
HAL Id: hal-01983383
https://hal.science/hal-01983383

Submitted on 16 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Credible Autocoding of The Ellipsoid Algorithm Solving
Second-Order Cone Programs

Raphael Cohen, Eric Féron, Pierre-Loïc Garoche

To cite this version:
Raphael Cohen, Eric Féron, Pierre-Loïc Garoche. Credible Autocoding of The Ellipsoid Algorithm
Solving Second-Order Cone Programs. 57th IEEE Conference on Decision and Control, Dec 2018,
MIAMI, United States. �hal-01983383�

https://hal.science/hal-01983383
https://hal.archives-ouvertes.fr

Credible Autocoding of The Ellipsoid Algorithm Solving
Second-Order Cone Programs

Raphael Cohen, Eric Feron and Pierre-Loı̈c Garoche

Abstract— The efficiency of modern optimization meth-
ods, coupled with increasing computational resources, has
led to the possibility of real-time optimization algorithms
acting in guidance of systems. Unfortunately, those algo-
rithms are still seen as new and obscure and are not
considered as a viable option for safety critical roles.
This paper deals with the formal verification of convex
optimization algorithms. Additionally, we demonstrate how
theoretical proofs of real-time convex optimization algo-
rithms can be used to describe functional properties at
the code level, thereby making it accessible for the formal
methods community. In seeking zero-bug software, we
use the Credible Autocoding framework. We focused our
attention on the Ellipsoid Algorithm solving second-order
cone programs (SOCP). The paper also considers floating-
point errors and gives a framework to numerically validate
the method.

I. INTRODUCTION

Formal verification of optimization algorithms used on-
line within control systems is the sole focus of this
research. Recently, such algorithms have been used
online with great success for the guidance of dynamical
systems, including, autonomous cars [1] and reusable
rockets [2]. Thus, powerful algorithms solving opti-
mization problems are already used online, have been
embedded on board, and yet still lack the level of
qualification required by civil aircraft or manned rocket
flight. Automatic code generation for solving convex
optimization problems has already been done [3], but
does not include the use of formal methods. Likewise,
work within the field of model predictive control already
exists where numerical properties of algorithms are
being evaluated [4]. Nevertheless, this work is only
valid for Quadratic Programming and using fixed-point
numbers. As well, no formal verification is performed.
On the other hand, some contributions already have
been made concerning formal verification of control
systems [5], [6], but focuses on formal verification and
code generation for linear control system and typical

Raphael Cohen is a PhD Student in Aerospace Engineer-
ing at the Georgia Institute of Technology , Atlanta, GA, USA.
raphael.cohen@gatech.edu

Eric Feron Dutton-Ducoffe Professor of Aerospace Engineer-
ing at the Georgia Institute of Technology , Atlanta, GA, USA
feron@gatech.edu

Pierre-Loı̈c Garoche is a Research Scientist at
Onera – The French Aerospace Lab, Toulouse, France
pierre-loic.garoche@onera.fr

feedback control techniques. Research has also been
made toward the verification of numerical optimization
algorithms [7], yet it remains theoretical and no proof
was performed.
Work already exists about formal verification for convex
optimization algorithms [8]. This work remains unfor-
tunately very basic. Only a formalization of annotations
at code level are presented and no proof was actually
performed with the use of formal methods. As well, only
an initial formulation of a numerical analysis is given,
without concrete result.
The paper is structured as follows: at first, Section II
presents backgrounds for convex optimization and ax-
iomatic semantics. Section III focuses on the axiom-
atization of an optimization problem and the formal
verification of the ellipsoid method. Section IV presents
a modification of the original ellipsoid method in order
to avoid ill-conditioned ellipsoids. Following this, a
floating-point analysis is presented in Section V. Finally,
Section VI concludes.

II. PRELIMINARIES

A. Second-Order Cone Programming

Optimization algorithms solve a constrained optimiza-
tion problem, defined by an objective function, the cost
function, and a set of constraints to be satisfied:

min fo(x)

s.t. fi(x) ≤ bi for i ∈ [1,m]

This problem searches for x ∈ Rn, the optimization
variable, minimizing fo ∈ Rn → R, the objective func-
tion, while satisfying constraints fi ∈ Rn → R, with
associated bound bi. A subclass of these problems can be
efficiently solved: convex problems. In these cases, the
functions fo and fi are required to be convex [9]. Here,
we only present a specific subset of convex optimization
problems: Second-Order Cone Programs. For x ∈ Rn, a
SOCP in standard form can be written as:

min fTx

s.t. ‖Aix+ bi‖2 ≤ c
T
i x+ di for i ∈ [1 , m]

With: f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R.

Because we are focusing on SOCP, this work does
not include semidefinite programs (SDP). In control

systems, SDP’s are mostly used off-line, checking be-
forehand system’s stability [10]. Thus, SOCP represents
a trade off between being general and useful for the
control community.

B. Axiomatic Semantic and Hoare Logic

Semantics of programs express their behavior. Here, we
specify a program using axiomatic semantics. In this
case, the semantics can be defined in an incomplete way,
as a set of projective statements, ie. observations. This
idea was formalized by [11] and then [12] as a way to
specify the expected behavior of a program through pre-
and post-condition, or assume-guarantee contracts.

Hoare Logic: A piece of code C is axiomatically
described by a pair of formulas (P,Q) such that if
P holds before executing C, then Q should be valid
after its execution. This pair acts as a contract for
the function and (P,C,Q) is called a Hoare triple. In
our case we are interested in specifying, at code level,
algorithm specific properties such as the convergence or
feasibility. Software frameworks, such as the Frama-C
platform [13], provide means to annotate a source code
with these contracts, and tools to reason about these
formal specifications. For the C language, ACSL [14]
(ANSI C Specification Language), can be used as source
comments to specify function contracts, or local anno-
tations such as loop invariants. In this work, we used
the WP Frama-C plugin, and the SMT (Satisfiability
modulo theories) solver Alt-Ergo to prove properties at
code level.

Linear Algebra-based Specification: ACSL also
provides means to enrich underlying logic by defining
types, functions, and predicates. In its basic version,
ACSL contains no predicate related to linear algebra.
It is however possible to introduce such notions, sup-
porting the expression of more advanced properties.
Figure 1 presents the definition of new ACSL types
and formalization of matrix addition. We also wrote
a library for operators used in convex optimization,
defining norm, grad, scalar product, det, etc. Figure 1
presents as well the definition of the vector two norm.

III. AUTOMATIC ANNOTATED CODE GENERATION

A. The Ellipsoid Method Solving SOCP

Let us now recall the main steps of the algorithm
detailed in [15]. In the following, we denote Ek =
Ell(Bk, ck), the ellipsoid computed by the algorithm at

ACSL

1 /*@
2 type matrix;
3 type vector;
4 logic vector vec_of_3_scalar(double *x)
5 reads x[0..2];
6 logic real vector_select(vector x,
7 integer i);
8 logic integer vector_length(vector x);
9 logic vector vec_add(vector x, vector y);

10 axiom vec_add_length:
11 \forall vector x, y;
12 vector_length(x)==vector_length(y)==>
13 vector_length(vec_add(x,y) ==
14 vector_length(x);
15 axiom vec_add_select:
16 \forall vector x, y, integer i;
17 vector_length(x)==vector_length(y)==>
18 0 <= i < vector_length(x) ==>
19 vector_select(vec_add(x, y), i) ==
20 vector_select(x,i)+vector_select(y,i);
21 */

Fig. 1. Linear Algebra-based ACSL Specification

the k − th iteration. Throughout the paper, we denote
the Ellipsoid Ell(B, c) by the set:

Ell(B, c) = {Bu+ c : uTu ≤ 1} (1)

Ellipsoid cut: We start the algorithm with an el-
lipsoid containing the feasible set X , and therefore the
optimal point x∗. We iterate by transforming the current
ellipsoid Ek into a smaller volume ellipsoid Ek+1 that
also contains x∗. Given an ellipsoid Ek of center ck, we
find a hyperplane containing ck that cuts Ek in half, such
that one half is known not to contain x∗. Finding such a
hyperplane is called the oracle separation step, cf. [15].
In our SOCP setting, this cutting hyperplane is obtained
by taking the gradient of either a violated constraint
either the cost function. Then, we define the ellipsoid
Ek+1 by the minimal volume ellipsoid containing the
half ellipsoid Êk that is known to contain x∗ that is
computed thanks to the Equations (2), (3) and (4). In
addition to that, we know an upper bound, γ, of the ratio
of Vol(Ek+1) to Vol(Ek) (see Property (1)). Figure 2
illustrates such ellipsoids cuts.

ck+1 = ck − 1/(n+ 1)Bkp (2)
and
Bk+1 =

n√
n2 − 1

Bk +

(
n

n+ 1
− n√

n2 − 1

)
(Bkp)p

T

(3)
with:

Fig. 2. Ellipsoid Cut

p = BTk e/
√
eTBkBTk e. (4)

Property 1: Let k ≥ 0, by construction:

Vol(Ek+1) ≤ exp{−1/(2 · (n+ 1))} · Vol(Ek)

Please find the proof of this property in [16].
Hypotheses: In order to know the number of steps

required for the algorithm to return an ε-optimal solu-
tion, three scalars and a point xc ∈ Rn are needed:
• a radius R such that X ⊂ BR(xc)
• a scalar r such that Br(xc) ⊂ X
• and V such that max

x∈X
fo(x)−min

x∈X
fo(x) ≤ V .

The main result can be stated as:
Theorem 1: Let us assume that X is bounded, not

empty and such that R, r and V are known. Then, for
all ε > 0, the algorithm, using N iterations, will return
x̂, satisfying:

fo(x̂) ≤ fo(x∗) + ε and x̂ ∈ X (ε-solution)

With N = 2n(n+ 1) log
(
R
r
V
ε

)
, n being the dimension

of the optimization problem.
This result, when applied to LP, is historically at the
origin of the proof of the polynomial solvability of linear
programs. Its proof can be found at [15], [17].

B. Semantics of SOCP

To axiomatize an optimization problem we intend to see
it, independently of the method used to solve it, as a
pure mathematical object. Our goal is to axiomatize it
with enough properties so that when coupling it with the
ACSL annotated C code implementation of a solving al-
gorithm, the resulting code would be formally verifiable.
Using ACSL, we define a new type and a high level

function, providing the possibility to create objects of

ACSL

1 /*@ axiomatic OptimSOCP {
2 type optim;
3 logic optim socp_of_size_2_6_0(
4 matrix A, vector b, matrix C,
5 vector d, vector f, int* m)
6 reads m[0..5];
7 logic real constraint(optim OPT,vector x,
8 integer i);
9 logic vector constraints(optim OPT,

10 vector x); */

Fig. 3. ACSL Optim Type Definition

ACSL

1 /*@
2 axiom constraint_linear_axiom:
3 \forall optim OPT, vector x, integer i;
4 getm(OPT)[i] == 0 ==>
5 constraint(OPT, x, i) ==
6 -scalarProduct(getci(OPT,i),x,
7 size_n(OPT))-getdi(OPT,i);
8 axiom constraint_socp_axiom:
9 \forall optim OPT, vector x, integer i;

10 getm(OPT)[i] != 0 ==>
11 constraint(OPT, x, i) ==
12 twoNorm(vector_affine(getAi(OPT,i),
13 x,getbi(OPT,i))) -
14 scalarProduct(getci(OPT,i),x,
15 size_n(OPT))-getdi(OPT,i);
16 predicate
17 isFeasible(optim OPT,vector x) =
18 isNegative(constraints(OPT,x)); */

Fig. 4. ACSL Feasible Predicate Definition

the type “optim” (Figure 3). When applying a method to
solve an actual optimization problem, many concepts are
crucial. The work here is to highlight those concepts and
write a complete enough library so that when adding the
specifications and the semantics of the implementation
of a method to this library, the code would be formally
verifiable. The concepts of feasibility and optimality are
being axiomatized. For instance, please find in Figure 4
the axiomatization of a constraint computation and the
feasibility predicate definition.

C. Annotating the Ellipsoid Algorithm

In order to annotate the algorithm and produce a globally
formally verifiable code, we adopt a specific technique.
Each function will be written in separated files. For each

function, two files are generated: a header and a body
file. On the header file (.h), the header of the function
and the ACSL contract will be written and on the body
file (.c) appears the ACSL annotated C code implemen-
tation of the function (updateEllipsoid.c, getGrad.c, ini-
tializationEllipsoid.c, ellipsoidMethod.c, etc). Figure 5
displays ACSL contract for the ellipsoid method. To

C Code + ACSL

1 /*@
2 requires \forall vector x,y;
3 isFeasible(OPT(A,b,c), x) ==>
4 isFeasible(OPT(A,b,c), y) ==>
5 -V <= cost(OPT(A,b,c),x) -
6 cost(OPT(A,b,c),y) <= V;
7 requires isSubset(
8 Feasible(OPT(A,b,c)),
9 Ellipsoid(mat_mult_scalar(eye(2),R),

10 vec_of_2_scalar(xc)));
11 requires isSubset(
12 Ellipsoid(mat_mult_scalar(eye(2),r),
13 vec_of_2_scalar(xc)),
14 Feasible(OPT(A,b,c)));
15 ensures cost(OPT(A,b,c),
16 vec_of_2_scalar(x))
17 <= cost(OPT(A,b,c),Sol(OPT(A,b,c))+eps;
18 ensures isFeasible(OPT(A,b,c),
19 vec_of_2_scalar(x));
20 */
21 void ellipsoidMethod();

Fig. 5. ellipsoidMethod ACSL Function Contract

keep things simpler, we only presented annotations in
the case where we were working with linear programs
(only defined by matrix A, vectors b, c) and not with
second-order cone programs. As well, we simplified the
annotations in order to make it more readable.

Progress: So far, all the matrix-based properties
have been proven (addition, multiplication, scalar prod-
uct, . . .). As well, the volume related triples are also
proved by the SMT solver Alt-Ergo. The constraint and
cutting hyperplane vector computations are proved as
well. The loop invariant stating the optimality of c best
is also demonstrated. On the other hand, covering ellip-
soids property and the ε-optimality of returned solutions
is not quite proved by itself for now. These properties
being mathematically complex, further work is required
in order to have them proved by the SMT solver.

IV. BOUNDING THE CONDITION NUMBER

Bounding the condition number of B is fundamental and
represents the main argument of the algorithm numerical
stability. Unfortunately, for the original algorithm, no
reasonable bound on k(B) can be found. Therefore, we
slightly modified the ellipsoid algorithm to make it able
to correct the current ellipsoid Ek in the case where its
condition number had become too high (ellipsoid too
flat). That way we can control the condition number of
B. Also, this correcting step, when it occurs, does not
break the convergence of the algorithm and its semantics
described in Section III-A.
First let us define the condition number of a matrix:

Definition 1: For a non-singular matrix A of Rn×n,
we define the condition number of A as the scalar:

k(A) = ‖A‖ ·
∥∥A−1∥∥ = σmax(A)/σmin(A) (5)

Where σi are the singular values of the matrix.

A. Bounding the Singular Values

When updating Bi by the usual formulas of the ellipsoid
algorithm, Bi evolves according to

Bi+1 = BiDi,

where n− 1 singular values of Di are n/
√
n2 − 1, and

one singular value is n/(n + 1). It follows that at a
single step the largest and the smallest singular values
of Bi can change by a factor from [1/2, 2]. Let us
argue now that one can bound the singular values of
the matrix Bi throughout the execution of the program.

a) Minimum Half Axis: First, we claim that if
σmin(B) is less than than rε/V then the algorithm
has already found an ε-solution (we can thus stop the
algorithm and return the current best point found). The
scalar ε being the wanted precision and the scalars r and
V being defined in Section III-A (proof in [16]).

b) Maximum Half Axis: When the largest singular
value of Bi is less than 2R

√
n+ 1, we carry out a step

as in the basic ellipsoid method. When it is greater, we
take some time to “correct” Bi in such a way that E+

i is
a localizer along with Ei , specifically Ei∩X ⊂ E+

i ∩X ,
and on the top of it:
• The volume of E+

i is at most γ times the volume
of Ei ;

• The largest singular value of B+
i is at most

2R
√
n+ 1.

For this, let us define σ = σmax(Bi) > 2R
√
n+ 1

and let eo being the corresponding direction. We then
consider the matrix G such that:

G = diag
(√

n/(n+ 1),
√
n+ 1/σ, . . . ,

√
n+ 1/σ

)
We conclude then this case by performing the below
update on Bi and ci:

Bi+1 = Bi ·G and ci+1 = ci − (eTo ci) · eo (6)

Please find in figure 6 an illustration of such a correction.
The unit ball being the feasible set. Hence, we conclude
from this that, throughout the execution of the code we
have:

σmin(Bi) ≥ σmin = 1/2 · rε/V
σmax(Bi) ≤ σmax = 4R

√
n+ 1

Fig. 6. Correcting the Ellipsoid

B. Corresponding Bounds

By having a lower bound on σmin(B) and a upper bound
on σmax(B), we conclude that throughout the execution
of the program:

k(Bi) ≤

(
2

1/2
·

2R
√
n+ 1

rε/V

)
=

8RV
√
n+ 1

rε
(7)

and,
‖Bi‖2 = σmax(B) ≤ 4R

√
n+ 1. (8)

At each iteration we know that x∗ ∈ Ell(Bi, ci) Which
implies that:

‖ci‖ ≤ R+ ‖xc‖+ ‖Bi‖ . (9)

V. FLOATING-POINT CONSIDERATIONS

Let F denotes the set of all floating-point numbers and
R the set of reals. We use standard notation for rounding
error analysis [18]. We write the relative rounding error
unit u and the underflow unit eta. For IEEE 754 double
precision (binary64) we have u= 2−53 and eta= 2−1074.
We present in this section an analysis targeting the
numerical properties of the Ellipsoid Algorithm. Con-
tributions already have been made concerning finite-
precision calculations within the ellipsoid method [17].
However, this work only shows that it is possible to com-
pute approximate solutions without giving exact bounds,
remains very theoretical and only applied to linear
programming. Also, the analysis performed considers
abstract finite-precision numbers and floating-points are
not mentioned. Thanks to the analysis performed in
this section, using the IEEE standard for floating-point
arithmetic and knowing exactly how the errors are being
propagated, we would be able to check a posteriori the
correctness of the analysis using static analyzers [19].
Throughout this section, we work on the modified ver-
sion of the algorithm presented in Section IV and use
the presented bounds.

A. Problem Formulation

To take into account the uncertainties on the variables
due to floating-point rounding, we modify the algorithm
to make it more robust. For this, we choose to evaluate
those uncertainties and conclude on a coefficient λ that
represents by how much we are going to widen the
ellipsoid Ek at each iteration (see Figure 7). Within
this algorithm, we focus our attention on the update
formulas (2), (3) and (4). Let us assume we have B ∈
Fn×n, p ∈ Fn, c ∈ Fn. We want to find λ ≥ 1 ∈ R
such that:

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
. (10)

Beforehand, we state an equivalent condition. Its proof
can be found in [16].

Lemma 1: [Equivalent Condition]

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
⇐⇒∥∥∥fl(B+)−1

(
B+u+ c+ − fl(c+)

)∥∥∥ ≤ λ , ∀ u ∈ B1(0).

Fig. 7. Ellipsoid Widening

Let us define ∆B , ∆B−1 and ∆c representing the
floating-point errors, such that:

∆B = fl(B+)−B+ ; ∆c = fl(c+)− c+

∆B−1 = (fl(B+))−1 − (B+)−1

and assume that after performing the floating-point anal-
ysis we found EB and Ec such that:

|(∆B)i,j | ≤ EB and |(∆c)i| ≤ Ec ∀i, j ∈ [1, n],

We dedicated Section V-B to the computation of Ec and
EB . Additionally, we need to compute a number EB−1

such that: |(∆B−1)i,j | ≤ EB−1 ∀i, j ∈ [1, n].
The quantity (B+)−1 is not used explicitly in the
algorithm and its floating-point error could not be evalu-
ated by numerically analyzing the computer instructions.
Instead, we will use perturbation matrix theory [20] and
the theorem 2 below:

Theorem 2: Let A be a non-singular matrix of Rn×n
and ∆A a small perturbation of A. Then, from [20], we
know that,∥∥(A+ ∆A)−1 −A−1

∥∥
‖A−1‖

≤ k(A)
‖∆A‖
‖A‖

(11)

This will give us a lower bound on EB−1 given EB , the
norm of B and its condition number. The result is stated
in the following lemma (see proof in [16]).

Lemma 2: [Widening - Analytical Sufficient
Condition]

1 +
nEBσmax + (σmin + nEB)

√
nEc

σ2
min

≤ λ =⇒

Ell
(
B+, c+

)
⊂ Ell

(
λ · fl(B+), fl(c+)

)
.

After founding such a λ, we would like to know whether
the algorithm is still converging. As well, because the
method’s proof lies in the fact that the final ellipsoid
has a small enough volume, this correction will have an
impact of the number of iterations. Lemma 3 addresses
those issues. Again, its proof can be found in [16].

Lemma 3: [Convergent Widening Coefficient] Let
n ∈ N, n ≥ 2.
The algorithm implementing the widened ellipsoids,
with coefficient λ will converge if:

λ < exp{1/(n(n+ 1))} (12)

In that case, if N denotes the original number of iter-
ation needed, the algorithm implementing the widened
ellipsoids will require:

Nλ = N/
(
1− n(n+ 1) log(λ)

)
iterations (13)

B. Floating-Point Rounding of Elementary Transforma-
tions

In this section, we express the floating-point errors
taking place when performing the update formulas (2)
and (3). For this, we present first the error analysis for
basic operations appearing in the algorithm.
Rounding of a Real. Let z ∈ R

z̃ = fl(z) = z + δ + η with |δ| < u and |η| < eta/2

Product and Addition of Floating-Points. Let a, b ∈ F.

fl(a× b) = (a× b)(1 + ε2) + η2

fl(a+ b) = (a+ b)(1 + ε1)

with: |ε1| < u, |ε2| < u, |η2| < eta and ε2η2 = 0
Reals-Floats Product. Let z ∈ R and a ∈ F,

|fl
(
fl(z) · a

)
− z · a| ≤ |z||a| · u + |a| · 2u(1 + u)

Following the same technique, we know evaluate the
uncertainties taking place on the computations of c+ and
B+. 〈., .〉 denotes the scalar product.

Errors on c+ and B+: From Equations (2) and (3),
we can see that for each component of c and B, the
program performs floating-point operations of the form:

fl
(
c+ fl

(
fl(z) · fl〈a, b〉

)
and

fl
(
fl
(
fl(z1) · d

)
+ fl
)
fl(z2) · fl

(
fl〈a, b〉 · c

)))
.

With: a, b ∈ Fn, c, d ∈ F and z1, z2 ∈ R. Hence, by
propagating the errors through the elementary opera-
tions, we found:

Ec ≤ u ·
((

16n2 + 16n+ 3
)
· ‖B‖+ ‖c‖

)
(14)

EB ≤ u ‖B‖ ·
((n2

1− nu
+ 2
)
|β|+ n+ 2|α|+ 1

)
(15)

VI. CONCLUSION

We present an axiomatization of SOCP using the speci-
fication language ACSL. In addition to that, annotations
for numerical algorithms solving those problems were
proposed. We focused our attention on the ellipsoid
method. We presented how the process of code gen-
eration and code verification for a given optimization
problem can be automated. We show how to propagate
the errors due to floating-point calculations through the
operations performed by the program. As it was said
earlier, the proof is not finalized yet and further work
is therefore required to finalize the ACSL proof of the
algorithm. As well, we only presented the correctness of
the optimization process for a given and fixed problem.
However, when using this technique for control and
hence online, we repeat this process for different initial-
izations. Therefore, one future work includes extracting
proof of convergence concerning the online utilization
of those algorithms, and finally annotating the code
accordingly. This would guarantee a completely sound
and bug-free implementation.

ACKNOWLEDGMENTS

This work was partially supported by project NSF
CPS SORTIES under grant 1446758. The authors would
also like to deeply thank Pierre Roux and Arkadi Ne-
mirovski for their help and participation in this work.

REFERENCES

[1] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric
Tseng, and Davor Hrovat. Predictive active steering control
for autonomous vehicle systems. IEEE Transactions on control
systems technology, 15(3):566–580, 2007.

[2] Lars Blackmore, Behçet Açikmese, and John M. Carson. Loss-
less convexification of control constraints for a class of nonlinear
optimal control problems. Systems & Control Letters, 61(8):863–
870, 2012.

[3] Jacob Mattingley and Stephen Boyd. Automatic code generation
for real-time convex optimization. Convex optimization in signal
processing and communications, pages 1–41, 2009.

[4] Panagiotis Patrinos, Alberto Guiggiani, and Alberto Bemporad.
A dual gradient-projection algorithm for model predictive control
in fixed-point arithmetic. Automatica, 55:226–235, 2015.

[5] Eric Feron. From control systems to control software. Control
Systems, IEEE, 30(6):50 –71, December 2010.

[6] Timothy Wang, Romain Jobredeaux, Heber Herencia-Zapana,
Pierre-Loı̈c Garoche, Arnaud Dieumegard, Eric Feron, and Marc
Pantel. From Design to Implementation: An Automated, Credible
Autocoding Chain for Control Systems, volume 460 of LNCIS,
pages 137–180. Springer, 2016.

[7] Timothy Wang, Romain Jobredeaux, Marc Pantel, Pierre-Loic
Garoche, Eric Feron, and Didier Henrion. Credible autocoding of
convex optimization algorithms. Optimization and Engineering,
17(4):781–812, 2016.

[8] Raphael Cohen, Guillaume Davy, Eric Feron, and Pierre-
Loı̈c Garoche. Formal verification for embedded implementa-
tion of convex optimization algorithms. IFAC-PapersOnLine,
50(1):5867–5874, 2017.

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[10] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkatara-
manan Balakrishnan. Linear matrix inequalities in system and
control theory. SIAM, 1994.

[11] Robert W. Floyd. Assigning meanings to programs. Proceedings
of Symposium on Applied Mathematics, 19:19–32, 1967.

[12] Charles. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12:576–580, October 1969.

[13] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. Frama-c: a software analysis perspective.
SEFM’12, pages 233–247. Springer, 2012.

[14] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto. ACSL: ANSI/ISO C Specification Language.
version 1.11., 2016.

[15] Arkadi Nemirovski. Introduction to Linear Optimization,
Lecture notes, Georgia Institute of Technology . URL:
http://www2.isye.gatech.edu/˜nemirovs/OPTI_
LectureNotes.pdf.

[16] http://www.prism.gatech.edu/˜rcohen30/cdc_
cohen_proof.pdf

[17] Leonid G Khachiyan. Polynomial algorithms in linear program-
ming. USSR Computational Mathematics and Mathematical
Physics, 20(1):53–72, 1980.

[18] Siegfried M Rump. Error estimation of floating-point summation
and dot product. BIT Numerical Mathematics, 52(1):201–220,
2012.

[19] Sylvie Putot, Eric Goubault, and Matthieu Martel. Static
analysis-based validation of floating-point computations. Lecture
notes in computer science, pages 306–314, 2004.

[20] Laurent El Ghaoui. Inversion error, condition number, and
approximate inverses of uncertain matrices. Linear algebra and
its applications, 343:171–193, 2002.

http://www2.isye.gatech.edu/~nemirovs/OPTI_LectureNotes.pdf
http://www2.isye.gatech.edu/~nemirovs/OPTI_LectureNotes.pdf
http://www.prism.gatech.edu/~rcohen30/cdc_cohen_proof.pdf
http://www.prism.gatech.edu/~rcohen30/cdc_cohen_proof.pdf

	Introduction
	Preliminaries
	Second-Order Cone Programming
	Axiomatic Semantic and Hoare Logic

	Automatic Annotated Code Generation
	The Ellipsoid Method Solving SOCP
	Semantics of SOCP
	Annotating the Ellipsoid Algorithm

	Bounding the Condition Number
	Bounding the Singular Values
	Corresponding Bounds

	Floating-Point Considerations
	Problem Formulation
	Floating-Point Rounding of Elementary Transformations

	Conclusion
	References

