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Abstract

A HYBRID PID DESIGN FOR ASYMPTOTIC STABILIZATION WITH

INTERMITTENT MEASUREMENTS

by

Daniel T. Lavell

In this paper, we consider the case when implementing a proportional-integral-

derivative (PID) controller in the presence of non-periodic and intermittent sensor

measurements. Current PID control design methods cannot accurately handle

the case when the measurements arrive at isolated and potentially non-periodic

time instants. We model the continuous-time plant being control, the impulsive

measurement updates and the PID control law adapted to handle the measure-

ment structure using a hybrid systems framework. By way of Lyapunov stability

analysis for hybrid systems, we given sufficient conditions and a computationally

tractable design method for the PID controller. We conclude by illustrating the

results through numerical examples.
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Chapter 1

Introduction

1.1 Background

Proportional-integral-derivative controllers are incredibly popular in engineer-

ing applications, see [1, 6, 7]. For continuous-time systems, a PID controller is

given by

u(t) = KP e(t) +KI

∫ t

0
e(s)ds+KDė(t), (1.1)

where t ≥ 0, u is the input to the system being controlled, e is the error between

the state and the reference to be tracked, and KP , KI , and KD are the propor-

tional, integral and derivative parameters (or gains) to be designed, respectively.

Several design techniques are available to determine the three parameters in the

PID controller to meet design specifications such as rise time, settling time, and

overshoot [20, 6]. However, classical designs require continuous (or very fast and

periodic) measurements of the output, which may not be practical for all applica-

tions, [6, 7]. Namely, when the measurements are available only at non periodic,

intermittent, and isolated time instances novel methods for the design of the con-
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trol law in (1.1) are needed, and unavoidably, demand the use of hybrid systems

tools.

Some design techniques for PID controllers that could have potential for the

settling of intermittent, non periodic sampling are available in the literature. It

should be noted that techniques that assume a periodic sample rate, see, e.g. [6, 7]

are not suitable for the settling of intermittence. In fact, the choice of a constant

sampling rate precludes handling non periodic measurements. A multi-rate PID

control law is considered in [16] through discretizing the continuous-time dynam-

ics and considering a delayed sensor to input signal dependent on the sample

rate. It should be pointed out that first-order reset elements have shown to be

advantageous towards the performance of the controller [18]. On the other hand,

with the popularization of systems that contain both continuous and discrete dy-

namics (known as hybrid systems), there are several novel approaches with the

potential for the design of PID controllers under intermittence. In [12], the au-

thors consider a continuous-time system and design an event-triggered control

law using a Lyapunov-based analysis. In [11], the authors utilize an impulsive

systems approach to design a static feedback controller for a continuous-time lin-

ear time-invariant system and uses an estimate event-based trigger to update the

controller. Studies of hybrid controllers with sporadic measurements have been

studied in [5, 13]; however they lack the application to hybrid PID controllers

specifically, which is the goal of this paper.

1.2 Contributions

In our work, we consider the case when the plant is a linear time-invariant

system, but the output is only measured at, potentially non periodic, isolated time

instances. Namely, subsequent measurements can occur any time within a known
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bounded window of ordinary time. To cope with this setting, we introduce a hybrid

PID control law akin to the continuous-time one in (1.1), that allows for continuous

evolution of the state as well as impulsive measurements and control updates. Due

to the continuous-time and impulsive dynamics of the closed-loop systems (see

Figure 3.1), we utilize the hybrid systems framework in [8] to model the coupling

of these systems. Using Lyapunov-based results for uniform global asymptotic

stability of compact sets, we provide sufficient conditions on the parameters of

the hybrid PID controller to guarantee such stability property. Then, using a

polytopic embedding approach we give a tractable computation method for design

of the PID parameters. Numerical simulations illustrate the results. Specifically

this thesis provides the following contributions:

1. A presentation of a hybrid PID model with intermittent sensor measure-

ments

2. Design techniques for the hybrid PID feedback gains

3. Numerical examples exemplifying the design techniques

4. Analysis of alternative methods for integral and derivative terms

5. Analysis of alternative forms of hybridity in the closed-loop system

1.3 Thesis Outline

The paper is organized as follows. Chapter 2 provides notations and prelimi-

naries on hybrid systems as used throughout this paper. Chapter 3 presents the

system under consideration and provides a motivational example. Chapter 4 mod-

els the closed-loop system as a hybrid system and gives examples for proportional

only, proportional-integral and proportion-derivative control laws. Chapter 5 gives
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the main results and design methods. Chapter 6 illustrates the main results and

design through numerical examples.
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Chapter 2

Notation and Preliminaries on

Hybrid Systems

2.1 Notation

For a symmetric n×n matrix P , P is positive definite if all eigenvalues of P are

real and positive. We will denote P being positive definite as P > 0. Similarly, a

matrix P that is negative definite is denoted by P < 0. Given x ∈ Rn and y ∈ Rm,

the pair (x, y) is equivalent to [x>, y>]>. The distance from a vector x ∈ Rn to

a closed set A ⊂ Rn is denoted as |x|A. A function α : R≥0 → R≥0 is a class-K

function, also written α ∈ K, if α is zero at zero, continuous, strictly increasing;

it is said to belong to class-K∞, also written α ∈ K∞, if α ∈ K and is unbounded;

α is positive definite, also written α ∈ PD, if α(s) > 0 for all s > 0 and α(0) = 0.

A function β : R≥0 × R≥0 → R≥0 is a class-KL function, also written β ∈ KL,

if it is nondecreasing in its first argument, nonincreasing in its second argument,

limr→0+ β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

Given a function f : Rn → Rm, the domain of f is denoted by dom f . Given a set
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X, coX represents the convex hull of X.

2.2 Preliminaries on Hybrid Systems

This section introduces the main notions and definitions on hybrid systems

used throughout this work. More information on such systems can be found in

[8]. A hybrid system H can be represented in the compact form

H :


ẋ = f(x) x ∈ C,

x+ ∈ G(x) x ∈ D,
(2.1)

where x ∈ Rn is the state and the data of the hybrid system, denoted (C, f,D,G),

is defined as follows:

• f : Rn → Rn is a single-valued map defining the flow map capturing the

continuous dynamics;

• C ⊂ Rn defines the flow set on which f is effective;

• G : Rn ⇒ Rn is a set-valued map defining the jump map and models the

discrete behavior;

• D ⊂ Rn defines the jump set, which is the set of points from where jumps

are allowed.

Solutions φ to H are parameterized by (t, j), where t ∈ R≥0 := [0,∞) counts

ordinary time and j ∈ N := {0, 1, 2, . . . } counts the number of jumps. The domain

dom φ ⊂ R≥0 × N is a hybrid time domain if for every (T, J) ∈ dom φ, the set

dom φ∩ ([0, T ]×{0, 1, . . . , J}) can be written as the union of sets ∪Jj=0(Ij ×{j}),

where Ij := [tj, tj+1] for a time sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj’s

with j > 0 define the time instants when the state of the hybrid system jumps
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and j counts the number of jumps. A solution to H is called maximal if it cannot

be extended, i.e., it is not a truncated version of another solution. It is called

complete if its domain is unbounded. A solution is Zeno if it is complete and its

domain is bounded in the t direction. A solution is precompact if it is complete

and bounded.

A hybrid system H with data in (2.1) is said to satisfy the hybrid basic condi-

tions if the sets C and D are closed, the function f : Rn → Rn is continuous, and

the set-valued mapping G : Rn ⇒ Rn is outer semicontinuous1, locally bounded

relative to D and D ⊂ domG. More information can be found in [8].

Definition 2.2.1. (uniform global asymptotic stability) Let a hybrid system H be

defined on Rn and A ⊂ Rn be closed. The set A is said to be

• uniformly globally stable (UGS) for H if there exists α ∈ K∞ such that any

solution φ to H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ dom φ;

• uniformly globally attractive (UGA) for H if for each ε > 0 and r > 0 there

exists T > 0 such that, every maximal solution φ to H is complete and if

|φ(0, 0)|A ≤ r, (t, j) ∈ dom φ and t+ j ≥ T then |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H if it is both UGS and

UGA.

Sufficient conditions for UGAS of a set A can be found utilizing a Lyapunov

function candidate for hybrid systems defined as follows.

Definition 2.2.2. A function V : dom V → R is said to be a Lyapunov function

candidate for the hybrid system H in (2.1) if the following conditions hold:

• C ∪D ∪G(D) ⊂ dom V ;
1A set-valued mapping is outer semicontinuous if its graph G is closed, where the graph of

G is defined as {(x, y) : y ∈ G(x)}.
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• V is continuously differentiable on an open set containing C;

where C denotes the closure of C.

Theorem 2.2.3. Let H be a hybrid system and let A ⊂ Rn be closed. Suppose

that V is a Lyapunov function candidate for H and there exist α1, α2 ∈ K∞, and

a continuous ρ ∈ PD

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D) (2.2a)

〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ C (2.2b)

V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(x) (2.2c)

If, for each r > 0, there exists γr ∈ K∞, Nr ≥ 0 such that for every solution φ to

H, |φ(0, 0)|A ∈ (0, r], (t, j) ∈ domφ, t + j ≥ T imply j ≥ γr(T ) − Nr, then A is

uniformly globally pre-asymptotically stable.
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Chapter 3

Motivational Example

Consider a continuous linear time-invariant system with state z ∈ Rn and

input u ∈ Rm given by

ż = Az +Bu (3.1)

where A and B are matrices of appropriate dimension. We consider the case when

the output of the plant

y = Hz ∈ Rp

is available for the purposes of control at isolated time instances. More precisely,

the output y is available to the controller when t ∈ {ts}∞s=1, where the sequence

of times {ts}∞s=1 satisfies

T1 ≤ ts+1 − ts ≤ T2 ∀s ∈ N \ {0}

t1 ≤ T2

(3.2)

with T1 and T2 such that 0 < T1 ≤ T2. The parameter T1 denotes the minimum

time for samples while T2 denotes the maximum time in between samples, which is

known in the literature as the maximum allowable transfer interval (MATI); see,
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P

I

D

ż = Az +Bu

y = Hz

yuer

ZOH

{ts}∞s=1

Figure 3.1: Given matrices A and B of appropriate dimension describing the
plant dynamics with state z and output y, a control signal u is generated as a sum
of the proportional −KP e, integral −KI

∫ t
0 e(s)ds, and derivative −KDė feedback

terms. The samples of the output of the plant and the update of the control
signals occur at discrete times given by the sequence {ts}∞s=1.

e.g., [2]. Figure 3.1 depicts a feedback closed-loop system using a PID controller

where the output is available at times given by the sequence of points {ts}∞s=1 as

indicated by the switch. Note that the closed-loop system includes a reference

signal r to be tracked.

To illustrate the effect of the measurements of the output not being available

continuously, consider a mass-spring system under the effect of viscous friction

with unitary friction coefficient where only position can be measured. Therefore,

the state z = (z1, z2) ∈ R × R is given by the position z1 and velocity z2 of the

mass, respectively. Namely, the system in (3.1) has matrices

A =

 0 1

−1 0

 , B =

0

1

 , H =
[
1 0

]
(3.3)

Suppose the goal is to design a PID controller such that the rise time trise ≤ 0.2

seconds, the settling time tsettling ≤ 2 seconds, and the overshoot Mp ≤ 15%.

When the output y is available continuously, the gains KP = 250, KI = 350,

and KD = 30 generate a closed-loop system satisfying the given specifications.
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Figure 3.2: Trajectories of a mass-spring system tracking a reference signal r = 1
(red). The black trajectory was generated when the closed-loop system had contin-
uous sensor measurements. The remaining trajectories illustrate the degradation
of the closed-loop system when sensor measurements arrive sporadically.
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The solution in black in Figure 3.2 shows the response of the system with such

feedback. However, when using the same feedback gains in the PID controller

when the output is measured intermittently at times satisfying (3.2) leads to a

degradation of performance of the closed-loop system. In between measurements

of the output, the control signal is held constant1. Figure 3.2 shows the solutions

to the system for the above PID gains with a sample and hold feedback scheme

for increasing values of T1 and T2. Note that, even for small parameters T1 = 0.06

seconds and T2 = 0.07 seconds (shown in magenta in Figure 3.2), the overshoot

increases by 50% compared to the continuous feedback case, and the settling time

is well beyond specifications as oscillations are still present beyond 3 seconds. If

T1 and T2 are large enough, then there is no guarantee the solutions will converge

at all.

One example of this architecture being used in practice can be seen directly in

the Hybrid Systems Lab where experiments are done using a motion capture sys-

tem to obtain output measurements. In such a system communication protocols

for the motion capture system impose values on T1 and T2.

1Details about integral and derivative action implementations between output measurements
is explained in Chapter 4 and then further explored in Chapter 7.
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Chapter 4

Hybrid Modeling

In this section, we present a modeling approach of the PID controller in (1.1)

where the measurements occur at times given by (3.2). Due to the continuous

dynamics of the plant in (3.1), the intermittent sensor measurements communi-

cating at times given by (3.2), and the control law in (1.1) (yet to be designed),

the system naturally has both continuous and discrete behaviors. Therefore, we

model the closed-loop systems using the hybrid systems framework presented in

[8]. In this paper, for simplicity, we will consider the case when the reference

signal is zero, but the results and ideas can be extended to the case when the

reference is generated by an exosystem; e.g., as in [15].

The output of the plant is measured at impulsive times satisfying (3.2). To

generate all possible such sequences, we define a timer state, denoted by τ ∈ [0, T2],

which decreases continuously in ordinary time and, when it reaches zero, it jumps

impulsively to a point in the interval [T1, T2]. The timer can be modeled as an

autonomous hybrid inclusion given by


τ̇ = −1 τ ∈ [0, T2]

τ+ ∈ [T1, T2] τ = 0
(4.1)
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Such a timer defines a hybrid system where the jump times tj, for all j such that

(tj, j) is in the domain of solutions of the timer system, satisfy (3.2); for more

details on the use of such timers, [5, 13].

Next, we introduce each component of the PID controller which will be as-

signed to the input u in (3.1). Namely, the PID controller has three components:

the proportional component, vP ; the integral component, vI ; and derivative com-

ponent, vD. Then, with a slight abuse of notation, we denote the output of the

controller by the state u, which evolves according to zero-order hold dynamics.

Namely, during the intervals of time between successive measurement updates, u

is held constant, and, when the controller receives a new measurement, we update

it with the components of the controller. Namely, the controller is given by the

following dynamics:


u̇ = 0 τ ∈ [0, T2]

u+= vP + vI + vD τ = 0
(4.2)

where vP , vI , and vD will be defined explicitly below.

Following the construction in (1.1), the contribution of the proportional com-

ponent vP of the PID is proportional to the measurement received. It follows that,

at jumps, the component vP is given by vP = −KPy = −KPHz.

In classical state-space control design, an integral controller requires the intro-

duction of an auxiliary state which ‘memorizes’ the evolution of the error between

the state and reference [6, 7]. More specifically, in the continuous-time case, the

integral component in (1.1) is the integral of the error over time. For the case of

intermittent measurements, we introduce two states: a memory state ms and an

integral state zI . We use zI ∈ Rp as the state storing an approximation of the

running total integral. The memory statems ∈ Rp is used to store the most recent
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measurement of the output. The memory state is updated when a new output

measurement is available, which is when the timer τ is equal to zero. Between

sensor measurements, the integral state zI evolves according to żI = ms while the

memory state ms remains constant. The integral control law is then implemented

as

vI = −KIzI (4.3)

To implement the derivative action vD, first, consider the case when only the

derivative term in (1.1) is present. This leads to

vD = −KDẏ

= −KDH(Az +BvD)

⇒ vD = −(I +KDHB)−1KDHAz

(4.4)

where we assume that I +KDHB is invertible. With this expression, the propor-

tional and integral actions can be incorporated too. It follows that

vD = −(I +KDHB)−1KDH(Az −BKPHz −BKIzI) (4.5)

To write the resulting hybrid closed-loop system combining the three control

actions, we define the state of the hybrid system H as x = (x1, x2), where x1 =

(z, zI , u,ms) and x2 = τ . The resulting closed-loop system with plant as in (3.1),

PID controller output in (4.2), and timer in (4.1) has data (C, f,D,G) given by

f(x) :=

Afx1

−1

 ∀x∈C :=Rn×Rp×Rm× Rp×[0, T2]

G(x) :=

 Agx1

[T1, T2]

 ∀x∈D :=Rn×Rp×Rm×Rp×{0} .

(4.6)
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The matrices Af and Ag are given by

Af =



A 0 B 0

0 0 0 1

0 0 0 0

0 0 0 0


, Ag =



I 0 0 0

0 I 0 0

−K̃P − K̃D −K̃I 0 0

H 0 0 0


(4.7)

where
K̃P = KPH − (I +KDHB)−1KDHBKPH

K̃I = KI − (I +KDHB)−1KDHBKI

K̃D = (I +KDHB)−1KDHA

(4.8)

Note that the definitions of K̃P , K̃I , and K̃D depend on (KP , KD), (KI , KD), and

KD respectively1. We will treat K̃P , K̃I , and K̃D as our design parameters.

Given the hybrid closed-loop system in (4.6), and parameters 0 < T1 ≤ T2,

our goal is to design the parameters of the PID controller such that the compact

set
A = {(z, zI , u,ms, τ) ∈ Rn+p+m+p × [0, T2] :

z = zI = u = ms = 0, τ ∈ [0, T2]}
(4.9)

is uniformly globally asymptotically stable. Next, we showcase three special cases

of the PID controller which simplify it and find wide application.

4.1 Proportional Control Case

In the case when the control law only contains the proportional component,

the states zI and ms in (4.6) can be removed since there is no need to approximate

integration. The state x = (x1, x2) of the closed-loop system is x1 = (z, u) and
1For the scalar case, the expressions for K̃P and K̃I are so that KP and KI can be chosen

to yield desired values of K̃P and K̃I , even though KD plays a role in their definition.
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x2 = τ . The flow map, flow set, jump map, and jump set are still given as in (4.6)

but with obvious changes on dimensions.

The matrices in (4.7) reduce to

Af =

A B

0 0

 , Ag =

 I 0

−K̃P 0

 (4.10)

with K̃P = KPH. In this case, the desired set to stabilize is

A =
{

(z, u, τ) ∈ Rn+m+1 : z = u = 0, τ ∈ [0, T2]
}

(4.11)

4.2 Proportional-Integral Control Case

The model in (4.6) for only proportional-integral (PI) control still requires

the memory states ms and zI used to approximate integration between sampling

events. The state x = (x1, x2) of the closed-loop system has x1 = (z, zI , u,ms)

and x2 = τ . Definitions of Af and Ag follow directly from (4.7) with the derivative

gain KD = 0, resulting in

Af =



A 0 B 0

0 0 0 1

0 0 0 0

0 0 0 0


, Ag =



I 0 0 0

0 I 0 0

−K̃P −K̃I 0 0

H 0 0 0


(4.12)

with K̃P = KPH and K̃I = KI .

The flow map, flow set, jump map, and jump set are still given as in (4.6) and

the set to stabilize remains as in (4.9).
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4.3 Proportional-Derivative Control Case

In the case of proportional-derivative (PD) only control, the state x = (x1, x2)

of the model (4.6) simplifies to x1 = (z, u) and x2 = τ , as the integration states

zI and ms are no longer needed. The matrices Af and Ag reduce to

Af =

A B

0 0

 , Ag =

 I 0

−K̃P − K̃D 0

 (4.13)

where the gains K̃P and K̃D are defined in (4.8), while the definitions of the data

of (4.6) remain the same, modulo changes of dimensions. The set to stabilize is

given in (4.11).

In the next section, we provide tools for the design of the gains in (4.8).
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Chapter 5

Results

5.1 Stability Results

The following result gives sufficient conditions for uniform global asymptotic

stability of the set A in (4.9) for the hybrid system in (4.6) in terms of matrix

inequalities. The result hold for matrices Af and Ag in (4.7) but also apply to the

special cases in Chapters 4.A, 4.B, and 4.C after obvious changes in dimensions.

Recall that uniform global asymptotic stability is defined in Definition 2.2.1.

Following [5], we establish UGAS of A using a Lyapunov based analysis.

Namely, we consider the following Lyapunov function candidate:

V (x) = W (exp(Afτ)x1) (5.1)

where W (s) = s>Ps, and P is a symmetric positive definite matrix. Note that

(5.1) is a Lyapunov function candidate according to Definition 2.2.2, namely, that

V is continuously differentiable everywhere and the set C∪D∪G(D) is contained

in the domain of V .

Theorem 5.1.1. Let T1 and T2 be positive scalars such that T1 ≤ T2. Suppose
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there exist matrices K̃P , K̃I , and K̃D, and a positive definite symmetric matrix P

satisfying

Γ(ν)>PΓ(ν)− P < 0 ∀ν ∈ [T1, T2] (5.2)

where Γ(ν) = exp(Afν)Ag, and the matrices Af and Ag are given in (4.7). Then,

the set A in (4.9) is uniformly globally asymptotically stable for the hybrid system

H with data as in (4.6).

Proof. First, note that, by construction, the intervals of flow time between jumps

is upper bounded by T2 which implies that

t ≤ (j + 1)T2. (5.3)

where T2 > 0. Consider the function W (s) = s>Ps for each s ∈ Rn where

P = P> > 0. In light of continuity of (5.2), we have that there must exist an

arbitrarily small scalar ε > 0 satisfying

W (Γ(ν)x1)−W (x1) = x>1 (Γ(ν)>PΓ(ν)− P )x1

≤ −ε |x1|2

for each ν ∈ [T1, T2].

Due to the construction of the set A in (4.9), it follows that the distance

of the state x to the set A satisfies |x|2A = |x1|2. Now, consider the Lyapunov

function candidate in (5.1). It follows that this candidate satisfies the conditions

in Definition 2.2.2. Moreover, V is bounded by

c |x|2A ≤ V (x) ≤ c̄ |x|2A ∀x ∈ C ∪D ∪G(D) (5.4)
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where

c = max
τ∈[0,T2]

λmax(exp(A>f τ)P exp(Afτ))

c = min
τ∈[0,T2]

λmin(exp(A>f τ)P exp(Afτ))
(5.5)

Next, we consider the change in V during flows. Namely, for each x ∈ C, the

change in V is given by,

〈∇V (x), f(x)〉 = 0

where we used the property that transition matrices commute, i.e., Af exp(Afτ) =

exp(Afτ)Af .

Next, we consider the case of jumps, namely, for each x ∈ D. For such cases,

we have that the timer is such that τ = 0, which triggers an update in the state.

We have that the timer state τ is updated to a point in the interval [T1, T2] and

the x1 state is updated as Agx1. Then, for such points x ∈ D, g = (gx1 , ν) ∈ G(x),

the change in V is given by

V (g)− V (x) = W (Γ(ν)x1)−W (x1)

≤ −ε|x1|2 = −ε |x|2A .

where ν ∈ [T1, T2]. Note that all maximal solutions are complete (such a property

follows from Proposition 6.10 in [8]), and, in light of (5.3), for every solution

satisfying t + j ≥ T the inequality (5.3) yields j ≥ T
T2+1 −

T2
T2+1 . It follows from

Theorem 2.2.3 with γr(T ) = T
T2+1 and Nr = T2

T2+1 therein, the set A is uniformly

globally asymptotically stable for the hybrid system defined in (4.6).

Remark 5.1.2. Numerically, the matrix P can be difficult to find. We will use
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the convex optimization solver CVX, see [10], to solve for P under the constraints

that P must be positive definite symmetric matrix and the matrix inequality (5.2)

holds. If the gains of the PID controller are chosen a priori then (5.2) reduces to a

linear matrix inequality, however when the gains are being designed, (5.2) contains

nonlinear terms and may be difficult to solve. Next, we will provide a systematic

approach to overcoming this problem by linearizing the nonlinear matrix inequality

using a polytopic embedding approach as in [5] to solve for the controller gains,

the matrix P .

Remark 5.1.3. While the set A in (4.9) is compact with u and zI equal to zero,

the conditions in Theorem 5.1.1 extend to the tracking case in which case u and

zI converge to their steady states.

Following Proposition 1 in [5], we use the projection lemma and Schur’s com-

plement to show an equivalent form for equation (5.2).

Theorem 5.1.4. Let T1 and T2 be positive scalars such that T1 ≤ T2. Given the

matrices A, B, and H defining the plant dynamics and output, the matrices Af

and Ag in (4.7), the matrix P and function Γ satisfy (5.2) if and only if there

exists a matrix F ∈ Rn×n such that for every ν ∈ [T1, T2]


−(F + F>) FAg exp (A>f ν)P

∗ −P 0

∗ ∗ −P

 < 0 (5.6)
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Proof. First, let us set

Z(ν) =

exp (A>f ν)P exp (Afν) 0

0 −P



S =

Ag
I

 Y =

0

I


(5.7)

Then, condition (5.2) can be rewritten as

S>Z(ν)S < 0 ∀ν ∈ [T1, T2] (5.8)

The positive definiteness of P can be equivalently expressed as

Y >Z(ν)Y < 0 ∀ν ∈ [T1, T2] (5.9)

Now, using the projection lemma [14], inequalities (5.8) and (5.9) hold true if and

only if there exists a matrix F such that

exp (A>f ν)P exp (Afν)− (F + F>) FAg

∗ −P

 < 0 (5.10)

for all ν ∈ [T1, T2]. By Schur’s complement [19], one can obtain


−(F + F>) FAg exp (A>f ν)

∗ −P 0

∗ ∗ −P−1

 < 0 (5.11)
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By pre-and-post multiplying by


I 0 0

0 I 0

0 0 P

 (5.12)

we obtain the inequality in (5.6).

Theorem 5.1.4 gives an equivalent form of (5.2) that is linear with respect to

P , F , and Ag. However, this condition still needs to be checked for infinitely

many values of ν ∈ [T1, T2]. One method of dealing with this is to embed

exp (Afν) into the interval [T1, T2]. That is, find matrices {X1, X2, . . . , Xw} such

that exp (Afν) ⊂ co{X1, X2, . . . , Xw} when ν ∈ [T1, T2]. Choosing w gives a finite

number of inequalities that imply condition (5.6).

Corollary 5.1.5. Let T1 and T2 be positive scalars such that T1 ≤ T2. Let matrices

{X1, X2, . . . , Xw} be given satisfying

exp(Af [T1, T2]) ⊂ co{X1, X2, . . . , Xw}.

If there exist matrices J and F , and a positive definite symmetric matrix P such

that, for each i ∈ {1, 2, . . . , w}


−(F + F>) J XiP

? −P 0

? ? −P

 < 0 (5.13)
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where

J =



J11 J12 0 0

J21 J22 0 0

J31 J32 0 0

J41 J42 0 0


(5.14)

such that



F11 − F13KPD + F14C F12 − F13K̃I

F21 − F23KPD + F24C F22 + F23K̃I

F31 − F33KPD + F34C F32 − F33K̃I

F41 − F43KPD + F44C F42 − F43K̃I


=



J11 J12

J21 J22

J31 J32

J41 J42


(5.15)

where KPD = K̃P +K̃D then the matrices P and FAg = J satisfy condition (5.2)1.

Corollary 5.1.5 allows us to linearize (5.2) when P , K̃P , K̃I , and K̃D are

unknown. In doing so, we are able to find the value of Ag that satisfies the

stability criteria.

1Note that there are multiple options for constraining F and J according to (5.15), for
instance consider F23 = F33 = F43 = 0 and F13 = I, then, K̃DP = J11 − F11 − F14C and
K̃I = J12 − F12.
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Chapter 6

Numerical Examples

We present numerical examples for the proposed controller designs. There are

simulated using the Hybrid Equations (HyEQ) Toolbox in Matlab [17]1.

Example 6.0.1. Consider the mass-spring damper system with matrices in (3.3)

and state x = (x1, x2) where x1 = (z, zI , u,ms) and x2 = τ . We choose proper

values of K̃P , K̃I , and K̃D and show a P matrix satisfying (5.2). This applies

directly to the results in Theorem 5.1.1. Let K̃P = 10, K̃I = 4, and K̃D = 4, and

define matrices Af and Ag as in (4.7). The time bounds T1 and T2 are chosen

as T1 = 0.1 seconds and T2 = 0.25 seconds. Using CVX [10], we solve for P

while enforcing the condition in (5.2) and that P needs to be symmetric positive

definite matrix. The state response of the closed-loop system is shown in Figure

6.1. Under intermittent output measurements, we are able to guarantee UGAS.

Figure 6.1 also shows the control input to the system over time where the value

of the control signal u is held constant between output measurements. Simulation

results validate the stability results presented in this paper.

Using the convex optimization solver CVX [10], the matrix P is found such
1All MATLAB code for simulations presented in this paper are maintained in a GitHub

repository at https://github.com/HybridSystemsLab/HybridPID.git.
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Figure 6.1: The position of the mass from a mass-spring-damper system when
using a PID controller and for a given reference signal r = 0 is shown in the first
plot. The control signal generated from the PID controller with a sample and
hold mechanism in the feedback loop is depicted in the second graph. The timer
triggering the sporadic events is seen in the third plot. The Lyapunov function
along a solution is shown in the bottom plot.

that (5.2) is satisfied and P is a positive-definite symmetric matrix. Using the P

matrix found, the Lyapunov function in (5.1) can be evaluated along solutions to

the system.

Example 6.0.2. Consider designing a PI controller as in Chapter 4.B for the

mass-spring system with matrices in (3.3) and now the ability to observe both

position z1 and velocity z2 when the output is measured, that is now H =
[
1 1

]
.

Given a constant reference signal, a PI controller should have the steady state
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error ess = 0. We choose appropriate values of K̃P and K̃I to show that with

sporadic output measurements triggered at times satisfying (3.2), the steady state

error of the closed-loop system with PI control is zero.

Choose K̃P = 2 and K̃I = 1 and define Af and Ag as in (4.12). Figure 6.2

compares the state response and associated input signal for the system given a unit

step input r = 1. The initial state of the system is (z1, z2) = (0, 0) and the time

bounds are chosen as T1 = 0.4 and T2 = 0.8. With continuous output measure-

ments, the steady state error ess = 0 and the closed-loop system has settling time

tsettling = 6.5 seconds. When the output of the system is measured sporadically, the

steady state error ess remains zero, however, the closed-loop system has a longer

settling time of tsettling = 7.2 seconds.

28



0 1 2 3 4 5 6 7
0

0.5

1

1.5

y
(t
)

 

 

0 1 2 3 4 5 6 7
−2

0

2

4

u
(t
)

 

 

Continuous Case

With Intermittency

reference (r)

Continuous Case

With Intermittency

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

t(s)

τ
(t
)

 

 

τ

Figure 6.2: The closed-loop state response for PI controller given constant refer-
ence signal r = 1 in the top plot shows solutions for the mass-spring system when
outputs are measured continuously (black) and sporadically (blue). The middle
plot illustrates the associated control signals generated by the PI controller in both
cases. The bottom plot shows values of the timer τ used to trigger the sporadic
output measurements.
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Chapter 7

Discussion

In this chapter we discuss some key alterations to the aforementioned design

techniques. Specifically we discuss alternative forms of estimating the integral

and derivative terms focused more on sampled approximations. Additionally, we

briefly present two more forms of hybridity in a PID controller. That is, allowing

the controller to change gains at jumps, and when the integral error is reset at

zero-crossings.

7.1 Sampled Integral and Derivative Implemen-

tation

In Chapter 5, we focused on a modeling approach that approximates the in-

tegral and derivate terms using continuous-time dynamics. These terms can also

be approximated discretely. To do so, we introduce a timer τI ∈ [0, T2] with

continuous and discrete dynamics

τ̇I = 1, τ+
I = 0 (7.1)
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respectively, as a means of recording the time between successive jumps. Using the

memory state ms and the new timer τI , it follows that the integration action can

be approximated on jumps as z+
I = zI +msτI . Then, as in (4.3), the contribution

of the integration to the control law is given by vI = −KIzI .

Similarly, the derivative action can be approximated by, for instance, using the

backward Euler integration method. The derivative component is approximated

as

vD = −KDH
(
z −ms

τI

)
(7.2)

The resulting closed-loop system with x = (x1, x2) where x1 = (z, zI , u,ms) and

x2 = (τ, τI) is given as

f(x) :=


Afx1

−1

1

 ∀x ∈ C

G(x) :=


Agx1 +Bg

x1
max{ε,τI}

[T1, T2]

0

 ∀x ∈ D

(7.3)

where ε > 0 is a small parameter preventing division by zero, and from the

conditions above

C := Rn × Rp × Rm × Rp × [0, T2]× [0, T2]

D := Rn × Rp × Rm × Rp × {0} × [0, T2]
(7.4)
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define the flow set and jump set. The matrices Af and Ag are given by

Af =



A 0 B 0

0 0 0 0

0 0 0 0

0 0 0 0


, Bg =



0 0 0 0

0 0 0 0

−KDH 0 0 KDH

0 0 0 0



Ag =



I 0 0 0

0 I 0 τI

−KP −KI 0 0

H 0 0 0



(7.5)

where the gains KP and KI no longer have a dependency with the derivative gain

KD. This method presents difficulties in analytically proving convergence due

to the nonlinear mappings. However, it can be seen in simulation that the PID

feedback gains can be found such that the closed-loop system converges.

7.2 Dynamic Gains

Aside from intermittent sensor measurements, other forms of hybridity may

be added to the closed-loop system (4.6). To improve performance, the gains of

the PID controller could be updated at certain events. Continuing with the mass-

spring system with matrices in (3.3), we have one set of gainsKP = 250,KI = 350,

and KD = 30 which under sufficiently small intermittent sensor measurements

responds to a unit step input seen in Figure 3.2. This response has relatively

good overshoot compared to the rise time and settling time. To improve the rise

time and settling time of this response, consider using a more aggressive set of

gains when the state of the system is far from the reference signal. Choosing
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KP = 300, KI = 200, and KD = 10 results in a response with trise ≤ 0.1 seconds,

settling time tsettling = 2.45 seconds, and overshoot Mp = 75%, shown in Figure

7.1. This set of feedback gains leads to oscillations not seen in the first set. Here

we show that a switch can be made between the sets of feedback gains to improve

performance of the closed-loop system.

To ensure the switch between PID controller gains is made at the appropriate

time, add a logic state q ∈ {0, 1} and hysteresis parameters ε1 > ε0 > 0. Denote

K0 =
[
300 200 10

]
and K1 =

[
250 350 30

]
as the PID gains associated to

the possible values of q. The logic supervising chooses gains K0 when q = 0 and

K1 when q = 1. The switches of q are triggered according to the error e = y − r

and the hysteresis bands defined by ε0 and ε1: when |e| ≤ ε0 and q = 0, switch to

q = 1; when |e| ≥ ε1 and q = 1, switch to q = 0. Using this additional mechanism,

the performance of the system is improved dramatically by maintaining the faster

rise time of the controller with gains K0 while mitigating overshoot and settling

time with the controller with gains K1.

7.3 Clegg Integrator/Reset

It can be advantageous to reset the error of the integrator as shown in the

[18]. This technique can be applied to the setting discussed in this thesis. Namely,

consider applying the properties of the Clegg Integrator to the state zI storing

the running total integral value. That is, when the error being integrated changes

sign, reset zI to zero.
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Figure 7.1: Using a supervisory controller, the performance of the closed-loop
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Chapter 8

Conclusion

We have shown a systematic approach to designing a PID controller where

the measurements occur at intermittent instances. By modeling the closed-loop

system using the hybrid inclusion framework, we provided sufficient conditions

for uniform global asymptotic stability for the set of interest and give a detailed

approach for design following a polytopic embedding approach. We provided nu-

merical examples and simulation using the Hybrid Equations Toolbox. Lastly, we

gave a brief discussion about an alternative approach to modeling PID controllers

and the potential of utilizing dynamic gains using a hybrid systems approach. Fu-

ture work for this research is to investigate dynamic gain scheduling to maximize

convergence rate while minimizing overshoot. An interesting problem arises when

performance specifications also change with time. This research could provide

foundation to answering those questions.
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