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Abstract— For successful object manipulation with robotic
hands, it is important to ensure that the object remains in the
grasp at all times. In addition to grasp constraints associated
with slipping and singular hand configurations, excessive rolling
is an important grasp concern where the contact points roll off
of the fingertip surface. Related literature focus only on a subset
of grasp constraints, or assume grasp constraint satisfaction
without providing guarantees of such a claim. In this paper, we
propose a control approach that systematically handles all grasp
constraints. The proposed controller ensures that the object
does not slip, joints do not exceed joint angle constraints (e.g.
reach singular configurations), and the contact points remain
in the fingertip workspace. The proposed controller accepts
a nominal manipulation control, and ensures the grasping
constraints are satisfied to support the assumptions made in the
literature. Simulation results validate the proposed approach.

I. INTRODUCTION

A primary objective of robotic hand research is to manip-
ulate the environment to achieve a desired goal [1]. This can
be accomplished in a hierarchical grasp framework where
a high-level planner plans the grasp, forms the grasp, and
manipulates the object [2], [3]. The focus of this work is in
the manipulation aspect of the hierarchical approach, which
consists of rotating/translating the object within the grasp,
and hereafter is referred to as in-hand manipulation. In-
hand manipulation controllers are used to track a desired
object reference trajectory, while keeping the object inside
the grasp [4]. Thus for successful in-hand manipulation, it is
paramount to guarantee that the object remains in the grasp
during the manipulation motion.

A failed grasp can result from slipping, joint over-
extension, and excessive rolling. Slipping is an obvious
grasping concern, which has been formulated as a constraint
satisfaction problem and extensively addressed in the litera-
ture [5]–[7]. Joint over-extension relates to joints exceed-
ing feasible joint angle constraints (e.g joint workspace,
hardware capabilities, singular hand configurations), which
inhibits the robotic hand from applying necessary contact
forces to prevent grasp failure [8]. Excessive rolling, as
defined here, is when the contact points roll off of the
fingertip surface. In-hand manipulation inherently relies on
rolling motion for object manipulation [9]. However exces-
sive rolling motion may cause the contact points to leave
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the fingertip surface. The fingertip surface can refer to the
the sensor surface or the entire surface of the fingertip such
that excessive rolling compromises the ability to manipulate
the object. For successful manipulation, the manipulation
controller must guarantee grasp constraint satisfaction such
that the contact points remain in the fingertip workspace,
whilst simultaneously ensuring no slip and no over-extension.

To date, there exist an abundance of multi-fingered robotic
hands, including tactile sensors, along with methods of
controlling them [4], [10]. However, many manipulation
controllers focus on the object manipulation task and assume
grasp constraint satisfaction, but provide no guarantees to
support that assumption [11], [12]. Other methods focus
on one grasp constraint, such as no slipping, but do not
systematically consider all grasp constraints [6], [7]. Existing
methods of addressing all grasping constraints are via motion
planning approaches [13]–[15], however they rely on quasi-
static assumptions that generally do not hold in a dynamic
manipulation setting. Furthermore those approaches require
large computational resources and may not be conducive
to real-time applications [13]. In the hierarchical grasp
framework, it is difficult to determine a priori the region of
attraction of the in-hand manipulation controller as it depends
on both the object and initial grasp configuration. Therefore
a given reference trajectory from the high-level planner may
result in grasp constraint violation and thus grasp failure.
There is no existing method to prevent excessive rolling, no
slip, and over-extension for real-time object manipulation.

In this paper, we present a novel controller that system-
atically handles no slipping, over-extension, and excessive
rolling constraints for object manipulation. The proposed
controller admits a nominal manipulation control, as found
in [4], and outputs a minimally close, in the 2-norm sense,
manipulation control torque, while adhering to the grasping
constraints. The effectiveness of the proposed controller is
validated in simulation.

Notation

Throughout this paper, an indexed vector vi ∈ Rp has an
associated concatenated vector v ∈ Rpn, where the index
i is specifically used to index over the n contact points in
the grasp. The notation vF indicates that the vector v is
written with respect to a frame F , and if there is no explicit
frame defined, v is written with respect to the inertial frame,
P . The operator (·)× denotes the skew-symmetric matrix
representation of the cross-product. The k×k identity matrix
is denoted Ik×k. The Moore-Penrose inverse of a matrix B
is denoted by B†.
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II. BACKGROUND

A. Hand-Object System

Consider a fully-actuated, multi-fingered hand grasping
a rigid, convex object at n ∈ Z>0 contact points. Each
finger consists of mi ∈ Z>0 joints with smooth, convex
fingertips of high stiffness. Let the finger joint configuration
be described by the joint angles, qi ∈ Rmi . The full hand
configuration is defined by the joint angle vector, q =
(q1, q2, ..., qn)T ∈ Rm, where m =

∑n
i=1mi is the total

number of joints. Let the inertial frame, P , be fixed on the
palm of the hand, and a fingertip frame, Fi, fixed at the point
pfi ∈ R3. The translational and rotational velocities of Fi
with respect to P are denoted vfi ,ωfi ∈ R3, respectively.
The contact frame, Ci, is located at the contact point, pci ∈
R3. A visual representation of the contact geometry for the
ith finger is shown in Figure 1.

Fig. 1: A visual representation of the contact geometry for
contact i.

Let O be a reference frame fixed at the object center of
mass po ∈ R3, and Rpo ∈ SO(3) is the rotation matrix,
which maps from O to P . The respective inertial translation
and rotational velocities of the object are vo,ωo ∈ R3. The
object state is xo ∈ R6, with ẋo = (vo,ωo). The position
vector from O to the respective contact point is poci ∈ R3.

The hand/object dynamics are respectively defined as [8]:

Mhq̈ + Chq̇ = −JTh fc + τe + u (1)

Moẍo + Coẋo = Gfc +we (2)

where Mh := Mh(q) ∈ Rm×m,Mo := Mo(xo) ∈ R6×6

are the respective hand and object inertia matrices, Ch :=
Ch(q, q̇) ∈ Rm×m, Co := Co(xo, ẋo) ∈ R6×6 are the
respective hand and object Coriolis and centrifugal matrices,
τe := τe(t) ∈ Rm is the disturbance torque acting on the
joints, we := we(t) ∈ R6 is an external wrench disturbing
the object, and u ∈ Rm is the joint torque control input for a
fully-actuated hand. The grasp map, G := G(poc) ∈ R6×3n

maps the contact force, fc, to the net wrench acting on the
object. The hand Jacobian, Jh := Jh(q,pfc) ∈ R3n×m,
relates the motion of the hand and velocity of the contact
points. The hand Jacobian is a block diagonal matrix of the
individual hand Jacobian matrices:

Jhi(qi,pfci) =
[
I3×3 −(pfci)×

]
Jsi(qi) (3)

where Jsi(qi) ∈ R6×mi is the spatial manipulator Jacobian
that maps q̇i 7→ (vfi ,ωfi) [8].

When the contact points do not slip, the following grasp
constraint holds [16]:

Jhq̇ = GT ẋo (4)

The following assumptions are made for the grasp:

Assumption 1. The multi-fingered hand has m ≥ 3n joints.

Assumption 2. The given multi-fingered grasp has n > 2
contact points, which are non-collinear.

Assumption 3. The local fingertip and object contact sur-
faces are smooth.

Remark 1. Assumption 2 ensures G is always full rank [16],
and can be ensured by a high-level grasp planner [2].

B. Hand-Contact Kinematics

Here we review the differential geometric modeling of
rolling contacts from [8]. Note, the subscript co will refer to
the object surface of the contact, and the subscript cf refers
to the fingertip surface of the contact. At each contact point,
we parameterize the contact surfaces by local coordinates
ξcoi = (acoi , bcoi), ξcfi = (acfi , bcfi). The relation between
the local coordinates and contact position vectors are defined
by smooth mappings: pFifci = ccfi(ξcfi),p

O
oci = ccoi(ξcoi).

The angle between ∂ccoi
∂acoi

and ∂ccfi
∂acfi

is ψi ∈ R.
The geometric parameters including the metric tensor,

curvature tensor, and torsion tensor are used to define the
rolling contact kinematics. For ease of notation, cfa, cfb
respectively denote ∂ccfi

∂acfi
and ∂ccfi

∂bcfi
. The Gauss frame is used

to define the contact frame Ci:

Rfci =
[
ρ1 ρ2 ρ3

]
=
[

cfa
||cfa||

cfa
||cfb|| n

]
(5)

where Rfci ∈ SO(3) maps Ci to Fi and

n =
cfa × cfb
||cfa × cfb||

(6)

The metric tensor, Mcfi := Mcfi(ξcfi) ∈ R2×2, curvature
tensor, Kcfi := Kcfi(ξcfi) ∈ R2×2, and torsion tensor,
Tcfi := Tcfi(ξcfi) ∈ R2×1 are defined by:

Mcfi =

[
||cfa|| 0

0 ||cfb||

]
(7)

Kcfi =

[
ρT1
ρT2

] [
∂n/∂acfi
||cfa||

∂n/∂bcfi
||cfb||

]
(8)

Tcfi = ρT2

[
∂ρ1/∂acfi
||cfa||

∂ρ1/∂bcfi
||cfb||

]
(9)

Note the metric tensor Mcoi := Mcoi(ξcoi) ∈ R2×2,
curvature tensor, Kcoi := Kcoi(ξcoi) ∈ R2×2, and torsion
tensor, Tcoi := Tcoi(ξcoi) ∈ R2×1 for the object can be
defined by substituting ξcfi with ξcoi in (5)-(9). Now we
can define the dynamics governing the contact parameters
ξcf and ξco by:

ξ̇cfi = HcfiRcip(ωfi − ωo) (10)



ξ̇coi = HcoiRcip(ωfi − ωo) (11)

where

Hcfi = M−1cfi (Kcfi +RψiKcoiRψi)
−1
[

0 −1 0
1 0 0

]
,

(12)

Hcoi = M−1coiRψi(Kcfi +RψiKcoiRψi)
−1
[

0 −1 0
1 0 0

]
(13)

Rψi =

[
cos(ψi) − sin(ψi)
− sin(ψi) − cos(ψi)

]
, (14)

ψ̇i = TcfiMcfi ξ̇cfi + TcoiMcoi ξ̇coi (15)

and Rcip := Rcip(ξfi , qi) ∈ SO(3) maps P to Ci.
The chosen parameterizations must satisfy [8]:

Assumption 4. The parameterizations are orthogonal such
that cTfacfb = 0, cToacob = 0, and Mcfi , Kcfi , Tcfi , Mcoi ,
Kcoi , Tcoi are defined for all ξcfi on the fingertip surface,
and ξcoi on the object surface, respectively.

III. ZEROING CONTROL BARRIER FUNCTIONS FOR
RELATIVE DEGREE TWO SYSTEMS

Control barrier functions provide a formal method to
ensure constraint satisfaction of dynamical systems. Zero-
ing control barrier functions is a subset of control barrier
functions, which are known to be robust to modeling errors
and conducive to real-time applications [17]. Here we extend
the existing work of [17] to relative degree two systems for
application in robotic grasping and manipulation.

Consider the following nonlinear affine system:

ẍ = f(x, ẋ) + g(x, ẋ)u (16)

where x ∈ Rp is the system state, u ∈ U ⊆ Rm is the control
input, and f , g are locally Lipschitz continuous functions
with respect to x and ẋ. The goal of constraint satisfaction
is to ensure the states x stay within a set of constraint-
admissable states defined by:

D = {x ∈ Rp : h(x) ≥ 0} (17)

where h : Rp → R is a twice-continuously differentiable
function of relative degree two.

Definition 1. A continuous function, α : (−b, a) →
(−∞,∞) for a, b ∈ R>0 is an extended class-K function
if it is strictly increasing and α(0) = 0.

Let B : Rp × Rp → R be defined by:

B(x, ẋ) =
∂h

∂x
ẋ+ α1(h(x)) (18)

where α1 is an extended class-K function. Let the set E be
defined by:

E = (D × Rp)
⋂
{(x, ẋ) ∈ Rp × Rp : B(x, ẋ) ≥ 0} (19)

Definition 2. Let h : Rp → R by a twice-continuously
differentiable, relative degree two function for the system
(16). A continuously differentiable function B : Rp×Rp → R

defined by (18), is a zeroing control barrier function for the
set E if there exists an extended class-K function α2 such
that for all (x, ẋ) ∈ E ,

sup
u∈U
{LfB + LgBu+ α2(B)} ≥ 0 (20)

Given a zeroing control barrier function B, for all (x, ẋ) ∈
E define the set:

Su(x, ẋ) = {u ∈ U : LfB + LgBu+ α2(B) ≥ 0} (21)

Constraint satisfaction using zeroing control barrier func-
tions is ensured by the following theorem:

Theorem 1. Given sets D, E defined by (17), (19) respec-
tively, for a twice-continuously differentiable, relative degree
two function h, if (x(0), ẋ(0)) ∈ E and B is a zeroing
control barrier function, then for any Lipschitz control u :
E → U such that u(x, ẋ) ∈ Su(x, ẋ) for the system (16), x
remains in D for all t > 0.

Proof. For (x(0), ẋ(0)) ∈ E , and u ∈ Su, it follows from
Corollary 2 of [17] that the set {(x, ẋ) ∈ Rp × Rp :
B(x, ẋ) ≥ 0} is forward invariant. Thus B ≥ 0 holds for a
given extended class-K function α1. It follows from B ≥ 0
that for all x ∈ ∂D, ḣ(x) ≥ −α1(0) = 0. By Nagumo’s
theorem [18], it follows that D is forward invariant.

Remark 2. The use of the two staggered extended class-
K functions in Theorem 1 allows a designer to adjust
the performance of the control barrier functions for more
aggressive/conservative constraint satisfaction, and takes
into consideration bounds on the velocity to prevent large
control effort near the constraint boundary. Note that for
general nonlinear systems the condition that (x(0), ẋ(0)) ∈
E may be restrictive, however in-hand manipulation tasks
generally begin from a static grasp, such that satisfaction of
(x(0), 0) ∈ E is trivial. However the condition does allow
for more aggressive initial grasps such as if, for example,
the hand catches the object prior to a manipulation task.

IV. PROPOSED SOLUTION

In the following section, the set of constraint admissi-
ble grasp states is defined, and the zeroing control barrier
function approach developed from Section III is applied to
derive the grasp constraints. The grasp constraints are then
combined to define the proposed controller.

A. Constraint-Admissible Grasping States

Satisfaction of the following condition ensures the object
will not slip within the grasp [5]:

Λ(µ)Rcpfc > 0 (22)

where µ ∈ R>0 is the friction coefficient, Λ(µ) ∈ Rls×3n
is a pyramid of ls ∈ Z>0 faces used to a approximate the
friction cone [7], and Rcp ∈ R3n×3n is the block diagonal
matrix of all Rcip for i ∈ [1, n]. Let the set of constraint
admissible contact forces be defined as:

Df = {fc ∈ R3n : Λ(µ)Rcpfc > 0} (23)



Let the set of admissible joint angles be defined by:

hqmaxj (q) = −ijq + qmaxj ≥ 0,∀j ∈ [1,m]

hqminj (q) = ijq − qminj ≥ 0,∀j ∈ [1,m]
(24)

where ij ∈ R1×m is the jth row of Im×m and qmaxj , qminj ∈
R≥0 define the joint angle limits, which omit singular hand
configurations. The set of constraint admissible joint angles
is defined by:

Dq = {q ∈ Rm : hqmax(q) ≥ 0, hqmin(q) ≥ 0} (25)

The fingertip workspace is addressed here via the geo-
metric modeling of the contact kinematics. Many existing
tactile sensors are designed as flat or hemispherical fingertips
[10], which can be appropriately modeled with geometric
parameterizations [8]. The benefit of the geometric modeling
is not only that it can be applied to general fingertip shapes,
but the fingertip workspace can be defined as simple box
constraints:

hr1(ξcfi) =
[

1 0
]
ξcfi − amin

hr2(ξcfi) = −
[

1 0
]
ξcfi + amax

hr3(ξcfi) =
[

0 1
]
ξcfi − bmin

hr4(ξcfi) = −
[

0 1
]
ξcfi + bmax

(26)

where amin, amax, bmin, bmax ∈ R define the fingertip surface,
and each hrj define the box constraints such that if hrj ≥
0,∀j ∈ [1, 4], the contact point is in the fingertip workspace.
The set of allowable contact locations is Dr = Dr1×...×Drn
for:

Dri = {ξcfi ∈ R2 : hrj (ξcfi) ≥ 0,∀j ∈ [1, 4]} (27)

Let H = Df ×Dq×Dr denote the set of grasp constraint
admissible states. In the set H, the hand configuration is
non-singular and thus by Assumption 1 Jh is full rank with
rank 3n. Furthermore, the contact points do not slip in H
and so the grasp constraint (4) holds. Differentiation of (4),
and and substitution of (1) and (2) provides an expression
for the contact forces as a function of the control torque, u:

fc = B−1ho

(
JhM

−1
h (−Chq̇ + u+ τe) + J̇hq̇ − ĠT ẋo

+GTM−1o (Coẋo −we)
)

(28)

where Bho = (JhM
−1
h JTh + GTM−1o G). Note that by

Assumptions 1 and 2, the inversion of Bho is well defined.

B. Proposed Controller

The following constraints are developed to ensure forward
invariance of H with respect to the states (fc, q, ξf ).

The no slip constraint is defined by substitution of (28)
into (22) [5]:

Λ(µ)RcpB
−1
ho JhM

−1
h u > Λ(µ)RcpB

−1
ho JhM

−1
h (Chq̇

− τe)− J̇hq̇ + ĠT ẋo −GTM−1o (Coẋo −we) (29)

Satisfaction of (29) by u directly ensures forward invariance
of Df . Let the set of admissible control torques for Df be
Suf = {u ∈ Rm : (29) holds}.

The zeroing control barrier functions from Section III are
used here to guarantee that the hand joints remain inside a
desired joint space to prevent over-extension. Let the zeroing
control barrier functions be defined by:

Bqmaxj (q, q̇) = ḣqmaxj + α1(hqmaxj ),∀j ∈ [1,m]

Bqminj (q, q̇) = ḣqminj + α1(hqminj ),∀j ∈ [1,m]
(30)

where α1(h) is an extended class-K function. Let Eq be
defined by:

Eq = (Dq × Rm)
⋂
{(q, q̇) ∈ Rm × Rm : Bqmaxj ≥ 0,

Bqminj ≥ 0,∀j ∈ [1,m]} (31)

Following Theorem 1 and by using the dynamics (1) and
contact force relation (28), if the control torque satisfies
the following constraint for a given α2(h) extended class-
K function, then Dq is rendered forward invariant:

Aqu ≥ bq (32)

where Aq ∈ R2m×m and bq ∈ R2m are the respec-
tive concatenations of LgBqmaxj , LgBqminj , j ∈ [1,m] and
−LfBqmaxj − α2(Bqmaxj ),−LfBqminj − α2(Bqminj )∀j ∈
[1,m]. Let the set of admissable control torques for Dq be
Suq = {u ∈ Rm : Aqu ≥ bq}.

The zeroing control barrier functions are also used to
ensure the contact points remain in the fingertip workspace.
We define the candidate zeroing control barrier functions:

Brj (ξfi , ξ̇cfi) = ḣrj (ξcfi) + α1(hrj (ξcfi)), ∀j ∈ [1, 4]
(33)

with associated set Er = Er1 × ...× Ern where

Eri = (Dri × R4)
⋂
{(ξcfi , ξ̇cfi) ∈ R4 :

Brj (ξcfi , ξ̇cfi) ≥ 0, ∀j ∈ [1, 4]} (34)

Following Theorem 1, the following condition must be
satisfied for forward invariance of Er:

LfBrj + LgBrjui + α2(Brj ) ≥ 0, ∀j ∈ [1, 4],∀i ∈ [1, n]
(35)

By Assumption 3, the terms LfBrj , LgBrj are derived by
differentiating (10) as follows:

ξ̈cfi =
d

dt

[
HcfiRcip

]
(ωfi−ωo)+HcfiRcip

[
03×3 I3×3

](
J̇si q̇i + Jsi q̈i − ẍo

)
(36)

Substitution of (1), (2), and (28) into (36), provides the
necessary derivation of LfBrj , LgBrj .

Re-writing (35), if the control torque satisfies the following
constraint, then Dr is forward invariant:

Aru ≥ br (37)

where Ar ∈ R4k×m and br ∈ R4k are the respective column-
wise concatenation over the n contact points of:

Ari =

 LgBr1(ξcfi , ξ̇cfi)
...

LgBr4(ξcfi , ξ̇cfi)

 (38)



bri =

 −LfBr1(ξcfi , ξ̇cfi)− α2(Br1(ξcfi , ξ̇cfi))
...

−LfBr4(ξcfi , ξ̇cfi)− α2(Br4(ξcfi , ξ̇cfi))


(39)

Let the set of admissible control torques be Sur = {u ∈
Rm : Aru ≥ br}.

Finally, to ensure the proposed controller is implementable
on real systems the following actuator constraint is defined:

umin ≤ u ≤ umax (40)

where umin,umax ∈ Rm, and let Suτ = {u ∈ Rm : umin ≤
u ≤ umax}. Let the set of grasp constraint admissible control
torques be Su = Suf × Suq × Sur × Suτ .

Assumption 5. The set of grasp constraint admissible con-
trol torques Su is non-empty.

The following proposed controller admits a nominal ma-
nipulation controller, unom ∈ Rm, and outputs a control
torque that stays minimally close to unom, in the 2-norm
sense, while adhering to the grasp constraints. The proposed
control law is:

u∗ = argmin
u

(u− unom)T (u− unom)

s.t. (29), (32), (37), (40)
(41)

Proposition 1. Suppose Assumptions 1-5 hold and a given
unom ∈ Rm is locally Lipschitz continuous. If fc(0) ∈ Df ,
(q(0), q̇(0)) ∈ Eq , ξf (0), ξ̇f (0)) ∈ Er, then (41) applied to
(1) ensures H is forward invariant.

V. RESULTS

Numerical simulations compare a nominal manipulation
controller from the literature with the same controller im-
plemented via the proposed control (41). The controllers are
implemented as if in a hierarchical grasp framework where
a reference command is provided to the robotic hand from a
high-level planner. The nominal controller is the computed
torque control [8], [16] along with a conventional internal
force control [4] of the form:

unom = JTh (G†um + uf )− τe (42)

um = MhoP (r̈ +Kpe+Kdė) + Choẋo −we (43)

uf = kf (p̄c − pc1 , p̄c − pc2 , ..., p̄c − pcn) (44)

where e ∈ R6 is the error between the reference and object
pose defined using Euler angles as in [16], P ∈ R6×6 maps
the object velocity using Euler angles to ẋo [16], Mho =
Mo + GJ−Th MhJ

−1
h GT , Cho = Co + GJ−Th (ChJ

−1
h GT +

Mh
d
dt [J

−1
h GT ]), Kp,Kd ∈ R6×6 are the respective propor-

tional and derivative positive definite control gains, r ∈ R6

is the reference command, p̄c = 1
n

∑n
i=1 pci is the centroid

of the inertial contact positions, and kf ∈ R>0 is a squeezing
scalar gain. The gains chosen for the simulation are Kp =
1.0 ∗ I6×6, Kd = 2.5 ∗ I6×6, kf = 10.0.

The reference r = (0, 0, 0.25 cos(t), 0, 0, 2 cos(t)) is
provided to twist and pull the object about the Z-axis of the
inertial frame, which is depicted in Figure 2 along with the

(a) Isometric view. (b) Top view.

Fig. 2: Simulation setup.

(a) Failed grasp configuration (b) Contact points exceed finger-
tip workspace

(c) Joint limits exceeded (d) Slip constraint violated

Fig. 3: Implementation of nominal control results in failed
grasp due to constraint violations.

initial static hand-object configuration. The grasped object is
a 0.11 kg cube with edge length of 0.2604 m. The friction
coefficient between the object and fingertip is µ = 0.9. The
hand is composed of identical rectangular prismatic links of
dimension 0.3×0.05×0.05 m3 with hemispherical fingertips
of radius R = 0.06 m. Each finger consists of 2 revolute
joints at the base and one between the two links. The fingertip
parameterization chosen to satisfy Assumption 4 is ccfi =
[−R cos(acfi) cos(bcfi), R sin(acfi),−R cos(acfi) sin(bcfi)]

T .
The associated box constraints to define the fingertip
workspace are: −π/2 < afi < π/2, −π < bfi < 0.
The joint angle limits for each finger are qmaxi =
(3π/2, π/3, 3π/2), qmini = (0,−π/3, 0), ∀i ∈ [1, 3]. The
extended class-K functions used in the control barrier
functions of (41) are α1(h) = α2(h) = h3. Note the
only disturbance acting on the system is gravity. The
simulations were performed using Matlab’s ode3 integrator.
The simulation time was 15 seconds, but simulations were
stopped if the contact points exceed the fingertip workspace.

The implementation of the nominal control resulted in a
failed grasp as shown in Figure 3. The gray regions denote
areas outside of the constraint admissible state space. Figure
3b shows that as the nominal control rotates the object



(a) (b)

(c) (d)

(e) (f)

Fig. 4: Implementation of nominal + proposed control en-
sures grasp constraint satisfaction.

to track the reference pose, all of the contact trajectories,
bcfi , exceed the fingertip workspace resulting in loss of
contact. Figure 3c shows that the joint angles also exceed
the prescribed joint limits. Figure 3d shows the required
friction, βi ∈ R>0, which denotes the friction required at
each contact to perform the manipulation motion [5]. If the
required friction βi exceeds the friction coefficient µ, then
the contact points slip, which is depicted in Figure 3d. Thus
the reference provided by the high-level grasp planner is
infeasible for the nominal control.

Figure 4 shows the grasp states from the proposed control
(41) with the nominal control (42). Figures 4a and 4b show
the contact trajectories remain inside the fingertip workspace.
Figures 4c-4e show that the joint angles remain within
the joint angle limits. Figure 4f shows that the required
friction, βi, remains below the slipping region. The combined
satisfaction of all grasp constraints validates the forward
invariance of the grasp constraint admissible set H as per
Proposition 1. Note that the choice of α1 and α2 allows
for more aggressive/conservative controller performance. The
results show that the proposed controller prevents grasp fail-
ure even when the high-level planner provides an infeasible
reference command for the given nominal control.

The numerical simulations show promising results for
ensuring grasp constraint satisfaction during in-hand ma-
nipulation. However the proposed controller (41) is only

defined if Assumption 5 holds. Future work will investigate
feasibility conditions of the proposed control.

VI. CONCLUSION

In this paper, a control law was proposed to guarantee
grasp constraint satisfaction during in-hand manipulation.
The grasp constraints were derived to ensure the object
does not slip, the joints do not exceed joint angle limits,
and the contact points do not leave the fingertip workspace.
The proposed controller admits an existing manipulation
controller, while adhering to the grasp constraints to support
the assumptions made in the literature. Numerical results
demonstrate the efficacy of the proposed approach.
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