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A Push-Pull Gradient Method for Distributed Optimization in Networks

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić

Abstract— In this paper, we focus on solving a distributed
convex optimization problem in a network, where each agent
has its own convex cost function and the goal is to minimize
the sum of the agents’ cost functions while obeying the network
connectivity structure. In order to minimize the sum of the
cost functions, we consider a new distributed gradient-based
method where each node maintains two estimates, namely, an
estimate of the optimal decision variable and an estimate of the
gradient for the average of the agents’ objective functions. From
the viewpoint of an agent, the information about the decision
variable is pushed to the neighbors, while the information about
the gradients is pulled from the neighbors (hence giving the
name “push-pull gradient method”). The method unifies the
algorithms with different types of distributed architecture, in-
cluding decentralized (peer-to-peer), centralized (master-slave),
and semi-centralized (leader-follower) architecture. We show
that the algorithm converges linearly for strongly convex and
smooth objective functions over a directed static network. In
our numerical test, the algorithm performs well even for time-
varying directed networks.

This is a preliminary version of the paper [1].

I. INTRODUCTION

In this paper, we consider a system involving n agents

whose goal is to collaboratively solve the following problem:

min
x∈Rp

f(x) :=
n
∑

i=1

fi(x), (1)

where x is the global decision variable and each function

fi : Rp → R is convex and known by agent i only. The

agents are embedded in a communication network, and their

goal is to obtain an optimal and consensual solution through

local neighbor communications and information exchange.

This local exchange is desirable in situations where privacy

needs to be preserved, or the exchange of a large amount of

data is prohibitively expensive due to limited communication

resources.

To solve problem (1) in a networked system of n agents,

many algorithms have been proposed under various assump-

tions on the objective functions and the underlying net-

work [2]–[27]. Centralized algorithms are discussed in [2],

where extensive applications in learning can be found. Paral-

lel, coordinated, and asynchronous algorithms are discussed

in [3] and the references therein.

Our emphasis in the literature review is on the decen-

tralized optimization since our approach builds on a new

*This work was supported in parts by the NSF grant CCF-1717391 and
by the ONR grant no. N00014-12-1-0998.

Shi Pu, Wei Shi, Jinming Xu and Angelia Nedić are
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understanding of the decentralized consensus-based meth-

ods for directed communication networks. Most references,

including [4]–[15], often restrict the underlying network

connectivity structure, or more commonly require doubly

stochastic mixing matrices. The work in [4] has been the

first to demonstrate the linear convergence of an ADMM-

based decentralized optimization scheme. Reference [5] uses

a gradient difference structure in the algorithm to provide

the first-order decentralized optimization algorithm which is

capable of achieving the typical convergence rates of a cen-

tralized gradient method, while references [6], [7] deal with

the second-order decentralized methods. By using Nesterov’s

acceleration, reference [8] has obtained a method whose

convergence time scales linearly in the number of agents

n, which is the best scaling with n currently known. More

recently, for a class of so-termed dual friendly functions,

papers [9], [10] have obtained an optimal decentralized

consensus optimization algorithm whose dependency on the

condition number1 κ of the system’s objective function
∑n

i=1 f(xi) achieves the best known scaling in the order

of O(
√
κ). Work in [14], [15] investigates proximal-gradient

methods which can tackle (1) with proximal friendly compo-

nent functions. Paper [20] extends the work in [4] to handle

asynchrony and delays. References [21], [22] considers a

stochastic variant of problem (1) in asynchronous networks.

A tracking technique has been recently employed to de-

velop decentralized algorithms for tracking the average of

the Hessian/gradient in second-order methods [7], allowing

uncoordinated step-size [11], [12], handling non-convexity

[13], and achieving linear convergence over time-varying

graphs [23].

For directed graphs, to eliminate the need of constructing

a doubly stochastic matrix in reaching consensus2, reference

[28] proposes the push-sum protocol. Reference [29] has

been the first to propose a push-sum based distributed

optimization algorithm for directed graphs. Then, based on

the push-sum technique again, a decentralized subgradient

method for time-varying directed graphs has been proposed

and analyzed in [16]. Aiming to improve convergence for

a smooth objective function and a fixed directed graph,

work in [17], [18] modifies the algorithm from [5] with the

push-sum technique, thus providing a new algorithm which

converges linearly for a strongly convex objective function

on a static graph. However, the algorithm has some stability

1The condition number of a smooth and strongly convex function is the
ratio of its gradient Lipschitz constant and its strong convexity constant.

2Constructing a doubly stochastic matrix over a directed graph needs
weight balancing which requires an independent iterative procedure across
the network; consensus is a basic element in decentralized optimization.
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issues, which have been resolved in [23] in a more general

setting of time-varying directed graphs.

In this paper, we introduce a modified gradient-tracking al-

gorithm for decentralized (consensus-based) optimization in

directed graphs. Unlike the push-sum protocol, our algorithm

uses a row stochastic matrix for the mixing of the decision

variables, while it employs a column stochastic matrix for

tracking the average gradients. Although motivated by a fully

decentralized scheme, we will show that our algorithm can

work both in fully decentralized networks and in two-tier

networks. The contributions of this paper include the design

of a new decentralized algorithm3 and the establishment

of its linear convergence for a static directed graph. We

numerically evaluate our proposed algorithm for both static

and time-varying graphs, and find that the algorithm is

competitive as compared to the linearly convergent algorithm

developed in [23].

The structure of this paper is as follows. We first provide

notation and state basic assumptions in Subsection I-A. Then,

we introduce our algorithm in Section II along with the

intuition of its design and some examples explaining how it

relates to (semi-)centralized and decentralized optimization.

We establish the linear convergence of our algorithm in

Section III, while in Section IV we conduct numerical test to

verify our theoretical claims. Concluding remarks are given

in Section V.

A. Notation and Assumptions

Throughout the paper, vectors default to columns if not

otherwise specified. Let each agent i ∈ {1, 2, . . . , n} hold

a local copy xi ∈ R
p of the decision variable and an

auxiliary variable yi ∈ R
p tracking the average gradients,

where their values at iteration k are denoted by xi,k and

yi,k, respectively. Let

x := [x1, x2, . . . , xn]
⊺ ∈ R

n×p,

y := [y1, y2, . . . , yn]
⊺ ∈ R

n×p.

Define F (x) to be an aggregate objective function of the

local variables, i.e., F (x) :=
∑n

i=1 fi(xi), and write

∇F (x) := [∇f1(x1),∇f2(x2), . . . ,∇fn(xn)]
⊺ ∈ R

n×p.

Definition 1: Given an arbitrary vector norm ‖ · ‖ on R
n,

for any x ∈ R
n×p, we define

‖x‖ :=
∥

∥

∥

[

‖x(1)‖, ‖x(2)‖, . . . , ‖x(p)‖
]∥

∥

∥

2
,

where x(1),x(2), . . . ,x(p) ∈ R
n are columns of x, and ‖ · ‖2

represents the 2-norm.

A directed graph is a pair G = (V , E), where V is the set

of vertices (nodes) and the edge set E ⊆ V × V consists of

ordered pairs of vertices. A directed tree is a directed graph

where every vertex, except for the root, has only one parent.

A spanning tree of a directed graph is a directed tree that

connects the root to all other vertices in the graph (see [31]).

3While completing the paper, we became aware of a recent work
discussing an algorithm that is similar to ours [30]. We have independently
arrived to our method and results.

Given a nonnegative matrix M ∈ R
n×n, the directed graph

induced by the matrix M is denoted by GM = (VM , EM ),
where VM = {1, 2, . . . , n} and (j, i) ∈ EM iff Mij > 0. We

let RM denote the set of roots of all directed spanning trees

in the graph GM .

We use the following assumption on the functions fi in (1).

Assumption 1: Each fi is µ-strongly convex and its gra-

dient is L-Lipschitz continuous, i.e., for any x, x′ ∈ R
p,

〈∇fi(x) −∇fi(x
′), x − x′〉 ≥ µ‖x− x′‖2,

‖∇fi(x)−∇fi(x
′)‖ ≤ L‖x− x′‖. (2)

Under Assumption 1, there exists a unique optimal solution

x∗ ∈ R
1×p to problem (1).

II. A PUSH-PULL GRADIENT METHOD

The aggregated form of the proposed algorithm, termed

push-pull gradient method (Push-Pull), works as follows:

Initialize with any x0 and y0 = ∇F (x0), and update

according to the following rule for k ≥ 0,

xk+1 = R(xk − αyk), (3a)

yk+1 = C (yk +∇F (xk+1)−∇F (xk)) , (3b)

where R,C ∈ R
n×n. We make the following standard

assumption on the matrices R and C.

Assumption 2: We assume that R ∈ R
n×n is nonnegative4

row-stochastic and C ∈ R
n×n is nonnegative column-

stochastic, i.e., R1 = 1 and 1⊺C = 1⊺.

Lemma 1: Under Assumption 2, the matrix R has a non-

negative left eigenvector u⊺ (w.r.t. eigenvalue 1) with u⊺1 =
n, and the matrix C has a nonnegative right eigenvector v
(w.r.t. eigenvalue 1) with 1⊺v = n (see [32]).

The next condition ensures that 1 is a simple eigenvalue of

both R and C.

Assumption 3: The diagonal entries of R and C are posi-

tive, i.e., Rii > 0 and Cii > 0 for all i ∈ V .

Finally, we give the condition on the structures of GR and

GC . This assumption is weaker than requiring that both GR

and GC are strongly connected.

Assumption 4: The graphs GR and GCT each contain at

least one spanning tree. Moreover, RR ∩RC⊺ 6= ∅.

Supposing that we have a strongly connected communi-

cation graph G, there are multiple ways to construct GR and

GC satisfying Assumption 4. One trivial approach is to set

GR = GC = G. Another way is to pick at random ir ∈ V and

let GR (respectively, GC ) be a spanning tree (respectively,

reversed spanning tree) contained in G with ir as its root.

Once graphs GR and GC are established, matrices R and C
can be designed accordingly.

To provide some intuition for the development of this

algorithm, let us consider the optimality condition for (1)

in the following form:

x∗ ∈ null{I −R}, (4a)

1⊺∇F (x∗) = 0, (4b)

4A matrix is nonnegative iff all its elements are nonnegative.



where R satisfies Assumption 2. Consider now the algorithm

in (3). Suppose that the algorithm produces two sequences

{xk} and {yk} converging to some points x∞ and y∞,

respectively. Then from (3a) and (3b) we would have

(I − R)(x∞ − αy∞) + αy∞ = 0, (5a)

(I − C)y∞ = 0. (5b)

If span{I −R} and null{I −C} are disjoint5, from (5) we

would have x∞ ∈ null{I − R} and y∞ = 0. Hence x∞
satisfies the optimality condition in (4a). Then by induction

we know 1⊺∇F (x∞) = 1⊺y∞ = 0, which is exactly the

optimality condition in (4b).

The structure of the algorithm in (3) is similar to that

of the DIGing algorithm proposed in [23] with the mixing

matrices distorted (doubly stochastic matrices split into a

row-stochastic matrix and a column-stochastic matrix). The

x-update can be seen as an inexact gradient step with

consensus, while the y-update can be viewed as a gradient

tracking step. Such an asymmetric R-C structure design has

already been used in the literature of average consensus [33].

However, we can not analyze the proposed optimization

algorithm using linear dynamical systems since we have a

nonlinear dynamics due to the gradient terms.

We now show how the proposed algorithm (3) unifies

different types of distributed architecture. For the fully

decentralized case, suppose we have a graph G that is

undirected and connected. Then R and C can be chosen as

symmetric matrices, in which case the proposed algorithm

degrades to the one considered in [23]; if the graph is directed

and strongly connected, we can set GR = GC = G and design

the weights for R and C correspondingly.

To illustrate the less straightforward situation of (semi)-

centralized networks, let us give a simple example. Consider

a four-node star network composed by {1, 2, 3, 4} where

node 1 is situated at the center and nodes 2, 3, and 4 are

(bidirectionally) connected with node 1 but not connected to

each other. In this case, the matrix R in our algorithm can

be chosen as

R =









1 0 0 0
0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5









and

C =









1 0.5 0.5 0.5
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5









.

For a graphical illustration, the corresponding network

topologies of GR and GC are shown in Fig. 1. The central

node 1 pushes (diffuses) information regarding x1,k to the

neighbors (in this case the entire network) through GR, while

the others can only passively infuse the information from

node 1. At the same time, node 1 pulls (collects) information

regarding yi,k (i = 2, 3, 4) from the neighbors through GC ,

5This is indeed a consequence of Assumption 4.

1

2

3

4

1

2

3

4

Fig. 1. The left is GR and the right is GC .

while the other nodes can only actively comply with the

request from node 1. This motivates the algorithm’s name

push-pull gradient method. Although nodes 2, 3, and 4
are updating their yi’s accordingly, these quantities do not

have to contribute to the optimization procedure and will

die out geometrically fast due to the weights in the last

three rows of C. Consequently, in this special case, the

local step-size α for agents 2, 3, and 4 can be set to 0.

Without loss of generality, suppose f1(x) = 0, ∀x. Then

the algorithm becomes a typical centralized algorithm for

minimizing
∑4

i=2 fi(x) where the master node 1 utilizes the

slave nodes 2, 3, and 4 to compute the gradient information

in a distributed way.

Taking the above as an example for explaining the semi-

centralized case, it is worth nothing that node 1 can be

replaced by a strongly connected subnet in GR and GC ,

respectively. Correspondingly, nodes 2, 3, and 4 can all be

replaced by subnets as long as the information from the

master layer in these subnets can be diffused to all the

slave layer agents in GR, while the information from all the

slave layer agents can be diffused to the master layer in GC .

Specific requirements on connectivities of slave subnets can

be understood by using the concept of rooted trees. We refer

to the nodes as leaders if their roles in the network are similar

to the role of node 1; and the other nodes are termed as

followers. Note that after the replacement of the individual

nodes by subnets, the network structure in all subnets are

decentralized, while the relationship between leader subnet

and follower subnets is master-slave. This is why we refer

to such an architecture as semi-centralized.

Remark 1: There can be multiple variants of the proposed

algorithm depending on whether the Adapt-then-Combine

(ATC) strategy [34] is used in the x-update and/or the y-

update (see Remark 3 in [23] for more details). Our following

analysis can be easily adapted for these variants. We have

also tested one of the variants in Section IV.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of the

proposed algorithm. We first define the following variables:

x̄k :=
1

n
u⊺xk, ȳk :=

1

n
1⊺yk.

Our strategy is to bound ‖x̄k+1−x∗‖2, ‖xk+1−1x̄k+1‖R and

‖yk+1 − vȳk+1‖C in terms of linear combinations of their

previous values, where ‖ · ‖R and ‖ · ‖C are specific norms

to be defined later. In this way we establish a linear system



of inequalities which allows us to derive the convergence

results. The proof technique was inspired by [24], [25].

A. Preliminary Analysis

From the algorithm (3) and Lemma 1, we have

x̄k+1 =
1

n
u⊺R(xk − αyk) = x̄k − α

n
u⊺yk, (6)

and

ȳk+1 =
1

n
1⊺C (yk +∇F (xk+1)−∇F (xk))

= ȳk +
1

n
1⊺ (∇F (xk+1)−∇F (xk)) .

(7)

With the initialization y0 = ∇F (x0), we obtain by induction

ȳk =
1

n
1⊺∇F (xk), ∀k. (8)

Let us further define gk := 1
n
1⊺∇F (1x̄k). Then, we obtain

from relation (6)

x̄k+1 = x̄k − α

n
u⊺ (yk − vȳk + vȳk)

= x̄k −
α

n
u⊺vȳk −

α

n
u⊺ (yk − vȳk)

= x̄k − α′gk − α′(ȳk − gk)−
α

n
(u− 1)⊺ (yk − vȳk) ,

(9)

where

α′ :=
α

n
u⊺v. (10)

We will show later that Assumption 4 ensures α′ > 0.

In view of (3) and Lemma 1, using (6) we have

xk+1 − 1x̄k+1 = R(xk − αyk)− 1x̄k +
α

n
1u⊺yk

= R(xk − 1x̄k)− α

(

R− 1u⊺

n

)

yk

=

(

R− 1u⊺

n

)

(xk−1x̄k)−α

(

R − 1u⊺

n

)

(yk − 1ȳk) ,

(11)

and from (7) we obtain

yk+1 − vȳk+1 = Cyk − vȳk

+

(

C − v1⊺

n

)

(∇F (xk+1)−∇F (xk))

=

(

C − v1⊺

n

)

(yk − vȳk)

+

(

C − v1⊺

n

)

(∇F (xk+1)−∇F (xk)) . (12)

B. Supporting Lemmas

Before proceeding to the main results, we state a few

useful lemmas.

Lemma 2: Under Assumption 1, there holds

‖ȳk − gk‖2 ≤ L√
n
‖xk − 1x̄k‖2, (13)

‖gk‖2 ≤ L‖x̄k − x∗‖2. (14)

In addition, when α′ ≤ 2/(µ+ L), we have

‖x̄k − α′gk − x∗‖2 ≤ (1 − α′µ)‖x̄k − x∗‖2, ∀k. (15)

Proof: See Appendix VI-A.

Lemma 3: Suppose Assumption 2 holds, and assume that

RR 6= ∅ and RC⊺ 6= ∅. Then, RR ∩RC⊺ 6= ∅ iff u⊺v > 0.

Proof: See Appendix VI-B.

Lemma 3 explains why Assumption 4 is essential for the

Push-Pull algorithm (3) to work. Without the condition, α′ =
0 by its definition in (10).

Lemma 4: Suppose Assumptions 2-4 hold. Let ρR and ρC
be the spectral radii of (R − 1u⊺/n) and (C − v1⊺/n),
respectively. Then, we have ρR < 1 and ρC < 1.

Proof: See Appendix VI-C.

Lemma 5: There exist matrix norms ‖·‖R and ‖·‖C such

that σR := ‖R− 1u⊺

n
‖R < 1, σC := ‖C − v1⊺

n
‖C < 1, and

σR and σC are arbitrarily close to ρR and ρC , respectively.

Proof: See [32, Lemma 5.6.10] and the discussions

thereafter.

In the rest of this paper, with a slight abuse of notation, we

do not distinguish between the vector norms on R
n and their

induced matrix norms.

Lemma 6: Given an arbitrary norm ‖ · ‖, for any W ∈
R

n×n and x ∈ R
n×p, we have ‖Wx‖ ≤ ‖W‖‖x‖. For any

w ∈ R
n×1 and x ∈ R

1×p, we have ‖wx‖ = ‖w‖‖x‖2.

Proof: See Appendix VI-D.

Lemma 7: There exist constants δC,R, δC,2, δR,C , δR,2 >
0 such that for all x ∈ R

n×p, we have ‖x‖C ≤ δC,R‖x‖R,

‖x‖C ≤ δC,2‖x‖2, ‖x‖R ≤ δR,C‖x‖C , and ‖x‖R ≤
δR,2‖x‖2. In addition, with a proper rescaling of the norms

‖ · ‖R and ‖ · ‖C , we have ‖x‖2 ≤ ‖x‖R and ‖x‖2 ≤ ‖x‖C .

Proof: The result follows from the equivalence relation

of all norms on R
n and Definition 1.

C. Main Results

The following lemma establishes a linear system of in-

equalities that bound ‖x̄k+1 − x∗‖2, ‖xk+1 − 1x̄k‖R and

‖yk+1 − vȳk‖C .

Lemma 8: Under Assumptions 1-4, when α′ ≤ 2/(µ+L),
we have the following linear system of inequalities:





‖x̄k+1 − x∗‖2
‖xk+1 − 1x̄k+1‖R
‖yk+1 − vȳk+1‖C



 ≤ A





‖x̄k − x∗‖2
‖xk − 1x̄k‖R
‖yk − vȳk‖C



 , (16)

where the inequality is to be taken component-wise, and

elements of the transition matrix A = [aij ] are given by:




a11
a21
a31



 =





1− α′µ
ασR‖v − 1‖RL
ασCδC,2‖Rv‖2L2



 ,





a12
a22
a32



 =









α′L√
n

σR

(

1 + α‖v − 1‖R L√
n

)

σCδC,2L
(

‖R− I‖2 + α‖Rv‖2 L√
n

)









,





a13
a23
a33



 =





α‖u−1‖2

n

ασRδR,C

σC (1 + αδC,2‖R‖2L)



 .



Proof: See Appendix VI-E.

In light of Lemma 8, ‖x̄k−x∗‖2, ‖xk−1x̄k‖R and ‖yk−
vȳk‖C all converge to 0 linearly at rate O(ρkA) if the spectral

radius of A satisfies ρA < 1. The next lemma provides some

sufficient conditions for the relation ρA < 1 to hold.

Lemma 9: Given a nonnegative, irreducible matrix M =
[mij ] ∈ R

3×3 with m11,m22,m33 < λ∗ for some λ∗ > 0. A

necessary and sufficient condition for ρM < λ∗ is det(λ∗I−
M) > 0.

Proof: See Appendix VI-F.

Now, we are ready to deliver our main convergence result

for the Push-Pull algorithm in (3).

Theorem 1: Suppose Assumptions 1-4 hold and

α ≤ min

{

2c3

c2 +
√

c22 + 4c1c3
,

(1− σC)

2σCδC,2‖R‖2L

}

, (17)

where c1, c2, c3 are given in (22)-(24). Then, the quantities

‖x̄k − x∗‖2, ‖xk − 1x̄k‖R and ‖yk − vȳk‖C all converge to

0 at the linear rate O(ρkA) with ρA < 1, where ρA denotes

the spectral radius of A.
Proof: In light of Lemma 9, it suffices to ensure

a11, a22, a33 < 1 and det(I −A) > 0, or equivalently

det(I −A) = (1− a11)(1− a22)(1− a33)− a12a23a31

−a13a21a32−(1−a22)a13a31−(1−a11)a23a32−(1−a33)a12a21

= (1− a11)(1− a22)(1− a33)− α
′

α
2
σRσCδR,CδC,2‖Rv‖2

L3

√
n

−α
2
σRσCδC,2‖u−1‖2‖v−1‖R

(

‖R − I‖2 + α‖Rv‖2 L√
n

)

L2

n

− α
2
σCδC,2‖Rv‖2‖u− 1‖2L

2

n
(1− a22)

− ασRσCδR,CδC,2L

(

‖R − I‖2 + α‖Rv‖2 L√
n

)

(1− a11)

− α
′

ασR‖v − 1‖R L2

√
n
(1− a33) > 0. (18)

We now provide some sufficient conditions under which

a11, a22, a33 < 1 and (18) holds true. First, a11 < 1 is

ensured by choosing α′ ≤ 2/(µ+ L). let

1− a22 ≥ 1

2
(1 − σR), (19)

1− a33 ≥ 1

2
(1 − σC). (20)

We get

α ≤ min

{

(1 − σR)
√
n

2σR‖v − 1‖RL
,

(1 − σC)

2σCδC,2‖R‖2L

}

. (21)

Second, notice that a22 > σR and a33 > σC . A sufficient

condition for det(I−A) > 0 is to substitute the first (1−a22)
(respectively, (1−a33)) in (18) by (1−σR)/2 (respectively,

(1−σC)/2), and substitute the second (1−a22) (respectively,

(1− a33)) by (1− σR) (respectively, (1− σC)). We have

c1α
2 + c2α− c3 < 0,

where

c1 =
u⊺v

n
σRσCδR,CδC,2‖Rv‖2

L3

√
n

+ σRσCδC,2‖u− 1‖2‖v − 1‖R‖Rv‖2
L√
n

L2

n

+
u⊺v

n
µσRσCδR,CδC,2L‖Rv‖2

L√
n

= σRσCδC,2‖Rv‖2
L2

n
√
n
[u⊺vδR,C(L+ µ)

+‖u− 1‖2‖v − 1‖RL] , (22)

c2 = σRσCδC,2‖u− 1‖2‖v − 1‖R‖R− I‖2
L2

n

+ σCδC,2‖Rv‖2‖u− 1‖2(1− σR)
L2

n

+ σRσCδR,CδC,2L‖R− I‖2
u⊺v

n
µ

+ σR‖v − 1‖R
L2

√
n
(1 − σC)

u⊺v

n
, (23)

and

c3 =
u⊺v

4n
µ(1 − σR)(1− σC). (24)

Hence

α ≤ 2c3

c2 +
√

c22 + 4c1c3
. (25)

Relations (21) and (25) yield the final bound on α.

Remark 2: When α is sufficiently small, it can be shown

that ρA ≃ 1−α′µ, in which case the Push-Pull algorithm is

comparable to its centralized counterpart with step-size α′.

IV. SIMULATIONS

In this section, we provide numerical comparisons of a

few different algorithms under various network settings. Our

settings for objective functions are the same as that described

in [23]. Each node in the network holds a Huber-typed

objective function fi(x) and the goal is to optimize the total

Huber loss f(x) =
∑n

i=1 fi(x). The objective functions fi’s
are randomly generated but are manipulated such that the

global optimizer x∗ is located at the ℓ22 zone of f(x) while

the origin (which is set to be the initial state of xk for all

involved algorithms) is located outside of that zone.

We first conduct an experiment over time-invariant di-

rected graphs. The network is generated randomly with 12
nodes and 24 unidirectional links (at most 12 × 11 =
131 possible links in this case) and is guaranteed to be

strongly connected. We test our proposed algorithm, Push-

Pull, against Push-DIGing [23] and Xi-Row [25]. Among

these algorithms, Push-DIGing is a push-sum based algo-

rithm which only needs push operations for information

dissemination in the network; Xi-row is an algorithm that

only uses row stochastic mixing matrices and thus only

needs pull operations to fetch information in the network; in

comparison, our algorithm needs the network to support both

push operations and pull operations. The per-node storage

complexity of Push-Pull (or Push-DIGing) is O(p) while



that of Xi-row is O(n + p). Note that at each iteration,

the amount of data transmitted over each link also scales at

such orders for these algorithms, respectively. For large-scale

networks (n ≫ p), Xi-row may suffer from high needs in

storage/bandwidth and/or become under limited transmission

rates. The evolution of the (normalized) residual
‖xk−x

∗‖2

2

‖x0−x∗‖2

2

is illustrated in Fig. 2. The step-sizes are hand-tuned for all

the algorithms to optimize the convergence speed.
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Fig. 2. Plots of (normalized) residuals against number of iterations over a
time-invariant directed graph.

Although our algorithm is designed and analyzed over

time-invariant directed graphs, its extension to time-varying

directed graphs is straightforward. Let us use the above gen-

erated directed graph as a base graph. To test our theory for

a leader-follower architecture, we randomly select multiple

nodes as leaders and randomly add enough links between the

leaders (in this example, number of leaders is 2) so that they

form a strongly connected subnet. Then at each iteration,

only 50% randomly chosen links will be activated. In Fig. 3,

we plot the performance of Push-Pull-half (a variant of Push-

Pull where the ATC strategy is not employed in the y-update;

it needs only one round of communication at each iteration)

and Push-DIGing without considering the leader-follower

structure. That is, for Push-Pull-half and Push-DIGing, a

time-varying directed graph sequence based on random link

activation is used where the underlying graph is strongly

connected.

Then in Fig. 3 we further show the performance of

Push-Pull under the leader-follower architecture. The major

difference on the graph sequence is that, in the leader-

follower architecture, all the outbound information links of

the leader subnet are not used when performing the y-update;

all the inbound information links of the leader subnet are

not used when performing the x-update. Note that in such a

way, the union of all directed graphs corresponding to Rk (or

Ck) is not strongly connected. The numerical results show, as

expected, that the convergence of Push-Pull under the leader-

follower architecture is slower than that of Push-Pull-half

with strongly connected underlying graphs.
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Fig. 3. Plots of (normalized) residuals against number of iterations over a
time-varying directed graph sequence.

In the experiment, we observe that there are many spikes

on the residual curve of Push-DIGing. Push-DIGing for

time-varying graphs can be numerically unstable due to the

use of division operations in the algorithm and the divisors

can scale badly at the order of Ω(n−Bn) where n is the

number of nodes and B a bounded constant that describes

the connectivity of time-varying graphs (the smaller B is, the

better the network is connected; see [23] for the definition

of B). A simple network with number of nodes n = 15 and

time-varying constant B = 10 will easily give a number

that is recognized by common computers (using double-

precision floating-point format) as 0. As a contrast, in Push-

Pull, there is no divisors that scale at such level. In addition,

the theoretical upper bound on the step-size of Push-DIGing

also scales at the order of O(n−Bn). This implies that Push-

DIGing will not work well for either large scale networks or

time-varying networks with large variations.

V. CONCLUSIONS

In this paper, we have studied the problem of distributed

optimization over a network. In particular, we proposed a

new distributed gradient-based method (Push-Pull) where

each node maintains estimates of the optimal decision

variable and the average gradient of the agents’ objective

functions. From the viewpoint of an agent, the information

about the decision variable is pushed to its neighbors, while

the information about the gradients is pulled from its neigh-

bors. This method works for different types of distributed

architecture, including decentralized, centralized, and semi-

centralized architecture. We have showed that the algorithm

converges linearly for strongly convex and smooth objective

functions over a directed static network. In the simulations,

we have demonstrated the effectiveness of the proposed

algorithm for both static and time-varying directed networks.
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VI. APPENDIX

A. Proof of Lemma 2

In light of Assumption 1 and (8),

‖ȳk − gk‖2 =
1

n
‖1⊺∇F (xk)− 1⊺∇F (1x̄k)‖2

≤ L

n

n
∑

i=1

‖xi,k − x̄k‖2 ≤
L√
n
‖xk − 1x̄k‖2,

and

‖gk‖2 =
1

n
‖1⊺∇F (1x̄k)− 1⊺∇F (1x∗)‖2

≤ L

n

n
∑

i=1

‖x̄k − x∗‖2 = L‖x̄k − x∗‖2.

Proof of the last relation can be found in [24] Lemma 10.

B. Proof of Lemma 3

We first demonstrate that ui > 0 iff i ∈ RR. Note that

there exists an order of vertices such that R can be written

as

R̃ =

{

R1 0

R2 R3

}

(26)

where R1 is a square matrix corresponding to vertices in RR.

R1 is row stochastic and irreducible (since the associated

graph GR1
is strongly connected). In light of the Perron-

Frobenius theorem, R1 has a strictly positive left eigenvector

u⊺

1 (u⊺

11 = n) corresponding to eigenvalue 1. It follows that

[u1,0]
⊺ is a row eigenvector of R̃, which is also unique

from the Perron-Frobenius theorem. Since reordering of

vertices does not change the corresponding eigenvector (up

to permutation in the same oder of vertices), ui > 0 iff

i ∈ RR.

Similarly, vj > 0 iff j ∈ RC⊺ . We conclude that RR ∩
RC⊺ 6= ∅ iff u⊺v > 0.



C. Proof of Lemma 4

In light of [35, Lemma 3.4], under Assumptions 2-4, spec-

tral radii of R and C are both equal to 1 (the corresponding

eigenvalues have multiplicity 1). Suppose for some λ, ũ 6= 0,

ũ⊺

(

R− 1u⊺

n

)

= λũ⊺.

Since 1 is a right eigenvector of (R−1u⊺/n) corresponding

to eigenvalue 0, ũ⊺1 = 0 (see [32] Theorem 1.4.7). We have

ũ⊺R = λũ.

Hence λ is also an eigenvalue of R. Noticing that u⊺1 = n,

we have ũ⊺ 6= u⊺ so that λ < 1. We conclude that σR < 1.

Similarly we can obtain σC < 1.

D. Proof of Lemma 6

By Definition 1,

‖Wx‖ = ‖[‖Wx1‖, ‖Wx2‖, . . . , ‖Wxp‖]‖2
≤ ‖[‖W‖‖x1‖, ‖W‖‖x2‖, . . . , ‖W‖‖xp‖]‖2

= ‖W‖‖[‖x1‖, ‖x2‖, . . . , ‖xp‖]‖2 = ‖W‖‖x‖, (27)

and

‖wx‖ = ‖[‖wx1‖, ‖wx2‖, . . . , ‖wxp‖]‖2
= ‖w‖‖[|x1|, |x2|, . . . , |xp|]‖2 = ‖w‖‖x‖2. (28)

E. Proof of Lemma 8

The three inequalities embedded in (16) come from (9),
(11), and (12), respectively. First, by Lemma 2 and Lemma
7, we obtain from (9) that

‖x̄k+1 − x
∗‖2 ≤ ‖x̄k − α

′

gk − x
∗‖2 + α

′‖ȳk − gk‖2
+

α

n
‖(u− 1)⊺(yk − vȳk)‖2

≤ (1− α
′

µ)‖x̄k − x
∗‖2 +

α′L√
n
‖xk − 1x̄k‖2

+
α‖u− 1‖2

n
‖yk − vȳk‖2

≤ (1− α
′

µ)‖x̄k − x
∗‖2 + α′L√

n
‖xk − 1x̄k‖R

+
α‖u− 1‖2

n
‖yk − vȳk‖C . (29)

Second, by relation (11), Lemma 6 and Lemma 7, we see
that

‖xk+1 − 1x̄k+1‖R ≤ σR‖xk − 1x̄k‖R + ασR‖yk − 1ȳk‖R
≤ σR‖xk − 1x̄k‖R + ασR‖yk − vȳk‖R + ασR‖v − 1‖R‖ȳk‖2

≤ σR‖xk − 1x̄k‖R + ασR‖yk − vȳk‖R

+ ασR‖v − 1‖R
(

L√
n
‖xk − 1x̄k‖2 + L‖x̄k − x

∗‖2
)

≤ σR

(

1 + α‖v − 1‖R L√
n

)

‖xk − 1x̄k‖R

+ ασRδR,C‖yk − vȳk‖C + ασR‖v − 1‖RL‖x̄k − x
∗‖2. (30)

Lastly, it follows from (12), Lemma 6 and Lemma 7 that

‖yk+1−vȳk+1‖C ≤ σC‖yk−vȳk‖C +σCδC,2L‖xk+1−xk‖2
= σC‖yk − vȳk‖C + σCδC,2L‖(R − I)(xk − 1x̄k)− αRyk‖2

≤ σC‖yk − vȳk‖C + σCδC,2L‖R − I‖2‖xk − 1x̄k‖2
+ ασCδC,2L ‖R(yk − vȳk) +Rvȳk‖2

≤ σC‖yk − vȳk‖C + σCδC,2L‖R − I‖2‖xk − 1x̄k‖2
+ ασCδC,2L (‖R‖2‖yk − vȳk‖2 + ‖Rv‖2‖ȳk‖2) . (31)

In light of Lemma 2,

‖ȳk‖2 ≤
(

L√
n
‖xk − 1x̄k‖2 + L‖x̄k − x

∗‖2
)

. (32)

Hence

‖yk+1 − vȳk+1‖C ≤ σC (1 + αδC,2‖R‖2L) ‖yk − vȳk‖C
+ σCδC,2L‖R − I‖2‖xk − 1x̄k‖2

+ ασCδC,2‖Rv‖2L
(

L√
n
‖xk − 1x̄k‖2 + L‖x̄k − x

∗‖2
)

≤ σC (1 + αδC,2‖R‖2L) ‖yk − vȳk‖C

+ σCδC,2L

(

‖R − I‖2 + α‖Rv‖2
L√
n

)

‖xk − 1x̄k‖R

+ ασCδC,2‖Rv‖2L2‖x̄k − x
∗‖2. (33)

F. Proof of Lemma 9

The characteristic function of M is given by

g(λ) := det(λI −M) = (λ−m11)(λ−m22)(λ−m33)

− a23a32(λ−m11)− a13a31(λ−m22)− a12a21(λ−m33)

− a12a23a31 − a13a32a21. (34)

Necessity is trivial since det(λ∗I−M) ≤ 0 implies g(λ) = 0
for some λ ≥ λ∗. We now show det(λ∗I −M) > 0 is also

a sufficient condition.

Given that g(λ∗) = det(λ∗I −M) > 0,

(λ∗ −m11)(λ
∗ −m22)(λ

∗ −m33)

> a23a32(λ
∗−m11)+a13a31(λ

∗−m22)+a12a21(λ
∗−m33).

It follows that

γ1(λ
∗ −m22)(λ

∗ −m33) > a23a32
γ2(λ

∗ −m11)(λ
∗ −m33) > a13a31

γ3(λ
∗ −m11)(λ

∗ −m22) > a12a21

(35)

for some γ1, γ2, γ3 > 0 with γ1 + γ2 + γ3 ≤ 1. Consider

g′(λ) = (λ−m22)(λ−m33) + (λ −m11)(λ−m33)

+ (λ−m11)(λ −m22)− a23a32 − a13a31 − a12a21.

We have g′(λ) > 0 for λ ∈ (−∞,−λ∗]∪[λ∗,+∞). Noticing

that

g(−λ∗) ≤ −(λ∗ +m11)(λ
∗ +m22)(λ

∗ +m33)

+ a23a32(1 +m11) + a13a31(λ
∗ +m22)

+ a12a21(λ
∗ +m33) < 0,

all real roots of g(λ) = 0 lie in the interval (−λ∗, λ∗). By

the Perron-Frobenius theorem, ρM is an eigenvalue of M .

We conclude that ρM < λ∗.
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