εT (t) (B ⊗ Ir) K̂(t)

× sgn
{
ξ̂(t)

}
+

n∑

i,j=1

µT
i,j(t) |x̂i(t)− x̂j(t)| ,

Thus we have

V̇ = −γx̃T (t) (M ⊗ Ir) x̃(t) + xT (t) (M ⊗ Ir)

(
φ̇(t)

+ γφ(t)

)
− εT (t) (B ⊗ Ir) K̂(t)sgn

{
ξ̂(t)

}

−
n∑

i,j=1

(µ∗)
T |x̂i(t)− x̂j(t)| .

Without loss of generality, we let µ∗ = µ̄1r, where µ̄ is a

positive constant to be determined. Thus we have

n∑

i,j=1

(µ∗)T |x̂i(t)− x̂j(t)| = µ̄
n∑

i,j=1

1T
r |x̂i(t)− x̂j(t)| ,

= µ̄
∥∥∥ξ̂(t)

∥∥∥
1
.

Note

εT (t) (B ⊗ Ir) K̂(t)sgn
{
ξ̂(t)

}
=

n∑

i=1

εTi (t)wi(t)

and

xT (t) (M ⊗ Ir)
(
φ̇(t) + γφ(t)

)
= εT (t) (M ⊗ Ir)

(
φ̇(t)



+ γφ(t)

)
+ ξ̂T (t)

((
BTB

)+
BT ⊗ Ir

)(
φ̇(t) + γφ(t)

)

≤ ‖ε(t)‖1‖
(
B
(
BTB

)+ ⊗ Ir

)
‖∞

× ‖
(
BT ⊗ Ir

)(
φ̇(t) + γφ(t)

)
‖∞ + ‖ξ̂(t)‖1

× ‖
((
BTB

)+ ⊗ Ir

)
‖∞‖

(
BT ⊗ Ir

)(
φ̇(t) + γφ(t)

)
‖∞

≤ ‖ε(t)‖1‖
(
B
(
BTB

)+ ⊗ Ir

)
‖∞ (γϕ+ ϕ̇)

+ ‖ξ̂(t)‖1‖
((
BTB

)+ ⊗ Ir

)
‖∞ (γϕ+ ϕ̇) ,

where the second inequality follows from Assumption 2.

Now an upper bound on V̇ can be obtained as

V̇ ≤ −γx̃T (t) (M ⊗ Ir) x̃(t)−
n∑

i=1

εTi (t)wi(t)

+ ‖ε(t)‖1‖
(
B
(
BTB

)+ ⊗ Ir

)
‖∞ (γϕ+ ϕ̇)

+ ‖ξ̂(t)‖1‖
((
BTB

)+ ⊗ Ir

)
‖∞ (γϕ+ ϕ̇)− µ̄

∥∥∥ξ̂(t)
∥∥∥
1
.

If µ̄ is selected such that

µ̄ ≥ (γϕ+ ϕ̇) ‖
((
BTB

)+ ⊗ Ir

)
‖∞,

then we have

V̇ ≤ −γx̃T (t) (M ⊗ Ir) x̃(t)−
n∑

i=1

wT
i (t)εi(t)

+

n∑

i=1

βi 1
T
r |εi(t)| ,

(24)

where βi is from Assumption 3. Now consider a Lyapunov

function candidate as follows

W = V +

n∑

i=1

ηi(t), (25)

where V is given in (23). Thus from (24) and (20) we have,

Ẇ = V̇ +

n∑

i=1

η̇i(t)

≤ −γx̃T (t) (M ⊗ Ir) x̃(t) +

n∑

i=1

(
βi 1

T
r |εi(t)| − wT

i (t)εi(t)
)

−
n∑

i=1

αi ηi(t)−
n∑

i=1

δi
(
βi1

T
r |εi(t)| − wT

i (t)εi(t)
)

≤ −γx̃T (t) (M ⊗ Ir) x̃(t)−
n∑

i=1

αi ηi(t) ≤ 0.

Thus W is upper bounded and therefore ξ(t), K̂(t), and

η(t) are all bounded. Because of Assumption 2, boundedness

of ξ(t) and K̂(t) implies bounded ξ̇(t). Since W is lower

bounded by zero and Ẇ ≤ −γx̃T (t) (M ⊗ Ir) x̃(t), we

have ξ(t) is square-integrable. Now based on the BarBălat’s

Lemma (Lemma 3.2.5 [31]), we have lim
t→∞

ξ(t) = 0rℓ.

Thus agents asymptotically reach consensus on the dynamic

average consensus error x̃(t). From (17) we have
n∑

i=1

x̃i(t) is

exponentially decreasing to 0r at the rate γ. Thus the agents

asymptotically reach consensus on x̃i(t)s and x̃i(t)s satisfy

the zero-sum condition, therefore limt→∞ x̃i(t) = 0r for all

i ∈ I.

C. Exclusion of Zeno Behavior

Here we prove that there is no Zeno behavior by contra-

diction. But first, based on the Lyapunov analysis given in

the proof of Theorem 2, we can conclude that for all i ∈ I
there exists positive bounds ximax and wi

max such that

sup
t∈[0,∞)

‖xi(t)‖∞ ≤ ximax

sup
t∈[0,∞)

‖wi(t)‖∞ ≤ wi
max.

Thus based on (18) and Assumption 2, we have

sup
t∈[0,∞)

‖ẋi(t)‖∞ ≤ ẋimax.

Before we present the main result of this section, note that

from the triggering mechanism (21), we have

θi
(
βi1

T
r |εi(t)| − wT

i (t)εi(t)
)
≤ ηi(t), ∀ t ≥ t0. (26)

Thus,

η̇i(t) ≥ −αi ηi(t)−
δi
θi
ηi(t), ∀ t ≥ t0. (27)

Therefore,

ηi(t) ≥ ηi(t0)e
−

(

αi+
δi
θi

)

t
> 0, ∀ t ≥ t0. (28)

Theorem 3. Given Assumptions 2 and 3 hold, for any

connected undirected network running the event-triggered

robust dynamic average consensus algorithm in (15) and

the adaptive law (16), the dynamic triggering law (21)

guarantees the exclusion of Zeno behavior.

Proof : Suppose there exists Zeno behavior. Then there exists

an agent vi, such that lim
k→∞

tik =
∞∑

k=0

(
tik+1 − tik

)
= T0,

where T0 is a positive constant. It follows from the existence

of the limit that for a constant ǫ0 > 0, there exists a positive

integer s(ǫ0) such that

tik ∈ [T0 − ǫ0, T0] , ∀ k ≥ s(ǫ0). (29)

Let τ denote the event-time tis(ǫ0)+1. Note that ‖εi (τ+)‖2 =
0 immediately after the triggering. Just before the triggering,

from (21) we have

(
βi1

T
r |εi(τ−)| − εTi (τ

−)wi(τ
−)
)
≥ 1

θi
ηi(τ

−)

Thus

βi‖εi(τ−)‖1 − εTi (τ
−)wi(τ

−) ≥ 1

θi
ηi(τ

−) (30)



Note

βi‖εi(τ−)‖1 − εTi (τ
−)wi(τ

−)

≤ ‖εi(τ−)‖2‖wi(τ
−)‖2 + βi

√
r‖εi(τ−)‖2

≤
(
wi

max + βi
)√

r‖εi(τ−)‖2.
(31)

From (30) and (31), we have

‖εi(τ−)‖2 ≥ 1

θi (wi
max + βi)

√
r
ηi(τ

−) (32)

Now from (28), we can conclude that there exists a t∗ ∈(
tis(ǫ0), t

i
s(ǫ0)+1

)
such that

‖εi (t)‖2 ≥ ηi(t0)e
−

(

αi+
δi
θi

)

t

θi (wi
max + βi)

√
r
, ∀ t ∈

[
t∗, tis(ǫ0)+1

)
. (33)

Since

∥∥∥εi
(
tis(ǫ0)

+
)∥∥∥

2
= 0 and ẋi(t) is upper-bounded, we

have

‖εi (t)‖2 = ‖x̂i(t)− xi(t)‖2
≤
(
t− tis(ǫ0)

)√
rẋimax, ∀ t ∈

[
t∗, tis(ǫ0)+1

)
.

(34)

Combining (33) and (34) yields

(
t− tis(ǫ0)

)√
rẋimax ≥ ηi(t0)e

−

(

αi+
δi
θi

)

t

θi (wi
max + βi)

√
r
,

∀ t ∈
[
t∗, tis(ǫ0)+1

)
.

(35)

Thus we have

(
t− tis(ǫ0)

)
≥ ηi(t0)e

−

(

αi+
δi
θi

)

t

θi (wi
max + βi) rẋimax

, ∀ t ∈
[
t∗, tis(ǫ0)+1

)
.

Clearly,
(
tis(ǫ0)+1 − tis(ǫ0)

)
≥
(
t− tis(ǫ0)

)
and thus

(
tis(ǫ0)+1 − tis(ǫ0)

)
≥ ηi(t0)

θi (wi
max + βi) rẋimax

e
−

(

αi+
δi
θi

)

t
,

∀ t ∈
[
t∗, tis(ǫ0)+1

)

≥ ηi(t0)

θi (wi
max + βi) rẋimax

e
−

(

αi+
δi
θi

)

T0

where T0 = lim
k→∞

tik. Thus the inter-event times are lower-

bounded which contradicts the existence of the limit T0. In

fact,

ρ =
ηi(t0)

θi (wi
max + βi) rẋimax

e
−

(

αi+
δi
θi

)

T0

is the lower-bound on inter-events for t ≥ tis(ǫ0). This clearly

contradicts the existence of Zeno behavior.

VI. SIMULATION

Consider an undirected network of 10 nodes given in

Fig. 1. Initially, the network is connected as shown in

Fig. 1(a) and at t = 2.5, link (v3, v7) (and thus (v7, v3))
is severed, resulting in two disconnected graphs for the rest

of the simulation time, see Fig. 1(b). The individual reference
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(a) During 0 ≤ t < 2.5

1

23
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6
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10

(b) During 2.5 ≤ t

Fig. 1. Network.

signals are given as

φi(t) = ai sin(ωit+ ψi)), ∀ i ∈ {1, . . . , 5},
φi(t) = ai cos(ωit+ ψi)), , ∀ i ∈ {6, . . . , 10},
ai =

i−1
2 − 7, ωi =

1
4 (i+ 1), ψi(t) =

2πi
n − π.

For simulation purposes, we select ϕ = 10, ϕ̇ = 20 and

γ = 1. The individual design parameters are selected as

αi = 3, βi = 100, δi = 1.5, and θi = 0.9 for all i. Here

we use random initial conditions for zi(0), κj(0) and ηi(0)
with the constraints κj(0) ≥ 10 and ηi(0) ≥ 1.

In our simulation, the sample length is 10−3. Under the

proposed dynamic event-triggered communication mecha-

nism, during time interval [0, 5], agents 1 − 10 triggered

26%, 25%, 31%, 44%, 25%, 29%, 31%, 38%, 33%, and 40%
of times. Therefore, our dynamic event-triggered commu-

nication mechanism is very efficient and avoids inter-agent

communication about 55− 75% of the time.
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(a) Individual φi(t) (solid lines)
and corresponding φ̄(t) (thick dotted
lines).
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(b) Network estimates of φ̄(t).

Fig. 2. Individual reference signals and network estimates of the time-
varying average.

Individual reference signals for each agent and the corre-

sponding average φ̄(t) are given in Fig. 2(a). Note that after

the network splits, there are two φ̄(t)s, one corresponding

to each of the connected components. The results obtained

from implementing the proposed event-triggered dynamic

average consensus estimators are given in Fig. 2(b). Note

that the proposed event-triggered algorithm is able to achieve

accurate estimates of φ̄(t) even with network interruptions.

The estimation error for the proposed dynamic average

consensus estimator are given in Figs. 3(a) and 3(b). Figure

3(a) contains the estimation error for agents 1−6 while Fig.

3(b) contains the estimation error for agents 7− 10.
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(a) Consensus error for agents 1−6.
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(b) Consensus error for agents 7 −

10.

Fig. 3. Dynamic average consensus error x̃(t).

VII. CONCLUSION

Here we present a fully distributed dynamic average

consensus algorithm that is robust to initialization errors.

The proposed robust algorithm makes use of an adaptive

gain which removes the explicit use of any upper bounds

on reference signals or its time-derivatives in the algorithm.

Since this robust algorithm requires continuous communi-

cation among agents, we introduce a novel dynamic event-

triggered communication scheme to reduce the overall inter-

agent interactions. The proposed triggering laws involve

internal dynamic variables which play an essential role in

guaranteeing that the triggering time sequence does not

exhibit Zeno behavior. Asymptotic convergence of both the

continuous communication based algorithm and the event-

triggered algorithm are presented. Future work include ap-

plying the developed algorithm to distributed learning and

control problems as well as extending the current approach

by considering directed networks.
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