

Delft University of Technology

Formal synthesis of analytic controllers for sampled-data systems via genetic
programming

Verdier, Cees F.; Mazo, Manuel

DOI
10.1109/CDC.2018.8619121
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 57th IEEE Conference on Decision and Control (CDC 2018)

Citation (APA)
Verdier, C. F., & Mazo, M. (2018). Formal synthesis of analytic controllers for sampled-data systems via
genetic programming. In A. R. Teel, & M. Egerstedt (Eds.), Proceedings of the 57th IEEE Conference on
Decision and Control (CDC 2018) (pp. 4896-4901). IEEE. https://doi.org/10.1109/CDC.2018.8619121

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC.2018.8619121
https://doi.org/10.1109/CDC.2018.8619121

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

Formal Synthesis of Analytic Controllers for Sampled-Data Systems via
Genetic Programming

Cees F. Verdier and Manuel Mazo Jr

Abstract— This paper presents an automatic formal con-
troller synthesis method for nonlinear sampled-data systems
with safety and reachability specifications. Fundamentally, the
presented method is not restricted to polynomial systems and
controllers. We consider a periodically switched controllers
based on a Control Lyapunov Barrier-like function. The pro-
posed method utilizes genetic programming to synthesize these
function in analytic form, as well as the controller modes.
Correctness of the controller are subsequently verified by means
of a Satisfiability Modulo Theories solver. Effectiveness of the
proposed methodology is demonstrated on multiple systems.

I. INTRODUCTION

Modern controller design for nonlinear continuous systems
often involves both reachability and safety specifications.
Furthermore, digital controller implementations typically im-
pose that states are measured periodically and that control
signals are held constant in between sampling. This paper
proposes an approach to automatically synthesize periodi-
cally switched state feedback controllers for a special sub-
class of safety and reachability specifications for nonlinear
sampled-data systems.

Two popular paradigms for automatic controller synthesis
for reachability and safety specifications are: 1) abstraction
and simulation, and 2) Control Lyapunov functions (CLF)
and Control Barrier Functions (CBF).

The first approach abstracts the infinite system to a finite
one, which simplifies the formal controller synthesis for
temporal logic specifications [1]. For nonlinear systems, tools
implementing this approach include PESSOA [2], SCOTS
[3] and CoSyMa [4]. The second approach deals with the
system as an infinite system. Control Lyapunov functions
[5] and Control Barrier Functions [6] are design tools for
stabilization and safety specifications respectively. In [7] and
[8] attempts are made to combine both CLFs and CBFs. Au-
tomatic synthesis of these functions is often done by posing
the problem as a sum of squares (SOS) problem, which can
be solved through convex optimization, see e.g. [9] and [10].
Drawbacks of the abstraction and (bi-)simulation approach
are that it requires discretization of the state space and that
the resulting controller is often an enormous look-up table
in the form of a sparse matrix or a binary decision diagram
(BDD). On the other hand, the SOS programming paradigm
is limited to polynomial systems. Although reformulation of
some nonpolynomial systems to an SOS formulation exists,
e.g. [9], [11] and references therein, polynomial Lyapunov

This work is supported by NWO Domain TTW, the Netherlands, under
the project CADUSY- TTW#13852.

C.F. Verdier and M. Mazo Jr are both with the Department of Delft Center
of Systems and Control, Technical University of Delft, 2628 CD Delft, The
Netherlands c.f.verdier@tudelft.nl

functions can be too restrictive, as global asymptotical sta-
bility of a polynomial system does not imply the existence
of a polynomial Lyapunov function [12].

To overcome these limitations, we propose a framework
which uses genetic programming (GP) in combination with a
Satisfiability Modulo Theories (SMT) solver. GP is an evo-
lutionary algorithm which evolves encoded representations
of symbolic functions [13], rather than just fitting optimal
parameters given a predefined structure. An SMT solver is
a tool which uses a combination of background theories to
determine whether a first-order logic formula can be satisfied
[14]. Our approach uses a CLF-like function and a predefined
switching law that infers a reachability and safety specifi-
cation. The proposed framework uses GP to automatically
generate both candidate CLFs and optionally the controller
modes of a periodically switched state feedback controller.
The SMT solver is subsequently used to formally verify the
candidate solutions. By using GP, we allow ourselves to
search for solutions that include nonpolynomial functions.
Furthermore, the synthesized controllers are expressed as
analytic expressions that are significantly more compact than
BDDs returned by abstraction-based methods.

This work is a follow-up to [15], in which also a combina-
tion of GP and SMT solvers is used. The main contributions
of this paper are: 1) synthesis w.r.t. a predefined periodic
sampling time, rather than arbitrary switching with a (more
conservative) minimum dwell-time and 2) the use of a
different and less conservative CLBF. Additionally, more
benchmark examples are provided. Other related work is
found in [16], in which robust CLFs for switched systems
with reach-while-stay (RWS) specifications are synthesized
using a counterexample-guided synthesis. However, in [16]
the controller modes are pre-specified, while in our ap-
proach these modes can also be discovered automatically,
eliminating the need for prior input space discretization.
Furthermore, this paper extends the set of specifications to
include invariance of the goal set. Finally, similar to [15],
the theoretical lower bounds on the minimum dwell-times
reported in [16] are often very conservative.

a) Notation: Let Z≥0 = {0, 1, 2 . . . }. Let us denote the
boundary and the interior of a set D with ∂D and int(D)
respectively. The image and inverse image of set A under
f are denoted by f [A] and f−1[A]. Finally, the Euclidean
norm is denoted by ‖ · ‖.

II. PROBLEM DEFINITION

In this paper we design sampled-data state feedback con-
trollers for nonlinear continuous-time systems described by

ξ̇(t) = f(ξ(t), u(t)), (1)

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 4896

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

where the variables ξ(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm
denote the state and input respectively. Due to the sampled-
data nature of the controller, u(t) = g(x(tk)), ∀t ∈ [tk, tk +
h), where h > 0 denotes a constant sampling time.

A. Control specification

Given a compact safe set S ⊆ X , compact initial set I ⊂ S
and compact goal set G ⊂ S, we consider the following
specifications:
CS1 Reach while stay (RWS): all trajectories starting in I

eventually reach G, while staying within S:
∀ξ(t0) ∈ I, ∃T, ∀t ∈ [t0, T] : ξ(t) ∈ S ∧ ξ(T) ∈ G. (2)

CS2 Reach and stay while stay (RSWS): all trajectories
starting from I eventually reach and stay in G, while
staying within S:

∀ξ(t0) ∈ I, ∃T, ∀t ≥ t0,∀τ ≥ T :ξ(t) ∈ S ∧ ξ(τ) ∈G. (3)

This paper addresses the following problem:
Problem 2.1: Given the compact sets (S, I,G) and sys-

tem (1), synthesize a sampled-data state feedback controller
u(t) = g(x(tk)) such that the closed-loop system satisfies
specification CS1 or CS2.

We propose to solve Problem 2.1 by using a periodically
switched controller based on a CLBF, as will be established
in the next section. The CLBFs and controller modes are
synthesized using grammar-guided genetic programming (in-
troduced in Section IV) and verified by means of an SMT
solver. The overall algorithm is described in Section V.

III. CONTROL STRATEGY

In this section we discuss the used control strategy and
establish how it solves problem 2.1 by means of Theorem 1
and Corollary 1.

A. Control Lyapunov Barrier Function

Consider a set of controller modes with index set Q⊂Z≥0:

G = {gq : X → U | q ∈ Q}. (4)

Given the system (1), an initial state x = ξ(tk), let us denote
the (over-approximated) reachable set for t ∈ [tk, tk + h]
under a controller mode q as Rq(x) s.t. given a q, ∀t ∈
[tk, tk + h] : ξ(t) ∈ Rq(ξ(tk)). The construction of Rq is
discussed in Section V-A. We consider a switching controller
based on a CLBF defined as follows.

Definition 3.1 (Control Lyapunov Barrier Function):
A function V ∈ C1(S,R) is a Control Lyapunov Barrier
Function (CLBF) w.r.t. the compact sets (S, I,G), S ⊆ X ,
I,G ⊆ int(S), system (1), and controller modes (4) if there
exists a scalar γ > 0 such that

∀x ∈ I : V (x) ≤ 0 (5a)
∀x ∈ ∂S : V (x) > 0 (5b)

∀x ∈ A\G,∃q ∈ Q,∀z ∈ Rq(x) : V̇q(x, z) ≤ −γ (5c)

where A := {x ∈ S | V (x) ≤ 0} and V̇q(x, z) =
〈∇V (z), f(z, gq(x))〉.

Remark 1: The choice of γ is arbitrary, because if a
solution V ∗ exists for γ∗, there always exists a linear

transformation of V ∗ such that the inequalities in (5) are
satisfied for any γ.

Proposition 1: Given a CLBF V , ∃e ∈ R s.t. e =
infx∈S\G V (x). Furthermore, the sublevel set Lc := {x ∈
S | V (x) ≤ c} is compact.

Proof: Since V (x) is continuous and S is compact,
V [S] ⊂ R is compact and hence V [S\G] ⊆ V [S] is
bounded, i.e. ∃e ∈ R s.t. e = infx∈S\G V (x). Moreover,
Y := {y ∈ V [S] | y ≤ c} and its inverse image V −1[Y] =
Lc are compact.

B. Control policy

Given a CLBF V , we consider periodically switching
controllers of the form{

u(t) = gqk(ξ(tk)).

qk(tk) = arg min
q∈Q

max
z∈Rq(ξ(tk))

V̇q(ξ(tk), z) (6)

where tk+1 = tk + h, t ∈ [tk, tk + h).

C. Reach while stay

The presented controller strategy based on the CLBF en-
forces specification CS1, as shown in the following theorem.

Theorem 1: Given a system (1), CLBF V w.r.t. compact
sets (S, I,G) and controller (6), then (2) holds.

Proof: For ξ(t0) ∈ I it follows from (5a) and the
definition of A that V (ξ(t0)) ∈ A. From (5c) it follows
that for all ξ(tk) ∈ A\G there exists a q ∈ Q such that
∀t ∈ [tk, tk + h] : V̇q(ξ(tk), ξ(t)) ≤ −γ. Selecting such a
mode using controller (6), applying the comparison theorem
(see e.g. [17]), and using ∀x ∈ A, V (x) ≤ 0, it follows that
∀k ∈ Z≥0, ∀t ∈ [tk, tk + h], ∀ξ(tk) ∈ A\G: V (ξ(t)) ≤
V (ξ(tk)) − γh ≤ −γh Therefore, ξ(tk) ∈ A\G implies
∀t ∈ [tk, tk + h], V (ξ(t)) will decrease and thus cannot
reach ∂S, as from (5b) we have ∀x ∈ ∂S : V (x) > 0. Since
from proposition 1 it follows that V (x) on A\G ⊆ S\G
is lower bounded, V (ξ(t)) will decrease until in finite time
ξ(t) leaves A\G and can only enter G, therefore (2) holds.

D. Reach and stay while stay

The conditions in (5) are not sufficient for forward invari-
ance of (a subset of) the goal set, as they do not impose that
∀x ∈ ∂G, V (x) < infy∈S\G V (y). Therefore some trajecto-
ries starting in ∂G might enter S\G before entering G again.
The following corollary establishes sufficient conditions for
specification CS2.

Corollary 1: Given a system (1), CLBF V w.r.t. compact
sets (S, I,G), and a controller (6), if ∃β ∈ R such that

∀x ∈ ∂G : V (x) > β (7a)

∀x ∈ G\int(B),∃q ∈Q,∀z ∈Rq(x) : V̇q(x, z) ≤ −γ (7b)

where B := {x ∈ S | V (x) ≤ β}, then (3) holds.
Proof: From Theorem 1 we have that there exists a

time tK ≥ t0 such that ξ(tK) ∈ G. Analogous to the proof
of Theorem 1, from (7b) it follows that ∀ξ(tK) ∈ G, ξ(t)
with t ≥ tK enters in finite time G∩B. From the definition
of B and Proposition 1 it follows that B is compact and thus
G∩B is compact. From (7b) and controller (6) we have that

4897

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

∀x ∈ ∂(G∩B), z ∈ Rq(x) : V̇q(x, z) ≤ −γ. Combining this
with (7a), we have that all states ξ(t) ∈ ∂(G ∩ B) cannot
reach ∂G and V (ξ(t)) decreases, thus these trajectories will
remain within G ∩B. Therefore it follows that G ∩B ⊆ G
is forward invariant. As G ⊆ int(S), we have that (3) holds.

Remark 2: Comparing the CLBF for RSWS to the CLBF
in [15], in this work the condition on the derivative of V
is only imposed for the sublevel set A ⊂ S, rather than the
entire safe set S. Secondly, the CLBF in this work involves
only 2 parameters y and β, as opposed to 5 in [15].

IV. GRAMMAR-GUIDED GENETIC
PROGRAMMING

Genetic programming (GP) is an evolutionary algorithm
capable of synthesizing entire functions, in our case a CLBF
and controller modes, that minimize a cost function, with-
out pre-specifying a fixed structure [13]. The algorithm is
initialized with a random population of candidate solutions
(individuals). Each individual is assigned a fitness using the
fitness function, which reflects how well the design goal is
satisfied. Individuals are then selected based on this fitness to
undergo genetic operations. The resulting individuals form a
new generation. This cycle is repeated for many generations
under the expectation that the average fitness increases, until
a solution is found or a maximum number of generations
is met. In GP, solutions (the phenotypes) are encoded in a
certain representation (the genotypes) that allows for easy
modification. In this work we use a grammar-guided genetic
programming (GGGP) algorithm, similar to the work of [18],
which uses a tree representation that is constructed based on a
Backus-Naur form (BNF) grammar [19]. The BNF grammar
consists of the tuple {N ,S,P,P∗}, where N denotes the
set of nonterminals, S ∈ N the start symbol, P the set
of production rules, and P∗ the set of terminal production
rules, which contains no recursive rules. An example of a
simple grammar to construct monomials is given by N =
{mon, var}, S = 〈mon〉, P in Table I, and P∗ obtained
by omitting the recursive rules from P . Here 〈mon〉 denotes
monomials and 〈var〉 scalar variables. Using P , 〈mon〉 can
be mapped to either 〈var〉 or 〈var〉 × 〈mon〉.

A parse tree is constructed using the BNF grammar as
follows. Starting with the start symbol nonterminal S, a
random corresponding rule is chosen from the production
rules P . This rule forms a subtree that is put under the
nonterminal. Subsequently, all nonterminals in the leaves of
the resulting tree are similarly expanded, until all leave nodes
contain no nonterminals anymore. To limit the tree depth,
P∗ is used if a predefined depth is reached, such that the
number of recursive rules is limited. The final parse tree is
transformed into the phenotype by replacing all nonterminals
with their underlying subtrees, yielding a new parse tree
corresponding directly to a function. Figure 1 shows a fully
grown genotype synthesized using the example grammar, as
well as the transformation to its phenotype.

We use the genetic operators crossover and mutation,
which take the role of exploitation and exploration of
genotypes respectively. The crossover operator takes two
individuals and switches two random subtrees with the

TABLE I
PRODUCTION RULES P

N Rules
〈mon〉 ::= 〈var〉

| 〈var〉 × 〈mon〉
〈var〉 ::= a | b

abb

×

monvar
vara

ba×
mon

Fig. 1. Genotype to phenotype

same nonterminal root. The mutation operator takes a single
individual and replaces a subtree corresponding to a random
nonterminal with a new subtree grown from that nonterminal.

As stated before, we aim to synthesize the pair (V,G). For
both the CLBF and controller modes we use a separate parse
tree, which we refer to as a gene. In this case, the genotype
is formed by two genes.

V. AUTOMATIC CLBF AND CONTROLLER
SYNTHESIS

In this section the overall algorithm is described.

A. One-step ahead reachable set
In this work the reachable set is constructed by using

Euler’s forward method and bounding the local truncation
error (LTE). This yields the following analytic expression

rq(x, τ, e) = x+ τf(x, gq(x)) +
1

2
τ2e,

such that the over-approximated reachable set is given
by Rq(s) =

⋃
(τ,e)∈E rq(s, τ, e) with E := [0, h] ×

Πn
i=1[−εi, εi] and

εi = max
(x,u)∈X×U

∣∣∣∣∂fi(x, u)

∂x
fi(x, u)

∣∣∣∣ . (8)

While this construction can be quite conservative, it allows
for relatively simple analytic expressions.

B. Fitness
For each inequality (5a)-(5c) (and optionally (7a)-(7b)),

an independent fitness value is constructed, consisting of a
sample-based and an SMT solver-based fitness value. The
former gives a measure of how much the inequalities in (9)
are violated, whereas the SMT solver is used to provide a
formal guarantee on whether these inequalities are satisfied.
In this work we use the SMT solver dReal [20], which is able
to verify nonlinear inequalities over the reals. Furthermore,
in case a formula is not satisfied, the SMT solver can be
used to provide a counterexample, which can again be used
for the sample-based verification.

Inequalities (5a)-(5c) and (7a)-(7b) can be rewritten as 1

(∀s ∈ Ci)φi(s) ≥ 0, i = 1, . . . , 5. (9)

Given a finite set Ci,samp = {x1, . . . , xn}, with Ci,samp ⊂
Ci, the sample-based fitness is based on an error measure
w.r.t. φi defined as

eφi := ‖[min(0, φi(x1)), . . . ,min(0, φi(xn)]‖ .

1By taking C1 = I , C2 = ∂S, C3 = S\G × E, C4 = ∂G,
C5 = G × E, φ1(s) = −V (s), φ2(s) = V (s) − c, φ3 =
χA(s)(−γ−minq∈Q(V̇ (s1, rq(s1, s2, s3)), φ4(s) = V (s)−β−c, φ5 =
χB(s)(−γ − minq∈Q(V̇ (s1, rq(s1, s2, s3))), where c is an arbitrary
small real to make the strict inequality non-strict and χD(s) denotes a
membership function of set D, i.e. χD(s) = 1 if s ∈ D and zero otherwise.

4898

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

Using this measure, the sampled-based fitness is given by

fsamp,φi
:= (1 + eφi

)−1, i = 1, ..., 5. (10)

The SMT-based fitness fSMT,φi
is 1 if it follows from

dReal that the inequality is satisfied and 0 otherwise. This
fitness value is only computed if an individual satisfies
fsamp,φi = 1 for all i ∈ {1, 2, 3} (or i ∈ {1, ..., 5}).
Otherwise, fSMT,φi are set to 0 for all conditions.

To prioritize finding a V that satisfies (5a) and (5b) before
checking the condition on its derivative V̇ in (5c), (and
similarly for the additional conditions (7a)-(7b)), we use the
weights wi = bfsamp,φi−1c for i = 2, . . . 5 and w1 = 1. The
overall fitness is given by

f :=

j∑
i=1

wifsamp,φi +

j∑
i=1

fSMT,φi , j = 3 ∨ j = 5. (11)

Finally, to promote the selection of equivalent, but less
complex individuals, candidates with the same fitness (11)
are ranked according to the number of their parameters. If
this is still not decisive, they are subsequently ranked based
on their lowest maximum parameter.

C. Numerical optimization

In order to speed up the convergence of the fitness,
each generation the parameters of the individuals are opti-
mized using Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [21], which is an evolutionary optimization
algorithm that is regarded to be robust with regard to dis-
continuous fitness functions. We use the variant sep-CMA-
ES [22], because of its linear time and space complexity.
In our grammar, we have the rule ‘const’ which creates a
random constant. In every generation, these constants are
then optimized using sep-CMA-ES, where their initial values
are the current parameter values.

D. Algorithm outline

Provided a system, specification sets (S, I,G), a grammar,
and sample sets Ci,samp, the proposed approach consists of
the following steps:

1) A random population of individuals is generated as
described in Section IV.

2) The parameters of the individuals are optimized using
sep-CMA-ES based on the sample fitness.

3) The full fitness (11) is computed.
4) Counterexamples returned by the SMT solver are

added to Ci,samp.
5) The best individuals are copied to the next generation.
6) A new population is created by selecting individuals

using tournament selection [13] and modifying them
using genetic operators.

7) Steps 3 to 5 are repeated until all conditions are
satisfied (i.e. fSMT,φi = 1 for all i) or a maximum
number of generations is reached.

Remark 3: If the maximum number of generations is
reached before an individual achieves fSMT,φi = 1 for all i,
no guarantees on the specification are provided.

Remark 4: It is possible to pre-define the controller modes
in G, such that only the CLBF is synthesized.

E. Additional operations
To aid finding the correct bias s of V (x) such that (5a)

is satisfied, the following biasing is performed before each
fitness evaluation within CMA-ES:

V ′(x) = V (x)−max
(

max
x∈Isamp

(V (x)), 0
)
, (12)

where Isamp denotes a subsampled set of I . To guide the
search further, we impose the additional condition

∀x ∈ S\G : V (x) ≥ V (xc) (13)

where xc denotes the center of the goal set.

VI. IMPLEMENTATION

The switching law in (6) is computationally intensive to
check online. By offline designing αq : Rn → R for all
q ∈ Q such that

∀x ∈ D,∀q ∈ Q : max
z∈Rq(x)

V̇q(x, z) > −γ =⇒

min
p∈Q

(V̇p(x, x) + αp(x)) < V̇q(x, x) + αq(x),
(14)

allows us to replace the switching law with:

qk(tk) = arg min
q∈Q

(V̇q(ξ(tk), ξ(tk)) + αq(ξ(tk))). (15)

Intuitively, when at a point x a mode q′ is not viable under
the reachable set Rq(x), the nominal system V̇q′(x, x) plus
buffer αq′(x) should not minimize the set

⋃
q∈Q V̇q(x, x) +

αq(x), such that it is not selected by the switching law.
Theorem 2: Given a CLBF, if ∀q ∈ Q, αq(x) satisfies

(14) for D = A\G, switching law (15) yields that (2) holds.
Proof: This proof is by contradiction. By definition of

the CLBF, for all x ∈ A\G, there always exists a q such
that maxz∈Rq(x) V̇q(x, z) ≤ −γ. Assume that when using
switching law (15), we have maxz∈Rqk

(ξ(t)) V̇qk(ξ(t), z) >

−γ. It then follows from (14) that minq∈Q(V̇q(x, x) +
αq(x)) < V̇qk(x, x) + αqk(x). This directly contradicts
the switching law qk = minq∈Q(V̇q(x, x) + αq(x)).
Hence switching law (15) can only select a qk such that
maxz∈Rqk

(ξ(tk)) V̇qk(ξ(tk), z) ≤ −γ, which is guaranteed to
exist by the design of the CLBF. The remainder of the proof
is analogous to the proof of Theorem (1).

Corollary 2: Given a CLBF satisfying (7), if ∀q, αq(x)
satisfies (14) for D = A\int(B), using switching law (15)
yields that (3) holds.

Proof: This proof is analogous to the proof of Theorem
2 and Corollary 1.
The functions αq(x) can be designed and verified offline
using again an SMT solver.

VII. CASE STUDIES

In this section the effectiveness of the approach is demon-
strated for a simple linear system, polynomial systems of
second and third order (see Table II), and two nonpolynomial
systems (see Table III). The systems and specifications are
adopted from [23] and references therein, with the exception
of the Pendulum system, adopted from [15].

For these case studies, we fixed the control mode vector
field G and synthesized controllers for the reach-while-stay

4899

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II
POLYNOMIAL SYSTEMS AND RESULTS FOR 10 RUNS. µ: MEAN, σ: STANDARD DEVIATION.

System Linear 2nd-order 3rd-order

Equations
of motion

ẋ1 = x2
ẋ2 = −x1 + u

ẋ1 = x2 − x31
ẋ2 = u

ẋ1 = −10x1 + 10x2 + u
ẋ2 = 28x1 − x2 − x1x3
ẋ3 = x1x2 − 2.6667x3

(S, I,G) ([−1, 1]2, [−0.5, 0.5]2, [−0.1, 0.1]2) ([−1, 1]2, [−0.5, 0.5]2, [−0.05, 0.05]2) ([−5, 5]3, [−1.2, 1.2]3, [−0.3, 0.3]3)

Predefined G {−1, 0, 1} {−1, 0, 1} {−100,−50,−5, 0, 5, 50, 100}

ε, h (2, 1), 0.01s (7, 0), 0.01s (3800, 6800, 1900), 0.001s

generations
Total time [s]

min max µ σ
2 8 4.3 1.83

7.34 35.09 15.69 8.53

min max µ σ
6 9 7.4 1.26

32.17 59.50 47.15 10.24

min max µ σ
5 50 21.1 15

37.65 475.307 197.99 125.32

TABLE III
NONPOLYNOMIAL SYSTEMS AND RESULTS FOR 10 RUNS. µ: MEAN, σ: STANDARD DEVIATION

System Pendulum Pendulum on a cart

Equations
of motion

ẋ1 = x2

ẋ2 = −
(

b
J

+ K2

JRa

)
x2 − mlg

J
sin(x1) + K

JRa
u

m = 5.50 · 10−2 kg, l = 4.20 · 10−2 m,
J = 1.91 · 10−4 kg m2, g = 9.81 m/s2, b = 3.0 · 10−6Nms,
K = 5.36 · 10−2 Nm/A, Ra = 9.50 Ω.

ẋ1 = x2
ẋ2 = g

l
sin(x1)− b

ml2
x2 + 1

ml
cos(x1)u

g = 9.8 m/s2, b = 2 Nms
l = 0.5 m, m = 0.5 kg.

(S, I,G)
([−2π, 2π]× [−100, 100] , [−π, π]× [−10, 10] ,
[−1.0, − 0.5]× [−1.0, 1.0])

([−2π, 2π]× [−10, 10], [−0.5, 0.5]2,
[−0.25, 0.25]× [−1, 1])

Predefined G {−10,−5, 0, 5, 10} {−6,−2, 0, 2, 6}

ε, h (600, 12700), 0.001s (200, 3200), 0.01s

generations
Total time [s]

min max µ σ
4 20 9.3 4.52

22.79 107.25 63.61 26.13

min max µ σ
4 15 8.6 3.13

37.16 114.492 88.34 25.32

specification CS1. Across all these case studies, we used a
population of 16 individuals, a maximum of 50 generations,
and a maximum of 30 generations within CMA-ES. The
mutation and crossover rates were both chosen to be 0.5. The
number of test samples and maximum number of additional
counterexamples were set to 100 and 300 respectively. For
the counterexamples, a first-in-first-out principle was used.
The (arbitrary) γ of the CLBF was set to γ = 0.1 and
the precision parameter of dReal set to δ = 0.001. The
values of εi are obtained using bisection and the SMT solver.
The GGGP algorithm and CMA-ES are implemented in
Mathematica, running on an Intel Xeon CPU E5-1660 v3
3.00GHz using 8 CPU cores.

The used grammar is defined by SV = 〈const〉+ 〈expr〉,
N and P as shown in Table IV, and P∗ is obtained by
removing all recursive rules from P . While this grammar
restricts to polynomial CLBFs, the proposed approach can
also be used for nonpolynomial CLBFs. Finally, the maxi-
mum recursive rule depth was set to be 7.

To show repeatability, the synthesis was repeated 10 times
for each benchmark. Statistics on the number of generations
and the total synthesis time are shown in Table II and III.
With the exception of the third-order polynomial system, in
all 10 runs a solution was found for each benchmark. For the
third-order system only a single run did not find a solution
within 50 generations.

TABLE IV
PRODUCTION RULES P

N Rules
〈expr〉 ::= 〈expr〉+ 〈expr〉 | 〈pol〉
〈pol〉 ::= 〈pol〉+ 〈pol〉 | 〈const〉 × 〈mon〉
〈mon〉 ::= 〈var〉 | 〈var〉 × 〈var〉
〈var〉 ::= x1 − xc,1 | . . . | xn − xc,n
〈const〉 ::= Random Real ∈ [−10, 10]
〈G〉 ::= {〈lin〉} | . . . | {〈lin〉 , 〈lin〉 , 〈lin〉},
〈lin〉 ::= 〈const〉 (x1 − xc,1) + · · ·+ 〈const〉 (xn − xc,n)

| 〈const〉 〈var〉 | 〈const〉

One of the found solutions for the pendulum system is

V = −2319.91 + 102.46x′1
2

+ 8.88356x′1x2 + 1.54932x22,

where x′1 = (0.75 + x1). We manually designed α(x) =
[α1(x), . . . α5(x)]T to be [100, 0, 0, 0, 400] such that (14)
holds. Furthermore, by post-analyzing V , it was proven
that for β = −2304.69, V satisfies the conditions in (7),
hence the stronger specification CS2 is guaranteed. Figure 2
shows the phase plot of the closed-loop system for ξ(t0) ∈
{(−π, 10), (−2,−5), (1.5, 0), (π, 10)}. It can be seen that
indeed all trajectories satisfy CS2.

The used sampling times h are significant larger than the
minimal dwell-times reported in [15] and [16]. For example,
for the cart on pendulum system benchmark we used h =
0.01 s, whereas [16] reports a theoretical minimum dwell-
time of 2 · 10−6 s with an observed minimum switch time
of 0.005 seconds in simulation experiments.

4900

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

-3 -2 -1 0 1 2 3
x1 (rad)

-10

0

10
x
2
(r
ad

/s
)

Fig. 2. Phase diagram of the pendulum system using a found CLBF.

TABLE V
RESULTS FOR 10 RUNS FOR THE PENDULUM ON A CART SYSTEM

WITHOUT PRE-DEFINING G .

Min Max µ σ
generations 3 15 7.6 3.37
Total time [s] 84.58 349.80 219.29 86.11

A. Evolving G
Let us reconsider the pendulum on a cart from Table III

and specification CS1, but without pre-specifying G. We sat-
urate the input with u(tk) = max(−6,min(6, gqk(ξ(tk)))).
A separate gene for the controller modes G is used with start
symbol SG = 〈G〉 and the product rules in Table IV. The
results for 10 runs are shown in Table V. Comparing Table
III with V we observe a comparable number of generations
required to find a solution, although a longer computation
time per generation is observed. However, the benefit is that
no discretization of the input space is required. One of the
found solutions is given by

(V,G) =(100.459x21 + 36.111x1x2+

22.7543x22 − 40.3802, {−10.0347x1}).

Note that G consists of only a single mode, hence no
switching law is required when implementing this controller.
Finally, for β = −36.6211, V satisfies (7), hence using this
controller also guarantees CS2.

VIII. DISCUSSION
This paper presented a method for automatic synthesis of a

periodically switched state feedback controller for nonlinear
sampled-data systems with reachability and safety specifi-
cations. Preliminary results have been shown for several
nonlinear systems up to the third-order. It was shown that the
framework was able to synthesize CLBFs given pre-defined
controller modes, but was also capable of synthesizing con-
troller modes automatically, eliminating the need to discretize
the input space beforehand. Moreover, it is possible to find
a single controller automatically, removing the need for the
switching law entirely.

For almost all benchmarks runs, solutions were found
within 50 generations. Nevertheless, a drawback of the
proposed methodology is that there is no guarantee that a
solution will be found within a number of generations.

A straightforward improvement to obtain less conserva-
tive sampling times is by using a less conservative over-
approximation of the reachable set, e.g. by using higher order
Taylor series approximations or using local bounds rather
than for the entire domain.

Finally, the functions αq(x) that simplify the switching
condition are currently synthesized by hand. In future work,
the aim is to automate this synthesis as well, for example by
again using the combination of GP with SMT solvers.

REFERENCES

[1] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer US, 2009.

[2] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for embed-
ded controller synthesis,” in Computer Aided Verification. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 566–569.

[3] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of
symbolic controllers,” in Proc. of the 19th International Conference on
Hybrid Systems: Computation and Control. ACM, 2016, pp. 99–104.

[4] S. Mouelhi, A. Girard, and G. Gössler, “Cosyma: a tool for controller
synthesis using multi-scale abstractions,” in Proc. of the 16th interna-
tional conference on Hybrid systems: computation and control. ACM,
2013, pp. 83–88.

[5] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 7, no. 11, pp. 1163 – 1173,
1983.

[6] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” Proc. of the 7th IFAC Symposium on Nonlinear Control
Systems, pp. 462–467, 2007.

[7] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control lyapunovbarrier function,” Automatica, vol. 66, pp.
39 – 47, 2016.

[8] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. PP, no. 99, pp. 1–1, 2016.

[9] A. Papachristodoulou and S. Prajna, “On the construction of lyapunov
functions using the sum of squares decomposition,” in Decision and
Control, 2002, Proc. of the 41st IEEE Conference on, vol. 3, Dec
2002, pp. 3482–3487 vol.3.

[10] W. Tan and A. Packard, “Searching for control lyapunov functions
using sums of squares programming,” in Allerton Conferencei, 2004,
pp. 210–219.

[11] E. J. Hancock and A. Papachristodoulou, “Generalised absolute sta-
bility and sum of squares,” Automatica, vol. 49, no. 4, pp. 960 – 967,
2013.

[12] A. A. Ahmadi, M. Krstic, and P. A. Parrilo, “A globally asymptotically
stable polynomial vector field with no polynomial lyapunov function.”
in CDC-ECE, 2011, pp. 7579–7580.

[13] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[14] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories.” Handbook of satisfiability, vol. 185, pp. 825–885,
2009.

[15] C. Verdier and J. M. Mazo, “Formal controller synthesis via genetic
programming,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7205 – 7210,
2017, 20th IFAC World Congress.

[16] H. Ravanbakhsh and S. Sankaranarayanan, “Robust controller synthe-
sis of switched systems using counterexample guided framework,” in
Embedded Software (EMSOFT), 2016 International Conference on.
IEEE, 2016, pp. 1–10.

[17] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall,
2002.

[18] P. A. Whigham et al., “Grammatically-based genetic programming,”
in Proc. of the workshop on genetic programming: from theory to
real-world applications, 1995, pp. 33–41.

[19] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger, “Revised report on the algorithm
language algol 60,” Commun. ACM, vol. 6, no. 1, pp. 1–17, Jan. 1963.

[20] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear
theories over the reals,” in International Conference on Automated
Deduction. Springer, 2013, pp. 208–214.

[21] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation, vol. 9,
no. 2, pp. 159–195, 2001.

[22] R. Ros and N. Hansen, A Simple Modification in CMA-ES Achieving
Linear Time and Space Complexity. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 296–305.

[23] H. Ravanbakhsh and S. Sankaranarayanan, “Counterexample guided
synthesis of switched controllers for reach-while-stay properties,”
arXiv preprint arXiv:1505.01180, 2015.

4901

Authorized licensed use limited to: TU Delft Library. Downloaded on July 24,2020 at 06:24:16 UTC from IEEE Xplore. Restrictions apply.

