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Abstract— The fact that genes compete for shared cellular
resources poses a fundamental challenge when identifying
parameters of genetic parts. A recently developed model of
gene expression tackles this problem by explicitly accounting
for resource competition. In addition to accurately describing
experimental data, this model only depends on a small number
of easily identifiable parameters with clear physical interpre-
tation. Based on this model, we outline a procedure to select
the optimal set of experiments to characterize biomolecular
parts in synthetic biology. Additionally, we reveal the role
competition for shared resources plays, provide guidelines how
to minimize its detrimental effects, and how to leverage this
phenomenon to extract the most information about unknown
parameters. To illustrate the results, we consider the case
of part characterization in cell-free extracts, treat plasmid
DNA concentrations as decision variables, and demonstrate the
significant performance difference between naı̈ve and optimal
experiment design.

I. INTRODUCTION

One of the fundamental goals of synthetic biology is to
create large-scale complex systems enabling the precise con-
trol of living organisms, both at the cellular and population
levels [1]. Today, creating even simple modules requires
numerous iterative cycles of designing, building and testing
components [2], [3]. Unfortunately, this approach relying
on the creation of vast part libraries [4] quickly becomes
impractical with increasing circuit complexity. Alternatively,
computational tools and control theoretic ideas leveraging
predictive models support the development of general design
principles that are essential for the rational forward engineer-
ing of large-scale synthetic systems [5], [6], [7], [8]. Much
of the mystery of today’s genetic engineering stems from the
lack of such predictive models and fully characterized parts
allowing systems-level designs.

Recently, considerable attention has been focused on var-
ious sources of context-dependence that cause unwanted
coupling among different genetic modules [9], [10], [11].
One major source of context-dependence is competition for
shared resources [12], [13], [14]. This phenomenon causes
coupling between virtually any two components that share
the same machinery (RNA polymerase, ribosomes, degra-
dation enzymes, etc.), both in vivo and in vitro [15], [16].
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As a result, part characterization must include quantification
of resource sequestration so that the resulting coupling phe-
nomenon can be predicted when parts are co-expressed [15],
[17]. This way unwanted coupling effects can be taken into
account during systems-level design, thus ensuring correct
behavior upon interconnection [18], [19].

To this end, in [15] we developed a mathematical model
considering the in vitro experimental data originally obtained
in [12]. This mechanistic model explicitly accounts for
the limited availability of shared transcriptional/translational
resources and reveals how the expression of one gene affects
that of another via competition for these shared resources.
In addition to correctly describing the expression profile of
a single gene, we demonstrated that we can successfully
predict expression profiles of multiple co-expressed parts
characterized separately, thus accounting for loading due to
resource competition.

In this paper, we build upon these earlier results in [15] and
quantify the information content of candidate experiments in
the presence of measurement noise. To this end, we consider
parameter estimation from the perspective of both Least
Squares Estimation and Maximum Likelihood Estimation.
We derive the explicit expression characterizing the infor-
mation content of a measurement at any given time point.
Further, leveraging the analytic nature of this expression,
we reveal how competition for shared resources affects the
information content of experiments when expressing various
copies of a single gene. Following this, we uncover how
to extract more information about a part of interest by
counter-intuitively co-expressing it with another part. Besides
outlining how to select the optimal set of experiments to
characterize biomolecular parts in synthetic biology, we also
reveal the role competition for shared resources plays in
terms of the parameter identification problem. We further
provide guidelines how to minimize the detrimental effects
of competition, and how to leverage this phenomenon by
extracting the most information from potential experiments.

This paper is organized as follows. First, we briefly
introduce the mathematical model of gene expression that
accounts for the limited availability of shared transcriptional
resources. Following this, we quantify the information con-
tent of candidate experiments and demonstrate not only how
to select the optimal set of experiments yielding the sharpest
parameter estimates, but also how the very fact that genes
compete for resources can be leveraged to obtain better
parameter estimates. Finally, we revisit the experimental
data obtained in [12] to compare the performance difference
between naı̈ve and optimal experiment design.
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II. MODEL AND PROBLEM FORMULATION

Here, we briefly introduce the mathematical model derived
in [15] to account for the limited availability of shared
cellular resources, together with the problem formulation.

A. System Dynamics

Consider a set of n constitutively expressed genes, with
gene i expressing mRNA xi for i = 1, . . . , n, respectively,
and introduce x = (x1, . . . , xn)>. To model the limited
availability of shared cellular resources, according to [15],
the network dynamics are captured by

ẋi = αi

di
κi

1 +
∑n
j=1

dj
κj

− γixi, (1)

with x(0) = 0, where the parameters are defined as follows.
The rate constants αi and γi denote mRNA synthesis and
degradation rates, respectively; di denotes the DNA concen-
tration encoding gene i; and κi is the dissociation constant of
RNA polymerase to the promoter of gene i. For simplicity,
we only consider transcriptional dynamics and constitutive
genes, but the results can be easily extended to include
translational dynamics and regulated genes, as discussed in
[15].

Importantly, if we consider the case when di � κi, the
model in (1) simplifies to

ẋi =
αi
κi
di − γixi, (2)

the standard model of gene expression [20], corresponding
to when shared transcriptional resources (RNA polymerase)
are available in unlimited amounts, thus competition for these
resources is negligible.

B. Experimental Setup and Measurements

Consider J experiments such that the DNA concentrations
are di = d

(j)
i for i = 1, . . . , n, and define d(j) ..=

(d
(j)
1 . . . d

(j)
n )> ∈ Rn for j = 1, . . . , J . Introducing

the vector θ ..= (α1, γ1, κ1, . . . , αn, γn, κn)> of unknown
parameters, we can rewrite (1) for i = 1, . . . , n as

ẋ = g(x, θ, d(j)) with x(0) = 0. (3)

Without measurement noise, let

ȳ(j)(t) = h
(
x(t, θ, d(j))

)
∈ Rq (4)

denote the output of the system in (3), where h : Rn → Rq
is typically such that h(x) = (xi1 xi2 . . . xiq )> where
ij ∈ {1, 2, . . . , n}, i.e., a subset of the state variables are
measured. If we sample the system output ȳ(j) at K different
time points t1, . . . , tK , then by integrating (3) we obtain that
ȳj,k(θ, d(j)) ..= ȳ(j)(tk) is given by

ȳj,k(θ, d(j)) = h

(∫ tk

0

g(x, θ, d(j))dt
)
∈ Rq, (5)

and introduce ȳ ..= (ȳ>1,1 . . . ȳ>J,K)>. In the presence of
additive measurement noise the output becomes

Yj,k = ȳj,k(θ, d(j)) + Zj,k (6)
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Fig. 1. (A) An optimization algorithm converges to the minimum θ̂LSE
in θ1 faster than in θ2. (B) The same small change in θ yields a greater
decrease in case of the narrower curve than in case of the wider curve.

for j = 1, . . . , J and k = 1, . . . ,K, where the random
variables Zj,k ∼ Nq(0,Σ) follow an independent and iden-
tically distributed (i.i.d.) q-dimensional multivariate normal
distribution with zero mean and symmetric covariance matrix
Σ ∈ Rq×q , assumed to be known (e.g., from equipment
calibration).

C. Problem Formulation

The measurements y ..= (y>1,1 . . . y>J,K)> ∈ RqJK
correspond to the J experiments with DNA concentrations
d ..= ((d(1))> . . . (d(J))>)> ∈ RnJ and K time points.
Based on this, the two most common estimators are the
Least Square Estimator θ̂LSE and the Maximum Likelihood
Estimator θ̂MLE. In particular, we have that

θ̂LSE = arg min
θ
L(y, θ, d), (7)

where

L(y, θ, d) ..=
1

2
[y(d)− ȳ(θ, d)]

>
[y(d)− ȳ(θ, d)] (8)

quantifies the total error between measurements and model
predictions. Similarly, we have that

θ̂MLE = arg max
θ
fY (y|θ, d), (9)

where fY (y|θ, d) is the probability density function of ob-
serving the samples Y ..= {Y1,1, . . . , YJ,K}. In what follows,
we omit the subscript of θ̂ as under a Gaussian model with
i.i.d. noise, as in our case, we have that θ̂LSE = θ̂MLE [21].

Here, we are interested in the quality of the estimator θ̂.
To illustrate this, consider first the error function depicted
in Fig. 1A, where the error is less sensitive to changes in
θ2 than in θ1, yielding significant uncertainty about θ2, thus
an optimization algorithm converges slower in θ2 than in
θ1. Similarly, considering the two likelihood functions in
Fig. 1B, although they share the same θ̂, the parameter uncer-
tainty is smaller corresponding to the narrower one (green).
In the following, we focus on how the error/likelihood
surface is shaped in the vicinity of θ̂, thus studying local
observability properties using a linearization approach. A
more general description of this problem for a wider model
class is provided in [22].

Importantly, the surfaces L(y, θ, d) and fY (y|θ, d) in
Fig. 1 around the estimator θ̂ depend on the experimental



conditions, i.e., our choice of DNA concentrations d. There-
fore, we seek to answer the following questions. How do
we quantify the quality of parameter estimates? What is the
set of optimal decision variables d? Most importantly: how
can we leverage competition for shared resources to obtain
optimal error/likelihood landscapes?

III. RESULTS

We first briefly review the results concerned about the local
description of L(y, θ, d) and fY (y|θ, d). After providing a
simple procedure to quantify the information content of
candidate experiments, thus finding the optimal set, we reveal
the role that competition for shared resources plays. Note
that while the dynamics of xi and xj in (3) are decoupled,
identification of the unknown parameters in θ are coupled.

A. Local Behavior of the Error and Likelihood Functions

Assume that there exists a parameter vector θ̂ such that

ȳj,k(θ̂, d(j)) = yj,k ∀j ∈ [1, J ], k ∈ [1,K], (10)

so that L(y, θ̂, d) = 0 together with

∂L(y, θ, d)

∂θ1

∣∣∣∣
θ̂

=
∂L(y, θ, d)

∂θ2

∣∣∣∣
θ̂

= · · · = ∂L(y, θ, d)

∂θ3n

∣∣∣∣
θ̂

= 0.

In this case, we can approximate L(y, θ, d) around θ̂ as

L(y, θ, d) ≈L(y, θ̂, d) +
∂L(y, θ, d)

∂θ

∣∣∣∣
θ̂

[θ − θ̂]+

[θ − θ̂]> ∂2L(y, θ, d)

∂θ2

∣∣∣∣
θ̂

[θ − θ̂]

=[θ − θ̂]>H(θ̂, d)[θ − θ̂]

(11)

with the Hessian matrix

H(θ̂, d) ..=
∂2L(y, θ, d)

∂θ2

∣∣∣∣
θ̂

. (12)

As the eigenvalues and eigenvectors of H(θ̂, d) determine the
form of the paraboloid (Fig. 1A), they strongly influence the
convergence properties of any gradient based optimization
method.

For the likelihood function in (9), we follow a sim-
ilar approach and first define the log-likelihood function
l(y|θ, d) ..= log fY (y|θ, d). Due to the monotonicity of
log(·), note that θ̂ = arg maxθ l(y|θ, d). For θ ∈ Rr we have
from [23] that θ̂ approximately follows the r-dimensional
multivariate normal distribution θ̂ ∼ Nr

(
θ̂, I−1(θ̂, d)

)
,

where I(θ̂, d) ∈ Rr×r is the Fisher information matrix
defined as

I(θ, d) ..=

∫ [
∂l(y|θ, d)

∂θ

]>
∂l(y|θ, d)

∂θ
fY (y|θ, d)dy (13)

evaluated at θ̂. Just like the properties of H(θ̂, d) characterize
the behavior of measurement error in a small neighborhood,
I(θ̂, d) provides a measure of the amount of information
that the observable random variable Y contains about the
unknown parameters in θ: the “greater” it is, the more

information the experiments contain about θ̂ (i.e., “smaller”
covariance, thus less uncertainty).

Both with H(θ̂, d) and I(θ̂, d), to determine the optimal
set of experiments, we need to consider some real-valued
summary statistics. Among popular choices, the most com-
mon in terms of the Fisher information matrix are the A-
optimal, E-optimal and D-optimal designs, see e.g. [24], [25],
[26], yielding the optimization problems

d∗A = arg min
d∈D

tr
(
I−1(θ̂, d)

)
, (14)

d∗E = arg min
d∈D

λmax

(
I−1(θ̂, d)

)
, (15)

d∗D = arg min
d∈D

det
(
I−1(θ̂, d)

)
, (16)

respectively, where D is the set of possible d. While d∗A
and d∗E minimize the average variance and maximum error,
respectively, d∗D maximizes the differential Shannon infor-
mation content

−
∫
f(y|θ, d)l(y|θ, d)dy,

extending the concept of Shannon information [27] to ran-
dom variables with continuous probability distributions. Sim-
ilarly, with λmin and λmax denoting the smallest and largest
eigenvalues of H(θ̂, d) in (12), respectively, one might seek
to minimize the condition number of H(θ̂, d):

d? = arg min
d∈D

(
λmax

λmin

)
, (17)

thus avoiding flat error surfaces in any direction [28]. Note
that in this case, we assume structural identifiability of the
problem, thus λmin 6= 0.

B. Decomposition of the Error and Likelihood Functions

Next, we present two key lemmas to easily compute
H(θ̂, d) and I(θ̂, d). To simplify notation, we do not denote
the dependence on d and d(j) in this subsection.

Lemma 1. H(θ̂) from (12) can be computed as

H(θ̂) =

J∑
j=1

K∑
k=1

Hj,k(θ̂) (18)

where

Hj,k(θ) =

[
∂ȳj,k(θ)

∂θ

]>
∂ȳj,k(θ)

∂θ
. (19)

Proof. From ∂L(y,θ)
∂θa

=
∑J
j=1

∑K
k=1

∂ȳj,k(θ)
∂θa

[ȳj,k(θ)− yj,k],
considering (10) we obtain that

∂2L(y, θ)

∂θa∂θb
=

J∑
j=1

K∑
k=1

∂ȳj,k(θ)

∂θa

∂ȳj,k(θ)

∂θb
,

thus yielding (18) with (19).

Lemma 2. I(θ̂) from (13) can be computed as

I(θ̂) =

J∑
j=1

K∑
k=1

Ij,k(θ̂), (20)



where

Ij,k(θ) =

[
∂ȳj,k(θ)

∂θ

]>
Σ−1 ∂ȳj,k(θ)

∂θ
. (21)

Proof. Combining (6) with the fact that Z1,1, . . . , ZJ,K are
independent and identically distributed random variables
yields that fY (y|θ) =

∏J
j=1

∏K
k=1 fYj,k

(yj,k|θ) with

fYj,k
(yj,k|θ) =

exp
{

[yj,k − ȳj,k(θ)]>Σ−1

2 [yj,k − ȳj,k(θ)]
}

√
(2π)q|Σ|

.

Introduce the indexing i ..= (j − 1)J + k to simplify
notation. With this, we obtain that l(y|θ) =

∑JK
i=1 li(yi|θ)

where li(yi|θ) ..= log fYi
(yi|θ). Next, we show that with

Ii(θ) ..=

∫ [
∂li(yi|θ)
∂θ

]>
∂li(yi|θ)
∂θ

fYi(yi|θ)dyi

we obtain I(θ) =
∑JK
i=1 Ii(θ). To see this, note that

fa(ya|θ) = ela(ya|θ), thus
∫
fYa(ya|θ)dya = 1 yields

0 =
∂

∂θp

∫
fYa

(ya|θ)dya =

∫
∂ela(ya|θ)

∂θp
dya

=

∫
∂la(ya|θ)
∂θp

ela(ya|θ)dya =

∫
∂la(ya|θ)
∂θp

fYa
(ya|θ)dya.

Therefore, if a 6= b then we obtain∫ ∫
∂la(ya|θ)
∂θp

∂lb(yb|θ)
∂θq

fYa(ya|θ)fYb
(yb|θ)dyadyb = 0,

so that I(θ) =
∑JK
i=1 Ii(θ). Finally, as Σ does not depend

on θ, from [29] it follows that

[Ii(θ)]a,b =
∂ȳ>i (θ)

∂θa
Σ−1 ∂ȳi(θ)

∂θb
,

yielding (21) with i = (j − 1)J + k.

The results in Lemmas 1–2 can be readily leveraged to
characterize the set of optimal experiments according to
some real-valued summary statistics, e.g., those in (14)–
(17). Additionally, these results are equally well-suited for
precisely quantifying how competition for shared cellular
resources affects parameter estimation. Thus, they can guide
the experiment design not only by providing guidelines how
to minimize its detrimental effects, but also by highlighting
how to leverage this phenomenon, detailed next.

C. Expression of a single part

To illustrate how the results in Lemmas 1–2 can be used
to better understand the effects of competition for shared
resources, we first consider the transcription of a single gene
(n = 1) into mRNA x both when competition for shared
resources is accounted for like in (1), and when competition
is neglected, see (2).

The solution of (1) is given by

x(t) =
α

γ

d
κ

1 + d
κ

(
1− e−γt

)
, (22)

whereas integrating (2) yields

x(t) =
α

γ

d

κ

(
1− e−γt

)
. (23)

Claim 1. Let H0(θ̂, d) be like in (12) corresponding to
model (2) with n = 1, output y = x and θ = (α, γ, κ)>.
With this, for any i ∈ {1, . . . , J} we have that

H0(θ̂, d) = H0(θ̂, d(i))

J∑
j=1

(
d(j)

d(i)

)2

. (24)

Proof. From (23) we obtain that

∂ȳj,k
∂α

=
d(j)

κγ

(
1− e−γtk

)
,

∂ȳj,k
∂γ

=
αd(j)

κγ2

(
e−γtk − 1 + γtke

−γtk) ,
∂ȳj,k
∂κ

=
αd(j)

κ2γ

(
e−γtk − 1

)
,

so that ∂ȳj,k
∂α ,

∂ȳj,k
∂γ ,

∂ȳj,k
∂κ ∝ d(j), yielding (24).

It follows from Claim 1 that experiments with different
DNA concentrations do not change the shape of the error
function L(y, θ, d) when competition for shared cellular
resources is neglected. Conversely, when considering (1)
instead of (2), the result in (24) does not hold, thus the
shape of the paraboloid in (11) changes with different DNA
concentrations, accounting for loading effects due to the
limited availability of shared resources. To further reveal
the role that competition plays, we next focus on it from
the perspective of information content when comparing (1)
with (2). Without loss of generality, assume that κ = 1.

Claim 2. With θ = (α, γ)>, let I(θ̂, d) and I0(θ̂, d) denote
the Fisher information matrices corresponding to (1) and (2),
respectively. With this, we have that

det
(
I(θ̂, d)

)
< det

(
I0(θ̂, d)

)
. (25)

Proof. Considering (23), from Lemma 2 we obtain that

I0
j,k(θ̂, d(j)) =

[
A2
j,k Aj,kBj,k

Aj,kBj,k B2
j,k

]
with

Aj,k =
1√
|Σ|

d(j)

γ

(
1− e−γtk

)
,

Bj,k =
1√
|Σ|

[
αd(j)

γ2

(
e−γtk − 1

)
+
αd(j)

γ
tke
−γtk

]
.

Similarly, from (2) we obtain that Ij,k(θ̂, d(j)) =

I0
j,k(θ̂, d(j))/

(
1 + d(j)

)2
. Therefore, it follows from

Lemma 2 with Ω = {1, . . . J} × {1, . . . K} that

det
(
I0(θ̂, d)

)
=

∑
(j,k)∈Ω

∑
(a,b)6=(j,k)

(Aj,kBa,b −Aa,bBj,k)
2
,

det
(
I(θ̂, d)

)
=

∑
(j,k)∈Ω

∑
(a,b)6=(j,k)

(Aj,kBa,b −Aa,bBj,k)
2(

1 + d(j)
)2 (

1 + d(a)
)2 ,



yielding (25) since d(j), d(a) ≥ 0 for j, a = 1, . . . , J .

In Claim 1 we saw that competition for shared resources
was essential for taking advantage of multiple experiments,
thus it was advantageous. Conversely, Claim 2 reveals that
the information content is decreased by competition for
shared resources.

D. Co-expression of two parts

After demonstrating how competition for shared cellular
resources affects the characterization of a single part, here
we demonstrate how it can be leveraged. To this end, we
consider the expression of two genes.

The first gene of interest expresses mRNA x1 with pa-
rameters α1, γ1, and κ1, whereas the second gene expresses
mRNA x2 with the corresponding parameters α2, γ2, and
κ2. We consider two cases: first, only x1 is expressed, so
that from (1) its dynamics are given by

ẋ1 = α1

d1
κ1

1 + d1
κ1

− γ1x1, (26)

whereas in the second case both genes are expressed:

ẋi = αi

di
κi

1 + d1
κ1

+ d2
κ2

− γixi, i = 1, 2. (27)

Assume that we have already characterized the second part,
thus α2, γ2, and κ2 are known parameters, and that the above
two parts only differ in their promoters, captured by κ1 6= κ2,
but are otherwise identical, thus α1 = α2 and γ1 = γ2.
Therefore, our task is to estimate θ = κ1.

Let IS(θ̂, d1) denote the Fisher information matrix corre-
sponding to (26) when y = x1. Similarly, with d = (d1, d2)>

let IC1(θ̂, d) and IC2(θ̂, d) correspond to (27) when y = x1

and when y = (x1, x2)>, respectively.

Claim 3. Define d∗1
..= arg maxd1 IS(θ̂, d1) together with

I∗ ..= maxd1 IS(θ̂, d1). With this, we obtain that d∗1 = κ1

and IC1(θ̂, d) ≤ I∗. Furthermore, IC2(θ̂, d) ≥ I∗ when

d1

κ1

√
1 + 2

d2

κ2
+ 2

(
d2

κ2

)2

≥
(

1 +
d1

κ1
+
d2

κ2

)2

. (28)

Proof. Integrating (26), we obtain that

x1(t) =
d1
κ1

1 + d1
κ1

α1

γ1

(
1− e−γ1t

)
,

so that Lemma 2 yields IS(θ̂, d1) =
∑K
k=1 ISk (θ̂, d1), where

ISk (θ̂, d1) =

[
α1 (1− e−γ1tk)

κ1γ1

]2(
d1

κ1

)2(
1 +

d1

κ1

)−4

,

thus d∗1 = κ1. Similarly, from (27) we obtain that

xi(t) =
di
κi

1 + d1
κ1

+ d2
κ2

αi
γi

(
1− e−γit

)
i = 1, 2,

Fig. 2. The information Ĩ(θ, d) exceeds I∗ = maxd1 I(θ, d1) when the
condition in (28) is satisfied. For instance, when d1/κ1, d2/κ2 ≈ 10, the
information content is approximately doubled. Note that when d1/κ1 ≈ 10,
the information content expressing and measuring only x1 is ≈ I∗/10.

thus Lemma 2 yields that IC1(θ̂, d) =
∑K
k=1 IC1

k (θ̂, d)

and IC2(θ̂, d) =
∑K
k=1 IC2

k (θ̂, d) with IC1
k (θ̂, d) =

ISk (θ̂, d1)s
(
d1
κ1
, d2κ2

)
, IC2

k (θ̂, d) = IC1
k (θ̂, d)q

(
d1
κ1
, d2κ2

)
, and

s (a, b) =
(1 + a)

4
(1 + b)

2

(1 + a+ b)
4 , (29)

q (a, b) =
(1 + a)

4
[
(1 + b)

2
+ b2

]
(1 + a+ b)

4 . (30)

Consequently, we have that IC1(θ̂, d) = IS(θ̂, d1)s
(
d1
κ1
, d2κ2

)
,

so that from (29) it follows that IC1(θ̂, d) ≤ I∗. Similarly,
we obtain that IC2(θ̂, d) = IC1(θ̂, d)q

(
d1
κ1
, d2κ2

)
, so that

IC2(θ̂, d) ≥ I∗ follows from (30) when (28) is satisfied.

The above result can be interpreted as follows. First,
d∗1 = κ1 means that the system (26) is “most excited” when
d1/(d1 + κ1) is steepest, a widely known fact in biology
[20]. Next, Claim 3 states that IC1(θ̂, d) ≤ I∗, that is,
without measuring the expression of the known part, it is not
possible to exceed the maximal information content I∗ about
the unknown part. This is not surprising, as comparing (26)
and (27), the dynamics of x1 are identical if

d1
κ1

1 + d1
κ1

=
d̃1
κ1

1 + d̃1
κ1

+ d̃2
κ2

→ d1

κ1
=

d̃1
κ1

1 + d̃2
κ2

,

where d̃i denotes the values of di in (27). Although we have
information about the expression of x2 via x1, we do not
possess any extra information about the expression of x1.

Conversely, once we measure both x1 and x2, we also
have access to the effect of x1 expression on that of x2 as
a result of competition for shared resources. Thus, there are
conditions under which the overall information, direct from
measuring x1 and indirect from measuring x2, exceeds I∗
(Fig. 2). As a general design principle, when characterizing
promoters it is thus beneficial to co-express an unknown part
with a known reporter and to use generous concentrations of
DNA for both parts (top right corner in Fig. 2).



To further emphasize how to leverage the co-expression
of a known reporter with an unknown part, we next reveal
how the choice of Hj,k contributes to the eigenvalues and
eigenvectors of H . This question is not trivial and has
been studied in form of the Horn conjecture [30], [31].
While previous results focused on deriving conditions on the
sequence of eigenvalues of Hj,k for solving this problem,
we study the eigenvectors instead. Here, we consider the
combination of two observations (either about the same
part or about co-expressed unknown and reporter parts, see
Claim 3), yielding H1 and H2, respectively. Note that both
H1 and H2 have a single non-zero eigenvalue (follows from
the diadic decomposition in (19)). Let 〈a, b〉 denote the
standard scalar product.

Lemma 3. Let H1, H2 ∈ Rn×n be real symmetric matrices,
both with precisely one non-zero eigenvalue, denoted by
λ1 and λ2, respectively. Further, let h1 and h2 denote the
corresponding normalized eigenvectors, respectively. Let η1

and η2 denote the two non-zero eigenvalues of H = H1+H2

with the corresponding eigenvectors v1 and v2, respectively.
If 〈h1, h2〉 = 0, then ηi = λi and vi = hi for i = 1, 2.
Otherwise, v1 = a1h1 + h2 and v2 = a2h1 + h2 with
η1 = λ2(1+a1〈h1, h2〉) and η2 = λ2(1+a2〈h1, h2〉), where

a1,2 =
(λ1 − λ2)±

√
(λ1 − λ2)2 + 4λ1λ2〈h1, h2〉2
2λ2〈h1, h2〉

.

Proof. With a ∈ R and the ansatz v = ah1 + bh2 we want
to find a and b such that Hv = ηv. As for both H1 and
H2, only one eigenvalue is non-zero, it suffices to consider
the orthogonal projection of v on the eigenvectors of H1 and
H2, respectively, thus

Hv = (a+ 〈h1, h2〉)λ1h1 + (a〈h1, h2〉+ 1)λ2h2. (31)

When 〈h1, h2〉 = 0, the Lemma follows directly. Otherwise,
without loss of generality we set b = 1 and with the
substitution h2 = v − ah1, we obtain that all terms in h1

vanish in the above equation if a satisfies λ2〈h1, h2〉a2 +
(λ2−λ1)a−λ1〈h1, h2〉 = 0. The solutions of this quadratic
formula are a1 and a2 defined in the claim. With this,
the eigenvalues η1 and η2 of H from (31) are given by
η1,2 = λ2(1 + a1,2〈h1, h2〉).

Therefore, when combining two observations (either about
the same part or about co-expressed unknown and re-
porter parts), from Lemma 3 we obtain that the eigenvec-
tors/eigenvalues of the cumulative Hessian H = H1 + H2

are convex combinations of those of the Hessians H1 and H2

corresponding to the two observations. Most importantly, the
difference between eigenvalues η1 and η2 of H is

η1 − η2 =
√

(λ1 − λ2)2 + 4λ1λ2〈h1, h2〉2. (32)

Therefore, in order to have η1 ≈ η2 for an optimal shape of
L(y, θ, d) (Fig. 1A), one should choose the two experiments
such that the non-zero eigenvalues of the constituent Hes-
sians H1 and H2 are comparable, and also their eigenvectors
are approximately orthogonal.
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Fig. 3. Eigenvectors corresponding to the non-zero eigenvalue of H1

(colored surface) and H2 (brown arrow) . Color shading indicates value
of associated eigenvalue. Black dashed lines indicate the levels of constant
DNA amount (vertical) and constant time point (horizontal).

IV. APPLICATION EXAMPLES

We consider two application examples to illustrate the
implications of our results. We first focus on how competition
between an unknown part and a reporter can be leveraged
to obtain a better-conditioned error surface L(y, θ, d), then
we revisit the experiments in [12] from the perspective of
information content and sharpness of parameter estimates.

A. Least Squares Estimation

Consider the case of co-expression of an unknown part
with output x1 together with a known reporter with output
x2. The unknown parameters are θ = (α1, γ1, κ1), and
let H1 and H2 denote the Hessians corresponding to the
observations x1(tk) and x2(tk). The eigenvector correspond-
ing to the only non-zero eigenvalue of H2 is given by
(0, 0, 1)> (brown in Fig. 3), since the output x2 only depends
on κ1 and is independent of α1 and γ1, see (27). It can
be shown that the eigenvector of H1 corresponding to the
only non-zero eigenvalue lies in the polyhedral cone C =
{a1q1 + a2q2 + a3q3 + a4q4} (red in Fig. 3) with q1 =
(− γ1

α1
, γ1

κ1
, 0)>, q2 = (− γ1

α1
, γ1

κ1
, 1)>, q3 = (− γ1

α1
, 0, 0)>

and q4 = (− γ1
α1
, 0, 1)>.

From Lemma 3 we know that the eigenvector of H1

should be orthogonal to that of H2, depicted in brown in
Fig. 3. Therefore, the optimal choice lies in the (α1, γ1)-
plane, corresponding to large d

(j)
1 . Furthermore, Lemma 3

also reveals that the non-zero eigenvalues of the constituent
Hessians H1 and H2 should be comparable, therefore, the
optimal choice of time point tk to take the measurement x2

is when the corresponding eigenvalue is approximately equal
to the non-zero eigenvalue of H1.

We next focus on a series of measurements and the role
competition between an unknown part and a known reporter
plays by comparing 6 different experiment designs, summa-
rized in Table I. A standard design usually involves a series
of experiments with the DNA concentration and time points
both spaced linearly between some minimum and maximum
value, without additional reporter DNA (scenario #1). As
seen before, adding reporter DNA (scenario #2) can be



TABLE I
LOAD DNA CAN BE LEVERAGED TO YIELD STEEPER ERROR SURFACE

Scenario d1 (j ∈ [1, 10]) d2 t (k ∈ [1, 10]) λmax
λmin

1 10 · j 0 k/10 1855
2 10 · j 100 k/10 212
3 100 100 k/10 232
4 100 100 [0.1, 1] 500

5 100 100 10k/10−1 169
6 14.6 200 see (33) 24.5

beneficial: with the same measurement time points and DNA
concentrations, the fraction λmax/λmin decreases about 10-
fold. Removing 9 of the 10 experiments yields almost no
increase in the fraction (scenario #3), and further removing
8 of the 10 time points only increases the fraction λmax/λmin

about 2-fold (scenario #4). Importantly, this increase can
be recovered by spreading the time points logarithmically
(scenario #5), significantly outperforming the original naı̈ve
experiment design with only 1 of the 10 experiments and
a set of wisely chosen time points. Finally, in scenario #6,
keeping the number of DNA concentrations and time points
constant, we apply a pattern search optimization algorithm
to find the optimal values d?1 = 14.6, d?2 = 200 and
measurement time points

t? ={0.075, 0.078, 0.082, 0.083, 0.084,

0.086, 0.088, 0.090, 0.093, 0.307} (33)

minimizing the condition number λmax/λmin under the
constraints 0 ≤ di ≤ 200 and 0 ≤ tk ≤ 1.

B. Maximum Likelihood Estimation

In [12] there were J = 6 DNA concentrations (d =
(0.2, 0.5, 1, 2, 5, 20)>) and measurements every minute, thus
K = 60 time points over the first hour, considered in [15]. In
Table II, we consider 18 setups and the information content
(log-scale) of the corresponding D-optimal solution (16) rel-
ative to the information content I0 corresponding to the orig-
inal setup in [12]. In particular, we consider possible DNA
concentrations from the set D = {0.1, 0.2, . . . 1, 2, 4, . . . , 20}
of which we chose J ∈ {1, 2, 3, 4, 5, 6}, with K ∈
{6, 20, 60} measurements (every 10, 3, and 1 minute, respec-
tively). From Table II, we conclude that (i) the information
content could have been increased over 100-fold (red in Table
II) with the optimal choice of experiments compared to I0

obtained in the original setup in [12]; and (ii) we could have
obtained the same information content I0 with only 20 time
points instead of 60 (blue in Table II).

We next focus more on the widely used logarithmic
distribution of probing DNA concentrations used in [12]. In
particular, we consider the set D of possible DNA concentra-
tions with J = 4 choices and K = 20 time points. With this,
we have approximately 5,000 possible combinations, among
which about 200 yield parameter estimates with smaller
average variance than the original combination of 6 DNA
concentrations (Fig. 4A). Furthermore, while in the original
combination 4 out of 6 DNA concentrations are no greater
than 2nM, only 6% of the DNA concentrations in the best 50

TABLE II
D-OPTIMAL INFORMATION CONTENT

J
1 2 3 4 5 6

K
6 -16.8 -5.1 -3.3 -2.9 -2.7 -2.5

20 -15.0 -2.7 -0.9 -0.4 -0.2 0.0
60 -13.2 -0.4 1.4 1.9 2.1 2.3
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Fig. 4. (A) Average variance (weighted average considering nominal
parameter values in [15]) of the best 200 combinations normalized to that
in [12] with 6 DNA concentrations. (B) DNA distribution corresponding
to the best 50 combinations. (C) DNA distribution corresponding to the 50
combinations following the 50 best. (D) DNA distribution corresponding to
the 100 combinations following the 100 best.

combinations belong to this range (Fig. 4B), and it increases
to 15% and 22% for the following 50 and 100 combinations
(Fig. 4C–D), respectively. This suggests that choosing higher
DNA concentrations in [12] would have yielded parameter
estimates of reduced variance, thus of less uncertainty.

V. CONCLUSION

A system is said to be globally structurally identifiable if
its output is unique for every admissible parameter vector θ.
This property has been studied extensively [32], [33], [34],
and can be rigorously verified by studying the Lie derivatives
of the output function. While structural identifiability is a
necessary condition for identifying all parameters, it is not
sufficient. Even if a parameter is found to be structurally
identifiable, the likelihood/error function around the true
parameter value may be flat in some directions, leading to a
practically unidentifiable parameter.

In this paper, we focused on two complementary aspects
of practical identifiability of unknown parameters in the
context of cell-free extracts. We considered the Maximum
Likelihood Estimator θ̂MLE in case the noise distribution is
known, and the Least Squares Estimator θ̂LSE otherwise. Both
estimators give rise to a local description of error/likelihood
surfaces, where the appropriate Hessian matrix characterizes
the curvature of the error/likelihood surface. By studying
these Hessian matrices, we can thus quantify the information
content of candidate experiments.



Leveraging this, it is possible to design the optimal set
of experiments that minimizes some real-valued summary
statistics, leading to sharper parameter estimates. Addition-
ally, the novelty of the results presented here stems from
the fact that we revealed the role that competition for
shared resources plays. In particular, we first illustrated that
it is essential for taking advantage of different plasmid
DNA concentrations. Second, we demonstrated that when
characterizing an unknown part, the information content can
be significantly increased by co-expressing the unknown part
with a known reporter, thus extracting additional information
via loading, leading to reduced parameter uncertainty.

Finally, we revisited the original experiments in [12] to
compare the information content of naı̈ve and optimized
experiments. Since the results show that the information
content can be increased with even less experiments, we
next seek to experimentally verify these findings and demon-
strate that optimizing experiments indeed yield appreciably
sharper parameter estimates and more accurate predictions.
Additionally, we seek to provide an experiment design al-
gorithm which suggests future experiments based on already
given experimental data and explore both the theoretical and
experimental aspects of considering time varying inputs (de-
cision variables) of different signal shapes (i.e., administering
inducer/inhibitor molecules continuously).
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resource consumption,” in Proc. 56th IEEE Conference on Decision
and Control (CDC), 2017, pp. 2667–2673.

[17] W. Halter, J. M. Montenbruck, Z. A. Tuza, and F. Allgöwer, “A
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