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Abstract— Data-driven methods for modeling dynamic sys-
tems have recently received considerable attention as they
provide a mechanism for control synthesis directly from the
observed time-series data. In the absence of prior assumptions
on how the time-series had been generated, regression on the
system model has been particularly popular. In the linear case,
the resulting least squares setup for model regression, not only
provides a computationally viable method to fit a model to the
data, but also provides useful insights into the modal properties
of the underlying dynamics. Although probabilistic estimates
for this model regression have been reported, deterministic
error bounds have not been examined in the literature, par-
ticularly as they pertain to the properties of the underlying
system. In this paper, we provide deterministic non-asymptotic
error bounds for fitting a linear model to observed time-series
data, with a particular attention to the role of symmetry and
eigenvalue multiplicity in the underlying system matrix.

Keywords: data-driven methods, linear regression, linear models,
supervised learning

I. INTRODUCTION

Recent advances in measurement and sensing technologies
have lead to the availability of an unprecedented amount of
data generated by complex physical, social, and biological
systems such as turbulent flow, opinion dynamics on social
networks, transportation, financial trading, and drug discov-
ery. This so-called big data revolution has resulted in the
development of efficient computational tools that utilizes the
data generated by a dynamic system to reason about reduce
order representations of this data, subsequently utilized for
classification or prediction on the underlying model. Such
techniques have been particularly useful when the derivation
of models from first principles is prohibitively complex or
infeasible. In the meantime, utilizing data generated by the
system directly for the purpose of control or estimation,
poses a number of challenges, most notably for model-
based control design techniques such as H2, H∞, and model
predictive control (MPC). As such, it has become imperative
to examine fundamental limits on fitting models to the time-
series data, that can subsequently be used for model-based
control synthesis.

One caveat of such an approach for a wide range of
complex systems is the absence of the ability to excite the
system with desired (persistent) inputs for the purpose of
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system identification [1]. More recently, data-driven identi-
fication has also been examined in the context of machine
learning as an extension of classification or prediction, with
less attention given to the ability to excite the system with
persistent inputs. In this direction, non-asymptotic bounds
for finite sample complexity were obtained in [2]–[6] for
the linear time-invariant systems. Maximum likelihood and
subspace identification methods have been employed in [7] to
learn linear systems with guaranteed stability. The problem
was investigated in an online learning setup to find regret
bounds on the average cost of linear quadratic (LQ) systems
in [8]. In the context of data-driven analysis of dynamical
systems, Koopman analysis has also been used for operator-
theoretic identification of nonlinear systems and their spectral
properties [9]–[11]. One of the key elements used in the
aforementioned identification methods is a linear regression
step in order to fit a model to data; linear regression is in
fact one of the backbone of what is known as supervised
learning.1 In its most basic form, linear regression is used
to find the system parameters by solving a least-squares
minimization problem constructed on the observed time-
series. Examples of such an approach can be found in [5],
[12], [13].

The error analysis for fitting a linear dynamic system
to data presented in this work is closely related to error
estimates examined in [12] and [5] for linear quadratic
synthesis. In both works, control synthesis involves an inter-
mediate step of parameterizing the underlying system using
the collected data; subsequently, probabilistic guarantees on
the error between the true and the estimated models are
presented. In [12], the underlying system is allowed to
be excited by canonical inputs before time-series data is
collected following each “episode”. The same approach has
been adopted in [5], where a Gaussian noise is used to excite
the system. While meaningful upper bounds on the error
of the estimate are examined in these works, the presented
results are probabilistic in nature, with probabilistic bounds
that are directly related to the number of data points. In this
work, we provide non-asymptotic error bounds for adopting
a regression approach to fit a linear model to data generated
by the system, evolving from initial conditions and without
a control input. Furthermore, this error bound is analyzed in
an online (non-asymptotic) manner as more data becomes
available. It is shown that the error guarantees are closely
related to the system parameters, the rank of the collected

1Where a linear model is trained for labeling future instances of incoming
data.
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data, and not surprisingly, the initial conditions. We then
focus on the case where the underlying linear model is
symmetric and show that the modeling regression error
depends on the spectral properties of the system.

The organization of the paper is as follows: In §II, we pro-
vide the necessary mathematical background. The problem
setup is outlined in §III. §IV provides the error analysis and
main results of the paper. We then examine the ramification
of our results for fitting a linear model to network data in
§V. The paper is concluded in §VI.

II. NOTATION AND PRELIMINARIES

The cardinality of a set S is denoted as |S|. A column
vector with n real entries is denoted as v ∈ Rn, where vi
represents its ith element. The matrix M ∈ Rp×q contains
p rows and q columns and [M ]ij denotes its (real) entry at
the ith row and jth column. The Moore-Penrose pseudo-
inverse of a full-rank matrix M ∈ Rp×q is defined as
M† = (M>M)−1M> if p > q and M† = M>(MM>)−1

otherwise; M> denotes the transpose of the matrix. The
range and nullspace of matrix M are denoted by R(M)
and N (M), respectively. The basis of the vector space V is
referred to as B(V); the span of a set of vectors, denoted by
span, is the set of all linear combinations of these vectors.
The unit vector ei is the column vector with all zero entries
except [ei]i = 1. The column vector of all ones is denoted
by 1, with dimension implicit from the context. The n × n
identity matrix is defined as In = Diag(1) for 1 ∈ Rn. The
trace of M ∈ Rn×n is designated as Tr(M) =

∑n
i=1[M ]ii =∑n

i=1 λi, where λi is the ith eigenvalue of M . We write
M � 0 when M is positive-definite (PD) and M � 0 if
M is positive-semidefinite (PSD). The spectrum of M (the
set of its eigenvalues) is denoted by Λ(M). The algebraic
multiplicity of an eigenvalue λ is denoted by m(λ), defined
as the multiplicity of λ in Λ(M). An eigenvalue λ is called
simple if m(λ) = 1. The singular value decomposition
(SVD) of a matrix X ∈ Rn×m is the factorization X =
UΣV >, where the unitary matrices U and V consist of the
left and right “singular” vectors of X , and Σ is the diagonal
matrix of singular values. Economic SVD is the reduced
order matrix obtained by truncating the factor matrices in
the SVD to the first r columns of U and V , corresponding
to the r non-zero singular values in Σ, where r = rank(X).
From the SVD of a given matrix X , one can find its pseudo-
inverse as X† = V Σ−1U>, resulting in XX† = UU>; when
Σ has zero diagonals, the aforementioned inverse keeps these
zeros untouched. The Euclidean norm of a vector x ∈ Rn is
defined as ‖x‖2 = (x>x)1/2 = (

∑n
i=1 x

2
i )

1/2. The spectral
norm of matrix X is defined as ‖X‖2 = sup{‖Xu‖2 :
‖u‖2 = 1}. The Frobenius norm of a matrix ‖X‖F is defined
as ‖X‖F =

√
Tr(X>X). Spectral and Frobenius norms

satisfy the inequality ‖X‖2 ≤ ‖X‖F ≤ r‖X‖2, where
r = rank(X).

III. PROBLEM SETUP

For a wide range of real-world systems, the underlying
complex dynamics makes deriving the corresponding models

from first principles difficult if not infeasible. This can be due
to a range of factors from the unpredictable nature of the en-
vironment to perturbations and uncertainties in the complex
system [5], [14]. However, with the availability of sensing
technologies and high performance computing, time-series
data can be collected from these systems. Hence, it becomes
natural to consider to what extent the observed time-series
can be used to reason about the underlying dynamic model.
In the case when this data has been generated by simulations
(a model, albeit complex, already exists), one might still
be interested to reason about the dynamics using “simple”
models. The adoption of this approach involves using prior
knowledge of the underlying dynamics to choose a particular
basis or library, and then postulating that the dynamic system
is some combination of these basis elements. This problem
then reduces to a parameter optimization problem -with
respect to these basis or library- for their combination that
best fits the given data, with respect to a suitable norm
or metric. In the absence of any prior assumption on the
dynamics, however, it is often desirable to explore simple
models. This paper examines non-asymptotic error bounds
for doing such a linear fit, for the case when the data had
been generated by a linear system; generically, it is the case
that if the data is rich enough and the system does not have
degeneracies, exact model is obtained after the number of
data snapshots is the dimension of the system.2 In fact, we
show that even in this most streamlined case, and even in
the absence of noise or uncertainty in the collected data,
understanding non-asymptotic behavior of the error requires
some non-trivial analysis.

Consider the discrete linear time-invariant system de-
scribed by the state equation,

xt+1 = Axt, t = 0, 1, 2, . . . , (1)

where A ∈ Rn×n is the unknown system matrix, xt ∈ Rn
is the state of the system at time t, and the system has been
initialized from x0. The state snapshots collected up to (and
including) time k can now be grouped as,

Xk = [x0 x1 . . . xk] , Yk = [x1 x2 . . . xk+1].
(2)

This data collection approach is analogous to the first step
of the so-called dynamic mode decomposition (DMD) algo-
rithm [15], where this step is followed by the parameteriza-
tion of the eigenvalues and eigenvectors of the underlying
system model.3 Now to estimate the underlying system ma-
trix at each k, we consider the the least-squares minimization,
Âk = argminA‖Yk−AXk‖F , whose solution is of the form
Âk = YkX

†
k; see Fig. 1. Note that when rank(Xk) = n,

Âk = AXkX
†
k = AXkX

>
k (XkX

>
k )−1 = A.

2The model has n2 unknown entries; as such, n2 observations are
generically needed for its exact recovery. One of course can get away with
less data by invoking sparsity (say, using the `1 regularization) or structure
on the model, e.g, assuming an underlying pattern for the system matrix.

3The main objective of DMD is however not “model” regression per se,
as it is ”modal” fitting, in order to provide useful insights into the underlying
(possibly nonlinear) dynamics.



Fig. 1: Estimating the underlying dynamics A after k data
snapshots using the model regression R

The focus of this paper is on the analysis of the error
‖A − Âk‖, i.e., the non-asymptotic error between the orig-
inal and estimated models, using linear regression when
rank(Xk) < n. Our work considers an online estimation
of the model A, where each new data snapshot is added to
the previously collected set. At any time-step k, an estimate
for A is found based on the received data up to k. The
resulting data-driven recursive minimization is depicted in
Fig. 1. Although not discussed further in this paper, we note
that diagram in Fig. 1 can -in principle- be augmented with a
model-based control or filtering scheme that utilizes Âk after
a suitable number of steps. In §IV, we first introduce an upper
bound on the estimation error as a function of the system
dynamics A, the iteration count k, dimension of the system
n, and the initial conditions x0. In particular, we show that
for each time-step, the left-singluar vectors of the SVD of
the data matrix dictate the estimation error bound. Next, we
focus on symmetric system matrices. In this case, it is shown
that the model regression error can be characterized by the
multiplicities in the spectrum of the underlying system.

IV. NON-ASYMPTOTIC ERROR ANALYSIS

In this section, we examine the error bound for the linear
system regression in (1) based on the system characteristics
and the observed data snapshots. We assume that k < n,
i.e., the number of data snapshots is less than the size of
the system. The next results, characterizes the regression
estimation error as a function of the time step k.
Theorem 1. Consider the system in (1) and the correspond-
ing data matrix. Let Xk = UkΣkV

>
k be the SVD of Xk.

Then the model estimate at time-step k is given by Âk =
A(I − Ek) where,4

Ek =

(
I − SkPk

Tr(SkPk)

)
Sk , (3)

with,

Sk = I − Uk−1U
>
k−1, Pk = xkx

>
k = Akx0x

>
0 A

k> . (4)

Moreover,

‖Ek‖2 ≤
∥∥∥∥I − SkPk

Tr(SkPk)

∥∥∥∥
2

. (5)

Proof: From (2), Xk =
[
Xk−1 Akx0

]
, and Yk =

AXk = A
[
Xk−1 Akx0

]
. Then the estimate of the system

matrix after the k-th snapshot is given by Âk = YkX
†
k, where

Âk is the least-squares solution to AXk = Yk. Thus,

Âk = YkX
†
k = AXkX

†
k = A

[
Xk−1 Akx0

]
X†k . (6)

4Note that we are quantifying the relative error in (3).

Hence we need to characterize X†k. To this end, we start from
X†k =

(
X>k Xk

)−1
X>k . We first note that,

X>k Xk =

[
X>k−1

x>0 A
k>

] [
Xk−1 Akx0

]
=

[
X>k−1Xk−1 X>k−1A

kx0

x>0 A
k>Xk−1 x>0 A

k>Akx0

]
.

Then(
X>k Xk

)−1
=

1

ζ

[
Φ −X†k−1A

kx0

−x>0 A
k>X†

>

k−1 1

]
,

where

Φ =
(
X>k−1Xk−1

)−1
[
ζI +X>k−1A

kx0x
>
0 A

k>X†
>

k−1

]
,

ζ = x>0 A
k>
[
I −Xk−1

(
X>k−1Xk−1

)−1
X>k−1

]
Akx0

= −x>0 A
k>
[
Xk−1X

†
k−1 − I

]
Akx0 .

In the meantime, X†k =
(
X>k Xk

)−1
X>k

[
Ψ1

Ψ2

]
, with,

Ψ1 = X†k−1 +
1

ζ
X†k−1A

kx0x
>
0 A

k>
(
Uk−1U

>
k−1 − I

)
,

Ψ2 = −1

ζ
x>0 A

k>
(
Uk−1U

>
k−1 − I

)
,

where we have used the fact Xk−1X
†
k−1 = Uk−1U

>
k−1.

Thereby, we can expand Âk from (6) as,

Âk = AXkX
†
k = A

(
Uk−1U

>
k−1

)
+A

(
1

ζ

(
Uk−1U

>
k−1 − I

)
Akx0x

>
0 A

k>
(
Uk−1U

>
k−1 − I

))
= A

(
Uk−1U

>
k−1

)
−A

((
Uk−1U

>
k−1 − I

)
Akx0x

>
0 A

k>
(
Uk−1U>k−1 − I

)
x>0 A

k>
(
Uk−1U>k−1 − I

)
Akx0

)
,

and from (4), the estimated model Âk at time-step k is given
by Âk = A (I − Ek) with,

Ek =

(
Tr(SkPk)I − SkPk

)
Sk

Tr(SkPk)
=

(
I − SkPk

Tr(SkPk)

)
Sk.

The magnitude of this error simplifies for the case of the
spectral norm as,

‖Ek‖2 =

∥∥∥∥(I − SkPk
Tr(SkPk)

)
Sk

∥∥∥∥
2

≤
∥∥∥∥I − SkPk

Tr(SkPk)

∥∥∥∥
2

,

since ‖Sk‖2 = 1 for k < n. Lastly, we note that Sk is
the projection onto the null space of Xk−1 and Pk is the
covariance matrix of the data at time-step k; as such both
matrices are positive-semidefinite.

We note that the relation (3) captures -in a succinct way-
the dependency of the model regression error on how new
modes are revealed by the data stream over time.



A. Non-asymptotic Error Analysis for Symmetric Systems

In this section, we consider linear systems with symmetric
dynamics with the aim of characterizing fundamental bounds
on the regression error in terms of the spectral properties of
the system. This insight into the regression error is achieved
through the spectral decomposition of the system matrix,

A = QΛQ> =

r∑
i=1

λiqiq
>
i , (7)

where Q is the unitary matrix containing the eigenvectors
corresponding to nonzero eigenvalues of A, Λ is the diagonal
matrix of nonzero eigenvalues, and r = rank(A). Symmetric
system matrices appear in a wide range of applications where
interactions leading to the dynamics is bidirectional; such
systems are of interest in biological networks [16], social
interactions [17], robotic swarms [18], and networks secu-
rity [19]. Using this spectral decomposition of symmetric
systems, we show that the regression error is dependent on
the multiplicity of eigenvalues in A. In particular, we show
that if m(λ) = 1,∀λ ∈ Λ(A), then the upper bound (5) is
a function of the largest and smallest singular values of the
system matrix as well as its rank. Otherwise, the regression
error is maxi:m(λi)>1 |λi|. We provide the details of the
approach for each case.

1) Simple Eigenvalues: We first consider the case when
the symmetric system matrix has simple eigenvalues and rank
r. In reference to (7), consider the entire set of eigenvectors
of A consisting of Q = [q1 · · · qr] and Q̄ = [q̄r+1 · · · q̄n],
where {q1, · · · ,qr, q̄r+1, · · · , q̄n} forms a basis for the
entire Rn. Then the nonzero random initial state x0 can be
written as,

x0 = Qν + Q̄µ =

r∑
i=1

νiqi +

n∑
i=r+1

µiq̄i ν 6= 0. (8)

Lemma 1. For the symmetric linear system decomposed
as (7), we have, A− Âk = A

(
I − SkQΛkνν>ΛkQ>

‖SkQΛkν‖2

)
Sk.

Proof: From (8) and (4) we have, Pk = Akx0x
>
0 A

k>

= (QΛkQ>)(Qν + Q̄µ)(Qν + Q̄µ)>(QΛkQ>)

= QΛkνν>ΛkQ>,

and, Tr(SkPk) = Tr(SkQΛkνν>ΛkQ>) = ‖SkQΛkν‖2,
where we have used that Sk is a symmetric projection.
Substituting these in (3) completes the proof.

We now show that when k < n, the error depends on the
largest and smallest eigenvalues of A.
Theorem 2. Consider the linear dynamical system with
symmetric system matrix A as in (7) and the initial state
x0 as in (8). If k < n, then

‖A− Âk‖2F ≤
(
n−min{k, |ν|+ min{|µ|, 1}}

)
λ2

1 − λ2
n ,

where λn = λmin(A), λ1 = λmax(A), and |ν| and |µ| are
the number of nonzero νi’s and µi’s, respectively.

Proof: From Lemma 1 we observe that,

‖A− Âk‖2F = Tr
(

(A− Âk)>(A− Âk)
)

= Tr(Λ2Q>SkQ)− ν>ΛkQ>SkQΛ2Q>SkQΛkν

ν>ΛkQ>SkQΛkν

= ‖ASk‖2 −
‖ASkQΛkν‖2

‖SkQΛkν‖2
.

In the meantime,

‖ASk‖2F ≤ rank(Sk)‖ASk‖22
≤ rank(Sk)‖A‖22‖Sk‖22 = rank(Sk)λ2

1(A);

moreover, since λn(A) = inf
y 6=0
‖Ay‖2/‖y‖2, we have

‖ASkQΛkν‖2

‖SkQΛkν‖2
≥ λ2

n(A).

Since Aqi = λiqi and Aq̄i = 0, we have,

Xk−1 = [x0 x1 · · · xk−1]

=

[
r∑
i=1

νiqi +
n∑

i=r+1

µiq̄i
r∑
i=1

λiνiqi · · ·
r∑
i=1

λk−1
i νiqi

]
.

Thus,

rank(Xk−1) = min{k, |ν|+ min{|µ|, 1}} , (9)

and,

rank(Sk) = n−rank(Xk−1) = n−min{k, |ν|+min{|µ|, 1}} .

Hence,

‖A− Âk‖2F ≤
(
n−min{k, |ν|+ min{|µ|, 1}}

)
λ2

1 − λ2
n,

which completes the proof.

B. Effect of Eigenvalues Multiplicity on the Regression Error
In this section, we consider the symmetric systems whose

eigenvalues are not necessary simple. We will see that for
such systems, the regression error ‖Ek‖ converges to the
largest eigenvalue with multiplicity greater than one, i.e.,
‖Ek‖ = maxi:m(λi)>1 |λi| for k ≥ n.

In order to show this, we will pursue the convention
adopted in (2), (7), and (8). As in § IV-A, let r = rank(A)
and define Q̃ = [Q | Q̄] = [q1 . . . qr q̄r+1 . . . q̄n],
where the columns of Q̃ span the entire Rn. Furthermore,
let α = [ν> µ>]>, where α and µ are from (8). The data
matrix can now be re-written as,

Xk = [x0 Ax0 A2x0 . . . Akx0]

= Q̃ [Q̃>x0 ΛQ̃>x0 . . . ΛkQ̃>x0].
(10)

From (8) and the fact that the columns of Q̃ are orthonormal,
we have Q̃>x0 = [α1 α2 . . . αn]> and ΛjQ̃>x0 =
[α1λ

j
1 α2λ

j
2 . . . αnλ

j
n]>. Moreover, in light of (10) we

can decompose the data matrix into Xk = Q̃ΓV where,

Γ =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

 , V =


1 λ1 . . . λk1
1 λ2 . . . λk2
...

...
. . .

...
1 λn . . . λkn

 .
(11)



The matrix [V ]ij = λj−1
i is the Vandermonde matrix

formed by the eigenvalues of A and Γ = Diag([αi]
n
i=1).5

Assume now that the system matrix A contains s distinct
eigenvalues and let Λ∗(A) = {λt1 , λt2 , . . . , λts} be the set
of these eigenvalues; as such, the other n−s eigenvalues are
repetitions of the elements in Λ∗(A).

For our subsequent error analysis, we will use the rank of
Xk at each time-step. The next result characterizes the rank
of Xk based on the number of the collected data.
Lemma 2. Given k < s, the s × k Vandermonde matrix
defined by [Vs]ij = λj−1

i , i ∈ {1, . . . , s}, j ∈ {1, . . . , k},
formed by the elements of Λ∗(A), has full-rank.

Proof: Let vi be the ith column of Vs and assume that
c1v1 +c2v2 + · · ·+ckvk = 0. Consider row p of the equation
c1 + c2λp + · · ·+ ckλ

k
p = 0. Since λi 6= λj for i 6= j, there

exist s solutions to the k-degree polynomial,

P (x) = c0 + c1x+ · · ·+ ckx
k = 0.

Hence c1 = c2 = · · · = ck = 0 and vi’s are linearly
independent and since k < s, Vs has full-rank.
Theorem 3. Let k be the number of collected data snapshots
and s = |Λ∗(A)|. Then rank(Xk) = k when k < s and
rank(Xk) = s when k ≥ s.

Proof: For k < s, it is straightforward to show that
from Lemma 2, rank(Xk) = rank(V ) = rank(Vs) = k. For
k ≥ s, we know that rank(V ) = rank(Vs), where [Vs]ij =
λj−1
i , i ∈ {1, . . . , s}, j ∈ {1, . . . , k + 1}. Since Vs has

full-rank (this can be shown using the nonzero sub-matrix
determinants for the first s× s block), we get rank(Xk) =
rank(V ) = rank(Vs) = s.

Let k ≥ s and Xk = UΣV > be the SVD of Xk where,

Xk = [U1 U2]

[
Σ1 0s×(k−s)

0(n−s)×s 0(n−s)×(k−s)

] [
V1 V2

]>
,

(12)

with U1 ∈ Rn×s, U2 ∈ Rn×(n−s), Σ1 ∈ Rs×s, V1 ∈
Rk×s, V2 ∈ Rk×(k−s). The existence of U2 and V2 is due
to the fact that Xk is degenerate. Without loss of generality,
we re-arrange the columns of Q̃ and Λ such that,

ΛR =

[
Λ1 0
0 Λ2

]
, Q̃R =

[
Q̃1 Q̃2

]
, (13)

where Λ1 = Diag([λt1 λt2 . . . λts ]) contains the ele-
ment of Λ∗(A) with the corresponding eigenvectors in Q̃1 ∈
Rn×s. The remaining eigenvalues and the corresponding
eigenvectors are stacked in Λ2 ∈ R(n−s)×(n−s) and Q̃2 ∈
Rn×(n−s), respectively.

A crucial term in our analysis is U>2 Q̃R ∈ R(n−s)×n.
This matrix multiplication combines a submatrix of U cor-
responding to the repeated eigenvalues, with the orthonormal
eigenvectors of the system. In the next result, we show that
this term has a specific row structure.
Lemma 3. Given the convention in (13), we have U>2 Q̃1 =
0, i.e., U>2 Q̃R = U>2

[
Q̃1 | Q̃2

]
=
[

0(n−s)×s | U>2 Q̃2

]
.

5Note that it is assumed that for all i, x0 6⊥ qi; in this case, αi 6= 0 for
all i and rank(Xk) = rank(V ).

Proof: From (12) we have U>2 Xk = 0. Then,

U>2 Xk = U>2 Q̃Q̃
>Xk = U>2 Q̃Q̃

>[x0 Ax0 . . . Akx0]

= U>2 Q̃
[
Q̃>x0 ΛQ̃>x0 . . . ΛkQ̃>x0

]
= U>2 Q̃ΓV = 0,

with Γ and V defined as in (11). Define B = U>2 Q̃ and let
bi = [bi1 bi2 . . . bin ] and vi = [1 λi . . . λki ]
be the i’th rows of B and V , respectively. Then for all
i ∈ {1, 2, . . . , n − s} we have BΓV = 0 implying that
biΓV = 0; as such,

∑n
j=1 bijαjvj = 0 implies that∑s

t=1 ctv
∗
t = 0, where v∗t ’s are the rows of V corresponding

to s distinct eigenvalues and ct’s are some combinations of
bijαj’s. Since the vectors v∗t ’s are linearly independent, we
get ci = 0 for all i = 1, 2, . . . , s. Considering that ci = bij
for the elements with simple eigenvalues, the result implies
that for any row vj corresponding to a simple eigenvalue λj
the corresponding coefficient bij = 0. Hence, the structure[

0(n−s)×s | U>2 Q̃2

]
follows, implying that U>2 Q̃1 = 0.

Definition 1. Define U ′2 by permuting the columns of U2

such that we obtain block diagonal matrix U ′>2 Q̃2 =
Diag([P1, P2, . . . , P`]), where ` is the number of eigenvalues
λ with m(λ) > 1 and Pi = U

′i>

2 Q̃i2 ∈ R(m(λi)−1)×m(λi); as
such U

′i
2 ∈ Rn×(m(λi)−1) is the matrix containing vectors in

U ′2 corresponding to λi and Q̃i2 ∈ Rn×m(λi) is the matrix of
eigenvectors corresponding to λi.

Remark 1. To justify the existence of such a matrix U ′2,
notice that the SVD factorization in terms of U and V are
not unique and for any such factorization, U1 ⊥ U2.

We are now well positioned to prove the main theorem of
this section.

Theorem 4. Consider the dynamics represented by (1) and
(2). Let s = |Λ∗(A)| be the number of distinct eigenvalues
of A. Assume that k ≥ s and let λ∗ = maxi:m(λi)>1 |λi|
be the largest eigenvalue of A with multiplicity greater than
one. Then ‖Ek‖2 = ‖A− Âk‖2 = λ∗.

Proof: We will show that Λ(Ek) = Λ(A)\Λ∗(A). The
error can then be re-written as,

‖Ek‖2
= ‖A− Âk‖2 = ‖A−AXkX

†
k‖2 = ‖A(I −XkX

†
k)‖2

=
∥∥∥A(I − U1Σ1V

>
1 V1Σ−1

1 U>1

)∥∥∥
2

= ‖A(I − U1U
>
1 )‖2

= ‖AU ′2U ′>2 ‖2 = ‖Q̃ΛQ̃>U ′2U
′>
2 ‖2 = ‖ΛQ̃>U ′2U ′>2 Q̃‖2

= ‖Λ(U ′>2 Q̃)>(U ′>2 Q̃)‖2,

where U ′2 pertains to definition 1 and I − U1U
>
1 =

U ′2U
′>
2 is the projection matrix onto N (X>k ). Note that

since the columns of U ′2 are linearly independent, we have
rank(Ek) = rank(AU ′2U

′>
2 ) = n− s. From Lemma 3,

Λ(U ′>2 Q̃)>(U ′>2 Q̃) = Λ

[
0

(U ′>2 Q̃2)>

] [
0 U ′>2 Q̃2

]
=

[
0s×s 0s×(n−s)

0(n−s)×s Λ2(U ′>2 Q̃2)>(U ′>2 Q̃2)

]
.

(14)



Then from definition 1, Λ2(U ′>2 Q̃2)>(U ′>2 Q̃2) =
Diag([λ1P

>
1 P1 , λ2P

>
2 P2 , . . . , λ`P

>
` P`]). Consider

the ith block λiP
>
i Pi. Notice that from definition

rank(P>i Pi) = m(λi) − 1, and since U
′i>

2 and Q̃i2 are
orthonormal, λiP>i Pi = λiQ̃

i>

2 U
′i
2 U

′i>

2 Q̃i2 has the spectrum
Λ(λiP

>
i Pi) = {0, λi, . . . , λi}. Then having ` of these

blocks Λ(Ek) = Λ(A)\Λ∗(A), i.e., the spectrum of Ek
contains all repeated eigenvalues of A.

Since both Λ and (U ′>2 Q̃)>(U ′>2 Q̃) are symmetric square
block diagonal matrices, the product Λ(U ′>2 Q̃)>(U ′>2 Q̃) is
symmetric and therefore ‖Ek‖2 = ‖Λ(U ′>2 Q̃)>(U ′>2 Q̃)‖2 =
max
i=1,...,`

λi = λ∗.6

V. MODEL REGRESSION ON NETWORKS

We now provide an example to demonstrate the applica-
bility of the error bounds on networked systems. Consider
the Petersen graph on 10 nodes and 15 edges as shown
in Fig. 2. We use the weighted version of this specific
structure to find error bounds on a system with simple
eigenvalues. The dynamics of this system is defined using
the graph Laplacian, defined as L = D−A, where A is the
adjacency matrix that defines the connections in the network
and D is the degree matrix defined as Dii =

∑
j |Wij |;

in this case Wij is the weight of the edge between nodes
i and j. Network symmetries typically induce eigenvalue
multiplicities in the corresponding adjacency and Laplacian
matrices. Hence to make the system more generic, we add
weights w1,6 = 1, w2,7 = 2, w3,8 = 3, w4,9 = 4, and
w5,10 = 5 and for all other weights we have wi,j = 1.
For each component i the dynamics depend on the adjacent
nodes in the graph ẋi =

∑
j |Wij |(xi − xj). Then the

overall dynamics can be written as ẋ = −Lx. The model
regression algorithm discussed in this paper leads to the error
shown in Fig. 2. For this simulation, the initial condition has
been chosen as a (normalized) random vector x0 ∈ R10.
The upper subfigure shows the comparison of the bound for
general case using the spectral norm and the lower subfigure
demonstrates the same setup for IV-A. It can be seen that the
error converges to zero after k = 10 steps, since the system
matrix has simple eigenvalues.

VI. CONCLUSION

In this paper we consider the regression approach for
learning linear time-invariant dynamic models from time-
series data. In particular, we showed how the richness in
the data as well as spectral properties of the model, dictate
fundamental bounds on the error obtained from the streaming
model regression. Our subsequent works will utilize these
insights to provide an active learning mechanism that has
the dual role of reducing the regression error in addition to
achieving auxiliary control objectives.
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