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Abstract— Control and estimation on large-scale social net-
works often necessitate the availability of models for the
interactions amongst the agents. However characterizing ac-
curate models of social interactions pose new challenges due
to inherent complexity and unpredictability. Moreover, model
uncertainty becomes more pronounced for large-scale networks.
For certain classes of social networks, the layering structure
allows a compositional approach. In this paper, we present such
an approach to determine performance guarantees on layered
networks with inherent model uncertainties. A factorization
method is used to determine robust stability and performance
and this is accomplished by a layered cost-guaranteed design via
a layered Riccati-type solver, mirroring the network structure.
We provide an example of the proposed methodology in the
context of opinion dynamics on large-scale social networks.

Keywords: social networks, distributed layered control,
guaranteed-cost LQ performance, graph products

I. INTRODUCTION

Communities are formed by a large number of local and
global interactions, linked by a wide range of social and eco-
nomic interdependencies. Systematic understanding of the
evolution of communities can be achieved by understanding
the influence of its members on each other as well as the role
of external factors. Such an understanding often requires an
accurate model that captures the interactive behaviors [1].
With the introduction of sociogram in 1930’s [2], graphical
models of interconnections among a group of individuals
was adopted to examine the evolution of communities.
This line of work led to several branches in social and
behavioral research such as the interdisciplinary science of
Social Networks Analysis (SNA). The development of these
dynamic models has provided an intellectual bridge between
the communal social and behavioral interdependencies on
one hand, and techniques in system sciences such as control
and estimation, on the other [3]. In the meantime, the advent
of large-scale modeling techniques due to complexities of
the interdependencies, increasing population size, and the
corresponding datasets, have led to the need to revisit algo-
rithms and solution strategies for network-level control and
estimation.

In spite of the complexity and unpredictability of large-
scale social interactions, characterizing reliable models for
these interactions are promising in cases where prior knowl-
edge about the underlying structures of these systems is
available. In particular, for certain types of social networks,
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the layering structure allows a compositional approach for
the mathematical representation of the system. The layering
structure in a social network can be induced by a variety
of motives such as the presence of distinct social types,
geographical coordinates, and financial or political ties. The
idea of compositional study of a layered system can be
compared to distributed systems analysis in the sense that
the problem is split into manageable subproblems that can
be subsequently solved independently [4], [5]. For example,
decomposition of consensus-type networks leads to examin-
ing the protocol for each layer [6]. Furthermore, [7] provides
a controllability and observability analysis on large-scale
composite networked systems based on their factors.

Despite the many advantages of a decompositional ap-
proach, the high dimension of the system poses new chal-
lenges primary due to the layers’ uncertainty as well as
perturbations to the layering structure as a whole [8]. In the
context of social networks these uncertainties may be due to
inaccurate modeling of the nature of the interactions,1 as well
as whether or not two social entities are directly interdepen-
dent. Such uncertainties pose difficulties for the control and
estimation of such systems. As an example, the adoption of
a linear quadratic (LQ) theory in social networks, is not only
hindered by high dimensionality, but also by inherent model
uncertainties. As a result, the strong robustness properties
of say, the Linear Quadratic Regulator (LQR) approach, can
vanish where small changes to the system parameters lead
to instabilities. In this paper, we present a compositional
method to characterize performance guarantees on layered
social networks with model uncertainties. The corresponding
distributed analysis and control presented in this work is
closely related to [10], where a composite LQR solution is
derived from the parameters of the two layers. In this work,
we obtain sufficient conditions for the robust stability of the
composite network based on a layered control mechanism.

The paper is organized as follows: In §II, we provide the
mathematical background for our work. We introduce the
problem setup in §III; §IV provides our analysis for synthe-
sizing the controller that leads to performance guarantees on
layered uncertain network models. We conclude the paper in
§V with an illustrative example over an interdependent social
network and concluding remarks are provided in §VI.

II. MATHEMATICAL PRELIMINARIES

A square matrix N ∈ Rn×n is symmetric if N> = N ; on
the other hand, a matrix-valued function f(N) is symmetric

1For example, due to mis-classification of antagonistic interactions in
signed networks [9].
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if [f(N)]> = f(N). The identity matrix is denoted by In.
|T | denotes the entry-wise nonnegative version of the matrix

T . For any operator �, we define
k
�
i=1

ti = t1 � · · · � tk.
The notation N � 0 (� 0) is used when N is a positive-
(semi) definite matrix, i.e., x>Nx > 0 (≥ 0) for all x 6= 0;
A � B if A − B � 0. By P = QΛQ>, we denote
the eigendecomposition of the symmetric matrix P , where
Q and Λ represent the eigenvectors and eigenvalues of P ,
respectively. The Cholesky decomposition of the symmetric
matrix F � 0 is given by F = LL>, where L is lower-
triangular with real, positive diagonal entries. We call (A,B)
controllable, if and only if the controllability matrix C =
[B AB . . . An−1B] has full-rank. On the other hand,
(A,C) is observable if and only if the pair (A>, C>) is
controllable.

A graph is characterized by the 3-tuple G = (V, E ,W),
where V is the set of nodes, E ⊆ V × V denotes the set of
edges, andW consists of weights assigned to edges. An edge
is said to exit i for j if (i, j) ∈ E with edge weight wij ∈ W .
The adjacency matrix of G, denoted by A(G) is the matrix
[A(G)]ij = wij when (i, j) ∈ E and [A(G)]ij = 0 otherwise.
The graph Laplacian is defined as L = D −A, where D is
the diagonal degree matrix with Dii =

∑
j:(i,j)∈E Aij .2 The

consensus dynamics is defined as ẋ = −Lx.
The Cartesian product of m graphs is denoted by G =

m

�
i=1
Gi where the vertex set of G has the form VG = V1 ×

· · · × Vm and the nodes Pv = (v1, . . . , vm) and Pu =
(u1, . . . , um) are connected if and only if there exists some
i such that (vi, ui) ∈ Ei and vj = uj for j 6= i [11].

The Kronecker product of A ∈ Rp1×q1 and B ∈ Rp2×q2

is an p1q1 × p2q2 matrix denoted by,

A⊗B =


a1,1B a1,2B . . . a1,q1B
a2,1B a2,2B . . . a2,q1B

...
...

. . .
...

ap1,1B ap1,2B . . . ap1,q1B

 .

Some important properties of the Kronecker product include
the mixed-product property, (A⊗B)(C ⊗D) = AC ⊗BD,
distributivity, A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C), and
associativity, A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C. Moreover,
(
m
⊗
i=1

Ri)
> =

m
⊗
i=1

R>i and (
m
⊗
i=1

Ti)
−1 =

m
⊗
i=1

T−1i for invertible
Ti’s. The Kronecker sum is defined on square matrices M ∈
Rm×m and N ∈ Rn×n as M ⊕N = M ⊗In +Im⊗N . The
Kronecker product preserves positive (semi-) definiteness.

III. PROBLEM SETUP

Specific classes of large-scale social networks can be
modeled, at least approximately, via a layered structure
representing interdependent subsystems. One may then aim
to characterize the properties of the system via those of its
factors or layers. This decompositional approach is effective
for various classes of social and economic networks, where

2The notational dependency of the adjacency, degree, and Laplacian
matrices on the graph G will be suppressed when implicit in the context.

for example, inter-nodal influences among distinct groups
lead to opinions on a sequence of issues [12] (Fig. 1).
The evolutionary study of interconnections among political
parties in elections or the investigation of financial ties
between different branches of an international organization
are two examples of the layered structures in behavioral
sciences.

Fig. 1: A example of a layered social networks due to
geographical distributions

This types of system representation make it possible to
embed more structure into the system and use this embed-
ding to simplify the subsequent computational and theoretic
analysis.

A. Dynamics of each layer of the network

We assume that the evolution of opinions is captured by
Taylor’s model of influenced attitude change [13]. The model
considers the change in attitudes of a set of individuals as
a result of influence processes within the set, as well as
the exposure to external sources. Based on this model, the
opinion dynamics of an individual p in a networked system
with n agents and m external inputs can be represented as,

ẏp(t) =

n∑
q=1

apq(yq(t)− yp(t)) +

m∑
k=1

bpk(sk − yp(t)),

where yp is the state of p, sk is the kth external input, apq
captures the influence between agents p and q and bpk defines
the interaction between agent p and the kth external (static)
input source. If the individual r is not directly influenced by
an external input, brk = 0 for all k. Particularly, the input
to a social organization may be due to a stationary source
of communication such as mass media or an influential
administrative center. In the matrix form, Taylor’s dynamical
model for layer i of the network assumes the form,

ẋi(t) = Aixi(t) + Biui(t) ∀i ∈ {1, 2, . . . ,m},

where Ai ∈ Rni×ni is equivalent to graph Laplacian,3

capturing the difference in attitudes and Bi ∈ Rni×pi defines
the control “knob” for the external inputs. Following [7], for

3The notation is due to the applicability of the methods in this paper for
any general linear dynamics and shall not be confused with the adjacency
matrix A of the network.



this type of dynamics,

A(
m

�
i=1
Gi) =

m
⊕
i=1

Ai,

where for simplicity Ai = A(Gi). Then the overall network
is formed as,

ẋ(t) =
( m
⊕
i=1

Ai

)
x(t) +

( m
⊗
i=1

Bi

)
u(t), (1)

where
m
⊕
i=1

Ai ∈ R
m∏

i=1
nj×

m∏
i=1

nj

and
m
⊗
i=1

Bi ∈ R
m∏

i=1
nj×

m∏
i=1

pj

.
This dynamics can also be formulated in discrete-time as
well [7].

B. Guaranteed LQ Performance

Perturbations can be induced in social networks due to
distortions in existence, nature, or intensity of interactions
among the individuals. This model uncertainty can eventually
lead to instabilities in a social influence model. Unstable
behavior in social networks generally have unfavorable ram-
ifications such as the advent of clustering or community
cleavage [14]–[16].

In this work, we employ the LQ theory as a potential
methodology to design state-feedback controllers for systems
with layered structures. LQ methods have been applied in the
literature for the control of large-scale systems and social
networks [17], [18]. In general, the applicability of the LQ
framework is reasonable when the resources used for social
influence are restricted.4 In such a setting, an LQ regulator
can be used to attenuate the effect of the undesirable external
influences through minimal adjustments in the control vari-
ables. However, it is well-known that the stability margins
of the LQ design do not guarantee robustness to variations
in system parameters [19]. It is thus desirable to enhance
the LQ design in order to obtain guarantees on the stability
and performance of the system. One approach to achieve this
is through extending the Algebraic Riccati Equation (ARE);
the baseline form of the setup assumes the form,

A>P + PA> + Q− PBR−1B>P = 0, (2)

for given Q � 0, R � 0, leading to the LQR optimal
controller as K = R−1B>P . It is known that robustness
to variations in system parameters can be handled by an
additional term in (2). We will utilize this methodology to
ensure guarantees on the large-scale system performance
in presence of uncertainties. Accordingly, appending the
uncertainties to the dynamics in (1) results in,

ẋ(t) =
m
⊕
i=1

(
Ai + ∆Ai

)
x(t) +

( m
⊗
i=1

Bi

)
u(t),

where ∆Ai denotes the uncertainty of the model in layer
i. There are many different structures suggested for ∆Ai in
the literature [20]. One common choice of these structured
perturbations is,

∆A =

d∑
j=1

wjÃj , (3)

4For example, when there is cap on the advertisement budget.

for given Ãj . Nevertheless, the results in the paper are
derived for the general form of the uncertainty ∆A of each
layer.

The layered structure is one example where compositional
control is feasible by applying similar inputs to the network
layers. In this case, the generalized input matrix can be
written as,

B⊗ = B1 ⊗ In2
⊗ · · · ⊗ Inm

.

This assumption helps reduce the intra-layered couplings.
Hence the main analysis in this work is building upon the
following generalized dynamics,

ẋ(t) =
m
⊕
i=1

(
Ai + ∆Ai

)
x + B⊗u(t). (4)

Our goal is to find a generalized structured controller to
achieve an upper bound on the LQR performance index for
system (4).

IV. ANALYSIS

In this section we propose a framework for guaranteed
performance design for the m-layered dynamical system (4)
using an LQ approach. To make the paper self-contained, we
restate a theorem from [20] that our main result is built upon.
We then generalize the sufficient conditions for the layered
case.

Theorem 1. [20] Consider the perturbed dynamical system,

ẋ = (A + ∆A)x + Bu,

and define the quadratic performance measure,

J =

∫ ∞
0

(
x>Qx + u>Ru

)
dt. (5)

Let x0 be the initial state and P � 0 be the solution to the
modified ARE,

A>P + PA + Q− PBR−1B>P + U(P ) = 0, (6)

where U(.) is a positive symmetric function for which,

∆A>P + P∆A � U(P ). (7)

Then the feedback control law defined as u = −Kx leads
to J ≤ x>0 Px0, where K = R−1B>P .

In Theorem 1, choosing U is dictated by a trade-off be-
tween the complexity of the design and analytical properties
of the solution strategy. The choice, however, depends on the
nature of the perturbations. For instance, the structure given
in (3) implies that,

∆A>P + P∆A =

d∑
j=1

wj

(
Ã>j P + PÃj

)
.

One suggested form of U induced by this type of perturbation
is [19],

U(P ) =

d∑
j=1

Qj |Λj |Q>j , (8)



where Qj and Λj are obtained from the eigendecomposition
of the symmetric matrix Ã>j P + PÃj as,

Ã>j P + PÃj = QjΛjQ
>
j .

It is straightforward to check that (7) holds under such a
definition of U . Nonetheless, the analysis in this paper is not
limited to any specific types of U .

Definition 1. Given matrices D and Ci for i ∈ {1, 2, . . . , `},
we define,

C
⊗k,`

D = C1 ⊗ · · · ⊗ Ck−1 ⊗D ⊗ Ck+1 ⊗ · · · ⊗ C`, (9)

i.e., C⊗k,`

D replaces Ck with D in
`
⊗
i=1

Ci.

Definition 1 is followed by some useful properties that is
presented in the following.

Proposition 1. Given Definition 1, the following hold:

1) X
⊗k,`

Y ±X
⊗k,`

Z = X
⊗k,`

Y±Z ,
2) (X

⊗k,`

Y )(V
⊗k,`

W ) = (XV )
⊗k,`

(YW ),
3) (X

⊗k,`

Y )> = (X>)
⊗k,`

Y >
,

4) (X
⊗k,`

Y )−1 = (X−1)
⊗k,`

Y −1 ,

where with a slight abuse of notation,

(XV )
⊗k,`

(YW ) = X1V1 ⊗ · · · ⊗Xk−1Vk−1⊗
YW ⊗Xk+1Vk+1 ⊗ · · · ⊗X`V`.

Lemma 1. The dynamics in (4) can be written as

ẋ =
(
A⊕ + ∆A⊕

)
x + B⊗u, (10)

where A⊕ =
m
⊕
i=1

Ai and ∆A⊕ =
m
⊕
i=1

∆Ai.

The proof of Lemma 1 is straightforward using induction
and the properties of Kronecker products. We assume that
the generalized perturbation ∆A⊕ represents a structured
uncertainty composed of the perturbations from each layer
of the system. Generalization of a layer-independent pertur-
bation or leveraging other well-known uncertainty structures
are addressed for future works.

Theorem 2. Consider the generalized dynamics in (10).
Assume that Q1 � 0, R1 � 0, and symmetric positive
function U1 is given such that

∆A>1 P̄ + P̄∆A1 � U1(P̄ ), (11)

holds for all P̄ � 0 and ∆A1. Furthermore, let P1 � 0 be
the solution to,

A>1 P1 + P1A1 + Q1 − P1B1R
−1
1 B>1 P1 + U1(P1) = 0,

and define,

Fi = A>i Mi + MiAi, Gi = ∆A>i Mi + Mi∆Ai,

where Mi � 0 is such that Fi � 0 and Gi ≺ 0 for all
i = 2, . . . ,m. Then the generalized state-feedback control

law u = −K⊗x with K⊗ = K1 ⊗ In2 ⊗ · · · ⊗ Inm implies
that,

J̄ =

∫ ∞
0

(
x>Q⊗x + u>R⊗u

)
dt ≤ x>0 P⊗x0, (12)

where P⊗, Q⊗, and R⊗ are defined as,

P⊗ = M
⊗1,m

P1
, R⊗ = M

⊗1,m

R1
,

Q⊗ = M
⊗1,m

Q1
− P1 ⊗

( m∑
i=2

M
⊗i,m

Fi

)
.

Proof: We proceed by checking the conditions of
Theorem 1 but for the layered system in (2). To this end,
we need a new definition for a symmetric positive function
that generalizes U . Let,

V(T1, T2, . . . , T`) = T
⊗1,`

U1(T1)
. (13)

Then we note that for m = 2,

∆A>⊕P⊗ = (∆A1 ⊕∆A2)>(P1 ⊗M2)

= (∆A>1 ⊗ In2
+ In1

⊗∆A>2 )(P1 ⊗M2)

= ∆A>1 P1 ⊗M2 + P1 ⊗∆A>2 M2 .

Similarly,

P⊗∆A⊕ = P1∆A1 ⊗M2 + P1 ⊗M2∆A2.

Hence by induction, it can be shown that for any m,

∆A>⊕P⊗ + P⊗∆A⊕

=
(
∆A>1 P1 + P1∆A1

)
⊗M2 ⊗ · · · ⊗Mm

+ P1 ⊗
( m∑
i=2

M
⊗i,m

Fi

)
� U1(P1)⊗M2 ⊗ · · · ⊗Mm

= V(P1,M2, . . . ,Mm),
(14)

where we have used (11) and the fact that Kronecker products
preserve positive-definiteness. Also from Proposition 1.3, it
is straightforward to show that V is a symmetric and positive.
From Proposition 1.4, R−1⊗ = (M−1)

⊗1,m

R−1
1

; hence,

P⊗B⊗R
−1
⊗ B>⊗P⊗ = M

⊗1,m

P1B1R
−1
1 B>1 P1

, (15)

which gives,

A>⊕P⊗ + P⊗A⊕ + Q⊗

− P⊗B⊗R
−1
⊗ B>⊗P⊗ + V(P1,M2, . . . ,Mm)

= M
⊗1,m

A>1 P1+P1A1+Q1+P1B1R
−1
1 B>1 P1+U1(P1)

= 0,

and from proposition 1.2,

K⊗ = −R−1⊗ B>⊗P⊗ = K1 ⊗ In2 ⊗ · · · ⊗ Inm .

There are some remarks needed in relation to Theorem 2.
First, from the definitions of Fi and Gi, the perturbed
dynamics Ai+∆Ai is implicitly assumed to be stable which
is not necessarily required. In this sense, the assumptions
Mi � 0, Fi � 0, and Gi ≺ 0 might be restrictive. Indeed,



we need Mi’s to be selected in a way that inequalities
such as (14) and Q⊗ � 0 hold which may require further
assumptions on the structure of Mi such as being diagonal
or sparse. This also limits the freedom of the designer to
only select the matrices Mi while forming the cost of the
LQR problem.

Moreover, as mentioned in Section III-B, we assume a
layered structure for the controller where the input to the first
layer is repeated in the subsequent layers reflected into the
Kronecker structure. While this assumption reduces system
couplings, the presence of the other layers’ dynamics is
implicit in parameters Fi and Gi.

Finally, the proposed Q⊗ essentially removes the cou-
plings of the dynamics of different layers that shows up in
A>⊕P⊗ + P⊗A⊕ in the problem formulation. However, it
needs to be verified whether this Q⊗ satisfies the existence
and stabilizability criteria of the LQR solution. To that end, it
is straightforward to check that Q⊗ � 0; in fact Q⊗ = L>L
where,

L =


D ⊗M

1/2
2 ⊗M

1/2
3 ⊗ · · · ⊗M

1/2
m

H ⊗N2 ⊗M
1/2
3 ⊗ · · · ⊗M

1/2
m

H ⊗M
1/2
2 ⊗N3 ⊗ · · · ⊗M

1/2
m

...
H ⊗M

1/2
2 ⊗M

1/2
3 ⊗ · · · ⊗Nm

 ,

and Q1 = D>D, P1 = H>H , and A>i Mi+MiAi = N>i Ni

by Cholesky decomposition. Hence to obtain the stability
of the generalized LQR solution, we need the implicit
assumption that (A⊕, L) is observable (via proper choices
of Mi’s) and the controllability of (A⊕, B⊗) (discussed in
[7]).

V. COMPOSITIONAL SYNTHESIS FOR SOCIAL NETWORKS

Layered networks can be used for modeling geographical
distribution of various social types. In this section we imple-
ment the guaranteed-cost compositional design on a social
influence network. This case study is inspired by Padgett’s
research on 15 elite families in 1282-1500, Florence [21]
and the impact of Renaissance on Italian art and culture in
the same time interval. The analysis provides a grouping of
these families into social, political, business, and financial
members and the interactions between families were limited
to these corresponding members. Based on the geographical
distribution and ties between these families, we leverage
our methodology to model this multi-layered network. In-
herently, modeling such an organization is challenging due
to the complexity of societal interactions as well as the
population size. We account for these types of uncertainties
in parameterizing the network dynamics. These uncertainties
can potentially lead to misclassification in the nature of
connections among individuals.

Our model contains three different layers: The first layer,
G1, represents the structure of each family containing the
four groups (Fig. 2a). The dashed line denotes a negative
edge denoting a disagreement between social and political

(a)
(b)

Fig. 2: The elite family layered structures (a) interconnec-
tions within each family (b) connections among all families

entities. An input to the financial member of each family
is considered in order to both react to a change in fiscal
strategy in response to Renaissance fluctuations and avoid
social cleavage due to the opposition between two main
members of the family.5 All connections are assumed to
be equal (not weighted). The perturbation to the system
comes from a mistakenly flipped sign of the connection
between social and financial groups. This results in clustering
leading to the instability of the system.6 The Florentine
elite families graph, G2, designates the second layer of the
network (Fig. 2b). The third layer is inspired by the spread
of Renaissance throughout other provinces of Italy such as
Rome and Venice (Fig. 3). This extra layer signifies the
computational efficiency of the method.

Fig. 3: Composition of the elite families network layers.

We use Taylor’s model of opinion evolution as discussed
in Section III. In particular, we use Equation (4) to model
this 3-layer dynamics as,

ẋ = −
[ 3
⊕
i=1

(Ai + ∆Ai)
]
x + (

3
⊗
i=1

Bi)u,

where Ai and ∆Ai denote the Laplacian and the uncertainty
matrices of layer i. We assume ∆L2 = 0, ∆L3 = 0, and
B1 = [0 0 0 1]> reflecting the control over the financial
node. We use (3) to model the perturbation with d = 1,

5In LQR terminology, we only have access to the financial control knob
to bound the system performance. This is just a simplified assumption and
the control can take place on every node.

6For more on clustering and controllability in signed networks the reader
is referred to [9], [22].



w1 = 2, and Ã1 = e1e
>
2 + e2e

>
1 , i.e., a change in the sign

between social and political groups.

(a) (b)

Fig. 4: LQ system performance (a) Normal LQR algorithm
(b) Guaranteed-cost LQ controller design

Fig. 4a depicts the instability of the system when the base-
line LQR algorithm is used without taking the uncertainties
into account. Fig. 4b shows the guaranteed performance for
a similar setup but with an updated LQ controller design
methodology presented in Section IV. Table I shows the
time it takes to run the LQR algorithm (updated ARE in
particular) based on the size of G3 (number of provinces).
Similar results can also be obtained for G1 and G2.

Size of G3 1 2 3 4
Time (sec) 0.3 2 216 419

TABLE I: Computational performance for solving modified
ARE for different sizes of G3

VI. CONCLUSION

In this paper we examine large-scale social networks
analysis via a system-theoretic compositional approach. In
particular, we consider the guaranteed-cost control design of
specific classes of social systems with a layered structure.
This specific structure enables the guaranteed performance
control and estimation based on the factors. We present
a compositional approach to determine these guarantees
considering the uncertainties that originate from the network
layers. The applicability of the developed theory to large-
scale social networks with misclassified interdependencies is
then discussed. Some future directions include generaliza-
tion of the dynamics such that every layer can potentially
contribute to the control mechanism for the system. One can
also aim to provide a more topological structure to the design
parameters Q⊗ and R⊗.
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