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Abstract— The indirect approach to continuous-time system
identification consists in estimating continuous-time models by
first determining an appropriate discrete-time model. For a
zero-order hold sampling mechanism, this approach usually
leads to a transfer function estimate with relative degree 1,
independent of the relative degree of the strictly proper real sys-
tem. In this paper, a refinement of these methods is developed.
Inspired by indirect PEM, we propose a method that enforces
a fixed relative degree in the continuous-time transfer function
estimate, and show that the resulting estimator is consistent
and asymptotically efficient. Extensive numerical simulations
are put forward to show the performance of this estimator
when contrasted with other indirect and direct methods for
continuous-time system identification.

Index Terms— System identification; Continuous-time sys-
tems; Parameter estimation; Sampled data.

I. INTRODUCTION

System identification deals with the problem of estimating
adequate models of dynamical systems from input-output
data. The methods developed over the years in this field have
seen applications in many areas of science and engineering,
and comprehensive literature has been written on the subject
[1]–[3].

When postulating a mathematical model for describing a
dynamical system based on sampled data, one must decide
between obtaining a discrete-time (DT), or a continuous-
time (CT) model. In a predominantly digital era, DT system
identification has been studied thoroughly (see, e.g., [1],
[2]). Nevertheless, interest in CT models still persists due
to its advantages over discrete-time. For example, grey-
box modelling [4], which is commonly based on physical
principles and conservation laws, is naturally suited for
continuous time, as the parameters can usually be better
interpreted in this domain. Also, CT models are known to
have more intuitive dynamics, and they do not depend on a
sampling period.

In CT system identification there are two main approaches,
namely the direct and indirect approaches. For direct CT
system identification, a CT model is obtained directly from
the sampled data. The main difficulty present in the direct
methods is the handling of derivatives, as they are not imme-
diately available from discrete data points without amplifying
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noise [5]. To effectively deal with this issue, many well
known methods have been proposed [6], with success in
real applications [7]. On the other hand, indirect methods
for CT modelling first determine a suitable DT model via
DT system identification methods like the Prediction Error
Methods (PEM) or Maximum Likelihood (ML) [2], and then
transform this model into a CT equivalent model. Evidence
has been shown regarding the advantages of direct over
indirect CT model identification [8], although with a precise
initialisation of PEM, the approaches seem comparable for
certain sampling periods [9].

Even though the indirect approach seems easy to imple-
ment, as there is much theory and literature concerning DT
system identification, there are reasons why this approach is
not always recommended. First, it may suffer from numerical
inaccuracies at fast sampling, and requires a precise initial-
isation. In addition, it is not possible to select the desired
numerator order of the CT model, as the estimated DT model
will generally lead to a CT model with relative degree 1 in
the case of sampling by a zero-order hold mechanism. Hence,
an unnecessarily complex model structure is indirectly being
estimated, which leads to a loss in accuracy according to the
parsimony principle [1].

In this paper, we introduce a method that optimally
imposes a desired relative degree in the indirect approach
to continuous-time system identification. Based on Indirect
PEM [10], we prove that the proposed estimator is a con-
sistent and asymptotically efficient estimator of the system’s
true parameter vector. Extensive numerical simulations show
that the new method imposes the correct relative degree,
while improving the statistical properties of the transfer
function estimate, and achieves a performance that com-
pares favourably against both standard direct and indirect
approaches.

The remainder of this paper is organised as follows. In
Section II the problem is formulated. Section III provides an
introduction to the indirect approach for CT system identifi-
cation. In Section IV we derive an estimator that optimally
enforces the desired relative degree for the indirect approach,
and determine its properties. Section V illustrates the method
with extensive numerical examples. Finally, conclusions are
drawn in Section VI.
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II. PROBLEM FORMULATION

Consider a linear time-invariant, causal, stable, single input
single output, CT system

y(t) = G0(ρ)u(t)

=
βn−rρ

n−r + βn−r−1ρ
n−r−1 + · · ·+ β1ρ+ β0

ρn + αn−1ρn−1 + · · ·+ α1ρ+ α0
u(t),

(1)

where ρ is the Heavyside operator, i.e., ρg(t) = dg(t)/dt,
and r is the relative degree of the system. In this paper, we
denote θ0c := [βn−r . . . β0 αn−1 . . . α0]> as the true CT
system parameter vector.

Suppose that the input-output signals are sampled with
period h and the resulting output is contaminated by an
additive zero-mean white noise sequence {e(kh)}k∈N of
variance σ2. That is,

ym(kh) = y(kh) + e(kh), k ∈ N. (2)

The goal of CT system identification is to obtain a
CT transfer function estimate for G0(ρ), given N discrete
input-output data measurements {u(kh), ym(kh)}Nk=1 and
knowledge about the physical characteristics of the system,
or the intersample behaviour. In this paper, we assume that
the input is a piecewise constant signal between samples (i.e.,
zero-order hold behaviour [11]).

For obtaining a model of G0(ρ), a simple way to proceed
is to identify the zero-order hold equivalent model given
the input and output data measurements by using standard
PEM in the DT domain, and then return to the CT domain
via zero-order hold equivalences. Although this procedure
has good statistical properties, it does not impose relative
degree constraints in the CT domain. Our goal is to optimally
impose this constraint, which should lead to a statistically
improved estimate of G(s).

III. THE INDIRECT APPROACH TO CONTINUOUS-TIME
SYSTEM IDENTIFICATION

One approach to identifying a CT system is to first
estimate the DT model given the input and output data
samples, and then translate this model into continuous time.
This is called the indirect approach, since it relies on DT
system identification theory instead of obtaining immediately
a CT model using CT system identification methods.

Much literature has been written regarding the first step
of the indirect approach [1], [2]. The theoretically optimal
solution is to apply the maximum likelihood method. This
method is known to give consistent and asymptotically
efficient estimates under very general conditions. Under the
assumption that the additive white noise is Gaussian, the
ML method is equivalent to PEM, which is one of the
most celebrated parametric methods, and is available in the
MATLAB System Identification Toolbox [12].

If a CT model for (1) is required, we should propose a
DT model structure of the form

H(z) =
bn−1z

n−1 + bn−2z
n−2 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
. (3)

If we define θd = [bn−1 . . . b0 an−1 . . . a0]> and denote ŷ
as the model’s output, then the ML estimate is

θ̂d = arg min
θd

1

σ2

N∑
k=1

‖ym(kh)− ŷ(kh, θd)‖2.

The next step is to transform this DT transfer function into
an adequate CT model. This can be done in several ways.
For example, the well-known Tustin transformation can be
applied on the DT transfer function estimate by letting

z =
sh+ 2

2− sh
,

as reported in [13]. If it is assumed that the CT input signal
is piecewise constant, the most natural mapping (used in e.g.
[9], [14]), is the zero-order hold sampling equivalence

H0(z) = (1− z−1)Z
{
L−1

{
G0(s)

s

} ∣∣∣∣
t=kh

}
, (4)

where Z and L denote the Z and Laplace transforms,
respectively. This mapping is known to be a troublesome
part of the indirect approach, as it can be ill conditioned and
its uniqueness depends on a correct choice of the sampling
period.

In both of these mappings, the resulting CT model can
have numerator parameters that exceed the desired numerator
orders. This is generally the case when the relative degree
of G0(s) is greater than 1. This problem contributes to poor
accuracy and high standard deviations at high frequencies.
One very simple way of treating this issue is setting to zero
the numerator coefficients which should be zero, but this is
not the best way of taking care of the information [9].

IV. OPTIMAL ENFORCEMENT OF RELATIVE DEGREE

In this section we develop an indirect-approach estimator
for the CT parameter vector θ0c that renders a CT transfer
function estimate Ĝ(s) of a desired relative degree r. For
this matter, we first focus on the PEM estimator of the zero-
order hold equivalent model of G0(s).

For simplicity, we assume that the correct model order
has been found. A model with structure (3) is obtained by
PEM, and the covariance matrix of θ̂d is also estimated. We
know that the CT zero-order hold equivalent of this estimated
model is in general given by

Ĝ(s) =
β̂n−1s

n−1 + β̂n−2s
n−2 + · · ·+ β̂1s+ β̂0

sn + α̂n−1sn−1 + · · ·+ α̂1s+ α̂0
.

Define θ̂c = [β̂n−1 . . . β̂0 α̂n−1 . . . α̂0]>, and denote by
θ0d the true DT parameter vector. The parameters in θ̂c are
related to θ̂d by the zero-order hold equivalence equations
that can be derived by using (4) and comparing coefficients.
This relation is a nonlinear mapping f : θ̂c → f(θ̂c) =
θ̂d, which is differentiable almost everywhere. Hence, the
following asymptotic relationship is valid for the covariance
matrices of θ̂d and θ̂c:

Σθ̂d = E{(θ̂d − θ0d)(θ̂d − θ0d)>}
≈ E{J(θ̂c − θ0c )(θ̂c − θ0c )>J>}
= JΣθ̂cJ

>, (5)



where J is the Jacobian matrix of f evaluated at the naive
estimation of θ0c , that is, throwing away the high order
coefficients of the numerator of Ĝ which should be zero1.

Now, we propose to find an appropriate projection of θ̂c
into a proper subspace of the parameter space that yields
the desired relative degree. This subspace is simply the one
formed by all vectors with first r − 1 elements set to zero.
Hence, we decide to study the following problem:

θ̃c = arg min
θ

1

2
(θ̂c − θ)>Σ−1

θ̂c
(θ̂c − θ) (6)

s.t.
[
Ir−1 0

]
θ = 0, (7)

where Ir−1 is the identity matrix of dimension r−1, 0 is the
null matrix of appropriate dimensions, and Σ−1

θ̂c
= J>Σ−1

θ̂d
J .

The optimisation problem in this context can be interpreted
as an application of the Indirect PEM [10].

By Lagrange multiplier theory, the optimization problem
in (6) is equivalent to calculating, for a suitable λ,

θ̃c = arg min
θ

1

2
(θ̂c − θ)>Σ−1

θ̂c
(θ̂c − θ) + λ>

[
Ir−1 0

]
θ.

Partitioning Σθ̂c appropriately (dropping the subindex for
simplicity), and differentiating with respect to θ we obtain

θ̃c = θ̂c −
[
Σ11 Σ12

Σ21 Σ22

] [
Ir−1

0

]
λ, (8)

Imposing (7) we obtain λ = Σ−111

[
Ir−1 0

]
θ̂c. If we denote

by C the Cholesky factorization matrix of Σθ̂c [15] (i.e., a
lower triangular matrix with positive diagonal entries such
that Σθ̂c = CC>) we can write (8) as

θ̃c = θ̂c − Σ

[
Ir−1

0

]
Σ−111

[
Ir−1 0

]
θ̂c

= θ̂c −
[
C11 0
C21 C22

] [
Ir−1

0

]
C−111

[
Ir−1 0

]
θ̂c

= C

[
0r−1 0>

0 I2n−r+1

]
C−1θ̂c. (9)

That is, the estimator (9) can be seen as an L2 best approxi-
mation to the PEM CT estimate θ̂c that imposes the desired
relative degree.

A. Properties

We briefly present the most important properties of esti-
mator (9) in the following theorems.

Theorem 4.1: Consider the system described by (1) and
(2), where {e(kh)}Nk=1 is a Gaussian white noise sequence.
Assume that the sampling frequency 2π/h is larger than
twice the largest imaginary part of the s-domain poles and
there is no delay in the real system2. Then, the estimator (9)
is a consistent and asymptotically efficient estimator of the
real vector parameter θ0c , provided the DT model set (with
the chosen relative degree) contains the real system.

1Note that the standard PEM estimate could have also been used for this
matter, and the asymptotic relation still holds.

2These conditions can be relaxed, as long as the sampling frequency is
such that the z → s transformation is well defined.

Proof: Under the Gaussian noise assumption, the DT
PEM estimate can be interpreted as the ML estimate. Under
the proposed sampling frequency, the z → s transformation
is unique for sufficiently large N [16]. Hence, by the
invariance principle of ML estimators [17], the CT equivalent
of the system’s parameters is also an ML estimate.

To prove the theorem, we only require that the assumptions
in [10] are satisfied in this scenario, and then directly apply
the results obtained in the cited contribution. First, note that
the model structure given by this procedure contains the
models with the desired relative degree (and the contention
is proper if r > 1), with a linear mapping between parameter
vectors given by the matrix

T :=
[
0r−1 I2n−r+1

]
.

Furthermore, provided that the DT model set contains the
real system, both structures give parameter identifiability.
Also note that Σθ̂c , obtained via (5), is a consistent es-
timate of the covariance matrix of θ̂c. Hence, the results
in [10] follow. Namely, the normalized estimation errors3
√
N(θ̂c − θ0c )/σ and

√
N(θ̃c − θ0c )/σ are asymptotically

normally distributed with zero means and their asymptotic
covariance matrices satisfy the relation

[AsCov(θ̃c − θ0c )]−1 = T [AsCov(θ̂c − θ0c )]−1T>. (10)

Moreover, following the steps in [10, Section 3], the im-
proved PEM estimate is

√
N−consistent and has the same

asymptotic distribution as θ̂c, thereby proving its asymptotic
efficiency.

Remark 4.1: Note that by (9) and (10), the asymptotic
covariances can be shown to satisfy the following properties:

• AsCov(θ̃c − θ0c , θ̂c − θ̃c) = 0,

• AsCov(θ̃c − θ0c ) = AsCov(θ̂c − θ0c )− AsCov(θ̂c − θ̃c).

Both of these claims follow by applying properties 10.5 and
10.6 from [18, Chapter 10] to this context. These properties
imply that for sufficiently large N , the proposed estimator
can only decrease the covariance of the estimated parameters
compared to standard PEM. The asymptotic covariances sat-
isfy a Pythagorean relation, as the PEM estimate is projected
orthogonally on to the proper subspace where θ0c lies.

Next, we establish that imposing a larger relative degree
improves the accuracy of the estimates, provided that the
highest relative degree model structure contains the real
system.

Theorem 4.2: Given a plant G0(s) of order n and relative
degree r > 1, consider CT candidate models of relative
degree r1 and r2 and their improved PEM parameter vector
estimates θ̃r1c and θ̃r2c respectively. If r1 < r2 ≤ r, then
their asymptotic covariance matrices satisfy AsCov(θ̃r2c ) �
AsCov(θ̃r1c ).

Proof: The proof follows by applying [19, Theorem 2].
Details are omitted due to length restrictions.

3For simplicity, we assume that the vector θ0c has the appropriate
dimension, where zeros have been considered in the first terms if necessary.



Remark 4.2: The relative degree of the CT system is
not always known. In some practical applications, physical
knowledge about the system can give intuition. In addition,
statistical measures can be used such as the coefficient of
determination [7], or the Young Information Criterion [20].

V. MONTE CARLO SIMULATION STUDIES

We will now study the performance of the proposed
estimator under a series of experiments.

The system considered is the Rao-Garnier system [8],
which is a linear fourth-order non-minimum phase system
with complex poles that has been tested in many publications
(see e.g. [7], [21], [22]) of CT system identification:

G(s) =
−6400s+ 1600

s4 + 5s3 + 408s2 + 416s+ 1600
.

This system is interesting since it has two damped oscillatory
modes at 2 and 20 rad/sec with damping of 0.1 and 0.25
respectively, and has a non-minimum phase zero at s = 0.25.
It is known that this is a particularly difficult system to
estimate by PEM/ML, since these methods may converge
to a local minimum if they are not well initialised [21].

Three methods have been compared: PEM, PEM with
relative degree enforcement (labeled PEMrd (9)), and the
simplified refined IV method for continuous-time systems
(SRIVC), which is one of the most successful direct methods
available, and has been suggested for general use in one
of the most recent surveys on CT system identification [7].
Each method has been tested in M different Monte Carlo
simulations, and they have been evaluated according to the
average normalized square error of the system estimate

MSE Ĝ =
1

M

M∑
i=1

‖Ĝi −G0‖22
‖G0‖22

,

the average normalized square error of the parameter vectors

MSE θ̂ =
1

M

M∑
i=1

‖θ̂ic − θ0c‖22
‖θ0c‖22

,

and the fit measure

Fit =
100

M

M∑
i=1

[
1− ‖ŷ

i − y‖2
‖y − ȳ‖2

]
,

where y is the noise-free output sequence (the simulated data
without the additive measurement noise), ŷi is the simulated
output sequence of the i-th estimated model, and ȳ is the
average value of {y(kh)}Nk=1.

We have run PEM using the standard MATLAB System
Identification Toolbox [12] with the oe command, and
assumed that the correct order of the system is known. The
search algorithm has been initialised with the estimate given
by the Null Space Fitting method4 [23]. We based PEMrd
on the PEM estimate previously obtained. The required
Jacobian matrix has been numerically calculated via finite

4PEM initialised with the estimate from SRIVC (as in [9]) has also been
tested with similar results.

differences, and the correct relative degree has been imposed
for this estimator. We have used the command d2c of
MATLAB in both cases. SRIVC has been implemented with
the CONTSID toolbox for MATLAB [6, Chapter 9] with
default initialisation, and has been set to estimate the model

Ĝ(s) =
β1s+ β0

s4 + α3s3 + α2s2 + α1s+ α0
.

A. Effect of the number of data points and sampling rate
In this study, we have designed the input as a pseudoran-

dom binary sequence (PRBS) of amplitude switches between
0 and 2. For the first input sequence, the number of stages
of the shift register is n = 10 and the data length of the
shortest interval is p = 7. Hence, a sequence of N = 7161
data points has been obtained. The noise is a zero-mean
white Gaussian noise signal, where the variance has been
set such that the signal-to-noise ratio (SNR in dB) between
the noiseless output sequence and the noise equals 10 dB.

Three Monte Carlo studies have been performed with
M = 500 simulations of different noise realisations each
one, for h = 0.01, 0.05, 0.1. The results are shown in Table
I.

TABLE I
MONTE CARLO SIMULATION RESULTS FOR PRBS INPUT OF TOTAL

LENGTH N = 7161.

h Method MSE Ĝ MSE θ̂ Fit

0.01
PEM 1.113 · 10−4 6.757 · 10−5 98.9742

PEMrd 0.732 · 10−4 4.283 · 10−5 99.1219
SRIVC 0.733 · 10−4 4.292 · 10−5 99.1217

0.05
PEM 1.996 · 10−3 5.423 · 10−4 98.9645

PEMrd 1.406 · 10−3 3.933 · 10−4 99.1141
SRIVC 1.397 · 10−3 3.925 · 10−4 99.1146

0.1
PEM 3.275 · 10−3 7.937 · 10−4 98.9436

PEMrd 1.914 · 10−3 4.797 · 10−4 99.0884
SRIVC 1.922 · 10−3 4.749 · 10−4 99.0870

In order to analyse the performance of each estimator
under less data, we have set the number of stages to n = 9
and the data length of the shortest interval to p = 3, resulting
in a input of N = 1533 data points. With the same SNR as
the test above, the results for 500 Monte Carlo simulations
for each sampling period can be found in Table II.

TABLE II
MONTE CARLO SIMULATION RESULTS FOR PRBS INPUT OF TOTAL

LENGTH N = 1533.

h Method MSE Ĝ MSE θ̂ Fit

0.01
PEM 5.882 · 10−4 3.651 · 10−4 97.7791

PEMrd 4.025 · 10−4 2.057 · 10−4 98.0705
SRIVC 4.017 · 10−4 2.060 · 10−4 98.0719

0.05
PEM 7.431 · 10−4 4.539 · 10−4 97.7892

PEMrd 4.316 · 10−4 2.788 · 10−4 98.1172
SRIVC 4.319 · 10−4 2.789 · 10−4 98.1167

0.1
PEM 1.959 · 10−2 2.915 · 10−3 97.7416

PEMrd 1.077 · 10−2 2.184 · 10−3 98.0339
SRIVC 9.992 · 10−3 3.877 · 10−3 97.9754

Both Tables I and II show that the refined PEM estimator
statistically improves the estimates given by PEM, and is



a very competitive method against SRIVC, even for high
frequency sampling. Note that under less data points, PEMrd
still outperforms PEM for every sampling period, which
indicates that the asymptotic properties studied in Section
IV can be observed in practical finite data cases as well.

Remark 5.1: In Tables I and II we have discarded cases
where PEM has delivered estimates with one pole in the neg-
ative real axis. Fortunately this scenario is very uncommon
(9 cases seen in 3000 simulations). A similar phenomenon
was observed in Table II for h = 0.1 in SRIVC, where 2
estimates gave negative fit values. These simulations were
not considered either.

B. Multisine input

A different input signal has also been tested. We have
taken 2000 data measurements of a multisine input given
by the sum of sine waves of angular frequencies ω =
0.5, 1, 5, 8, 10, 12, 15, 20, 25, 30. The standard deviation of
the additive noise has been set to 0.1, and the median of
500 Monte Carlo simulations of the normalized model error,
normalized parameter error, and fit have been obtained. The
results are shown in Table III.

TABLE III
MONTE CARLO SIMULATION RESULTS FOR MULTISINE WAVE INPUT OF

TOTAL LENGTH N = 2000.

h Method ‖Ĝ−G0‖2
‖G0‖2

‖θ̂−θ0‖2
‖θ0‖2

Fit

0.01
PEM 8.799 · 10−5 7.269 · 10−5 99.4319

PEMrd 1.352 · 10−5 4.435 · 10−6 99.8173
SRIVC 1.439 · 10−1 6.205 · 10−2 80.8446

0.02
PEM 1.422 · 10−4 8.368 · 10−5 99.2684

PEMrd 2.294 · 10−5 1.013 · 10−5 99.7325
SRIVC 2.141 · 10−2 4.599 · 10−3 94.3144

For this input and sampling method, SRIVC performs
poorly, while PEM and PEMrd normally reach the global op-
timum. Even though the fit is very near the optimal, PEMrd
is consistently better than standard PEM at all metrics.

C. Mean and covariance of the estimated parameters

As established in Theorem 4.1, the improved PEM esti-
mate should reduce (at least asymptotically) the covariance of
the parameter vector. To test this, we have obtained the mean
and standard deviation of each parameter given by the Monte
Carlo study under the setup of Section V-A with h = 0.05
and N = 7161. The results are shown in Table IV. It can
be observed that the mean values are similar in all methods
(except standard PEM, which does not estimate the correct
model structure), and PEMrd provides the lowest standard
deviation for every parameter.

D. Direct comparison with standard PEM

In this subsection we analyse the improvements of the
novel method over the standard PEM estimates.

To show the impact of selecting and enforcing the correct
relative degree, we have focused on the Bode Diagrams of the
resulting models for PEM and PEMrd. In Figure 1 we have
plotted the frequency response estimates of 100 Monte Carlo

simulations under the setup in Section V-A, for h = 0.05,
N = 7161.

It is clear by Fig. 1 that the improvement over PEM is
mainly at high frequencies. This is intuitive, since the relative
degree determines the asymptotic slope of the Bode diagram
of magnitude. The proposed method enforces the true asymp-
totic slope, leading to an important gain in accuracy in both
magnitude and phase.
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Fig. 1. Bode Diagram of 100 estimates by PEM (green), 100 estimates by
PEMrd (blue), and the real system (red).

Also, direct comparison plots between PEM and PEMrd
are shown in Figure 2. These plots compare the normalized
model and parameter error, and the fit of PEM and PEMrd
for each Monte Carlo experiment (500 in total). PEMrd
outperforms standard PEM in most Monte Carlo simulations,
specially in the fit comparison, where 496 out of 500 exper-
iments have lead to an increase in fit under PEM refinement.

E. Random systems

To obtain the average performance of each estimator, we
have tested them on a data set created with 500 random
systems of order 3 and relative degree 2, by using the rss
command in MATLAB. The slowest pole has been set to
have real part less than -0.1. The input was a unit variance
Gaussian white noise, and the additive white noise was also
Gaussian, of standard deviation equal to 5% of the maximum
value of the noiseless output. The sampling period has been
chosen as 10 times faster than the fastest pole or zero of the
real system.

We have computed the median of the metrics used above,
as in Section V-B, for the 500 random systems. We also have
counted failures of the estimators, which are the cases when
the estimates produced a negative fit, when the algorithm
crashed, or when it was not possible to correctly initialise
the PEM estimate having tried reducing by a factor of 2 the
sampling rate for initialisation estimation.

The results can be seen in Table V. Although all estimators
report failures, the PEMrd again shows promising results in



TABLE IV
ESTIMATED PARAMETER VALUE MEANS AND STANDARD DEVIATIONS FOR EACH METHOD, CONSIDERING h = 0.05.

Method Parameter
True value

b1
0

b2
0

b3
-6400

b4
1600

a1
5

a2
408

a3
416

a4
1600

PEM Mean
Std. Dev

-0.044
0.963

0.301
11.414

-6403.01
147.13

1601.33
47.85

5.006
0.399

408.16
7.98

416.25
9.27

1600.49
33.29

PEMrd Mean
Std. Dev.

0
0

0
0

-6397.25
122.39

1599.79
42.39

4.994
0.315

407.88
7.11

415.84
8.33

1599.27
28.59

SRIVC Mean
Std. Dev.

0
0

0
0

-6399.19
132.05

1600.49
44.21

5.014
0.338

407.99
7.75

416.61
8.98

1599.71
31.1
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Fig. 2. Direct comparison plots between PEM and PEMrd for 500 Monte
Carlo simulations. The green dots correspond to Monte Carlo simulations
where PEMrd outperforms PEM. Red dots represent the opposite, and the
dashed blue line is the separatrix.

TABLE V
MONTE CARLO SIMULATION RESULTS FOR RANDOM SYSTEMS.

Method ‖Ĝ−G0‖2
‖G0‖2

‖θ̂−θ0‖2
‖θ0‖2

Fit N◦ Failures

PEM 1.449 · 10−4 3.328 · 10−3 98.871 12
PEMrd 1.046 · 10−4 1.872 · 10−3 98.997 16
SRIVC 1.111 · 10−4 2.126 · 10−3 98.9723 30

all metrics. As pointed out in [9] and seen in these tests,
initialisation aspects are in fact a major issue concerning the
reliability of these algorithms.

VI. CONCLUSIONS

We have proposed a refinement to the standard PEM esti-
mator for indirect continuous-time system identification that
achieves an asymptotically optimal desired relative degree
enforcement. An explicit expression for this estimator has
been found, and its statistical properties have been analysed.
Extensive simulations using both standard benchmarks and

random systems have been put forward with promising
results. These have shown that the refinement to standard
PEM leads to an important improvement in all the statistical
metrics studied, and its performance is comparable, if not
better, to SRIVC for all sampling periods in this study
provided PEM is initialised correctly.
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[10] T. Söderström, P. Stoica, B. Friedlander, An Indirect Prediction Error
Method for System Identification, Automatica 27 (1) (1991) 183–188.
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