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Linear-Quadratic Mean Field Control: The Hamiltonian Matrix

and Invariant Subspace Method

Xiang Chen Minyi Huang

Abstract— This paper studies the existence and uniqueness of
a solution to linear quadratic (LQ) mean field social optimiza-
tion problems with uniform agents. We exploit a Hamiltonian
matrix structure of the associated ordinary differential equation
(ODE) system and apply a subspace decomposition method
to find the solution. This approach is effective for both the
existence analysis and numerical computations. We further
extend the decomposition method to LQ mean field games.

I. INTRODUCTION

Mean field game (MFG) theory studies stochastic dynamic

decision problems involving a large number of noncooper-

ative and individually insignificant agents, and provides a

powerful methodology to reduce the complexity in designing

strategies [13]. For an overview of the theory and applica-

tions, the readers are referred to [4], [7], [12], [14], [16],

[19] and references therein.

There has existed a parallel development on mean field

social optimization where a large number of agents coopera-

tively minimize a social cost as the sum of individual costs.

Different from mean field games, the individual strategy

selection of an agent is not selfish and should take into

account both self improvement and the aggregate impact on

other agents’ costs. Mean field social optimization problems

have been studied in multi-agent collective motion [1], [28],

social consensus control [25], economic theory [26]. Other

related literature includes Markov decision processes using

aggregate statistics and their mean field limit [11], LQ mean

field teams [2], LQ social optimization with a major player

[17], mean field teams with Markov jumps [31], social

optimization with nonlinear diffusion dynamics [30], and

cooperative stochastic differential games [34].

In this paper, we consider social optimization in an LQ

model of uniform agents. The dynamics of agent i are given

by the stochastic differential equation (SDE):

dxi = (Axi +Bui)dt +DdWi, t ≥ 0, 1 ≤ i ≤ N. (1)

The state xi and the control ui are n and n1 dimensional

vectors respectively. The initial states {xi(0), 1 ≤ i ≤ N} are

independent. The noise processes {Wi, 1 ≤ i ≤ N} are n2

dimensional independent standard Brownian motions, which

are also independent of {xi(0), 1 ≤ i ≤ N}. The constant

matrices A, B and D have compatible dimensions. Given

a symmetric matrix M ≥ 0, the quadratic form zT Mz is

sometimes denoted by |z|2M . Denote u := (u1, · · · ,uN).

This work was supported by NSERC.
The authors are with the School of Mathematics and Statistics, Carleton

University, Ottawa, K1S 5B6 ON, Canada (XiangChen@cmail.carleton.ca,
mhuang@math.carleton.ca). Proc. IEEE CDC’18 with corrected Figs. 1, 2.

The individual cost for agent i is given by

Ji(u(·)) = E

∫ ∞

0
e−ρt [|xi −Φ(x(N))|2Q + uT

i Rui]dt, (2)

where ρ > 0, Φ(x(N)) =Γ x(N)+η and x(N) := (1/N)∑N
i=1 xi

is the mean field coupling term. The constant matrices or

vectors Γ , Q, R and η have compatible dimensions, and Q,

R are symmetric. The social cost is defined as

J
(N)
soc (u(·)) =

N

∑
i=1

Ji(u(·)).

The minimization of the social cost is an optimal control

problem. However, the exact solution requires centralized

information for each agent. So a solution of practical interest

is to find a set of decentralized strategies which has negligible

optimality loss in minimizing J
(N)
soc (u(·)) for large N and the

solution method has been developed in [15] under the fol-

lowing assumption: (A1) Q ≥ 0, R > 0, (A,B) is stabilizable

and (A,Q
1
2 ) is detectable.

Under (A1), there exists a unique solution Π ≥ 0 to the

algebraic Riccati equation (ARE):

ρΠ = ΠA+AT Π −ΠBR−1BT Π +Q. (3)

Denote QΓ = Γ T Q+QΓ −Γ T QΓ and ηΓ = (I−Γ T )Qη .

We introduce the Social Certainty Equivalence (SCE) equa-

tion system:

dx̄

dt
= (A−BR−1BT Π)x̄−BR−1BT s, (4)

ds

dt
= QΓ x̄+(ρI−AT +ΠBR−1BT )s+ηΓ , (5)

where x̄(0) = x0 is given and s(0) = s0 is to be determined.

We look for (x̄,s) ∈ Cρ/2([0,∞),R2n) (see Definition 2). If

a finite time horizon [0,T ] is considered for (2), s will

have a terminal condition s(T ) and Π will depend on time.

This results in a standard two point boundary value (TPBV)

problem for linear ordinary differential equations (ODEs).

Given the infinite horizon, s satisfies a growth condition

instead of a terminal condition.

The key result in [15] under (A1) is that if (4)-(5) has a

unique solution, the set of decentralized strategies

ûi =−R−1BT (Πxi + s), 1 ≤ i ≤ N, (6)

has asymptotic social optimality. In other words, centralized

strategies can further reduce the cost J
(N)
soc (u(·)) by at most

o(N). In fact, [15] constructed a more general version of (4)-

(5) where the parameter A is randomized over the population

and accordingly x̄ in the equation of s is replaced by a mean

field averaging over the nonuniform population.
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A. Our Approach and Contributions

After some transformation, the coefficient matrix of (4)-

(5) reduces to a Hamiltonian matrix which can be associated

with an LQ optimal control problem with state weight matrix

−QΓ . The connection to such an LQ control problem is

remarkable since its state weight may not be positive semi-

definite. When QΓ ≤ 0, existence and uniqueness of the solu-

tion has been proved [15, Theorem 4.3] by a standard Riccati

equation approach. On the other hand, due to the intrinsic

optimal control nature of the social optimization problem,

one expects to obtain solvability of the SCE equation system

under much more general conditions, which is the focus

of this work. Furthermore, our approach allows Q to be

indefinite. LQ optimal control problems with indefinite state

and/or control weight is a subject of considerable interest

[10], [29], [32], [36].

We develop a new approach to analyze and compute

the solution of (4)-(5) for a general QΓ by exploiting a

Hamiltonian matrix structure and the well known invariant

subspace method [6]. Specifically, aided by the solution of

a continuous-time algebraic Riccati equation (ARE) with

possibly indefinite state weight, we decompose the Hamil-

tonian matrix into a block-wise triangular form where the

stable eigenvalues are separated from the unstable ones.

To numerically solve the Riccati equation, we apply the

Schur method [20]. The approach of decomposing the stable

invariant subspace is further extended to solve LQ mean field

games; see [3], [5], [21], [23] for related literature on LQ

mean field games. The main results of this paper have been

reported in [8], [9] in an early form.

The organization of the paper is as follows. Section

II proves existence and uniqueness of a solution to the

SCE equation system and develops a computational method.

Section III extends the analysis to LQ mean field games.

Numerical examples are presented in Section IV. Section V

concludes the paper.

II. SOLUTION OF THE SOCIAL OPTIMIZATION PROBLEM

A. Preliminaries on Algebraic Riccati Equations

Let Sn ⊂ Rn×n denote the set of symmetric matrices, and

Sn
+ ⊂ Sn the set of positive semi-definite matrices. Our later

analysis depends on an invariant subspace decomposition

method which involves a class of continuous-time algebraic

Riccati equations (ARE) of the form

XAo +AT
o X −XMX +Qo = 0, (7)

where Ao, Qo, M are given matrices in Rn×n with Qo ∈ Sn

and M ∈ Sn
+. Note that Qo is not required to be positive

semi-definite. Denote the Hamiltonian matrix

Ho =

[
Ao −M

−Qo −AT
o

]
. (8)

Note that the eigenvalues of a Hamiltonian matrix are

distributed symmetrically about both the real axis and the

imaginary axis [22]. If Ho has no eigenvalue on the imaginary

axis, the left and right open half planes each contain n

eigenvalues.

For a solution X+ ∈ Sn of (7), X+ is the maximal real sym-

metric solution [18] if for any solution X ∈ Sn, X+−X ≥ 0. A

(real or complex) matrix is called stable if all its eigenvalues

are in the open left half-plane; such an eigenvalue is also

said to be stable.

Proposition 1: If (Ao,M) is stabilizable and Ho has no

eigenvalues on the imaginary axis (i.e., no eigenvalues with

zero real parts), then there exists a unique maximal real

symmetric solution X+ and Ao −MX+ is stable.

Proof: By Theorem 9.3.1 in [18, p. 239], there exists

a unique almost stabilizing solution X in Sn (i.e., all eigen-

values of Ao −MX are in the closed left half plane). Further

applying Theorem 7.9.4 in [18, p. 195-196], we obtain a

unique maximal real symmetric solution X+ and Ao −MX+

is stable.

B. The Transformation

Definition 2: For integer k ≥ 1 and real number r > 0,

Cr([0,∞),Rk) consists of all functions f ∈C([0,∞),Rk) such

that supt≥0 | f (t)|e−r′t < ∞, for some 0 < r′ < r. Here r′ may

depend on f .

Denote

HA =

[
A− ρ

2
I −BR−1BT

−Q −AT + ρ
2

I

]
. (9)

We introduce the following standing assumption for the rest

of this paper.

(SA) (A,B) is stabilizable, R > 0, and HA has no eigen-

values with zero real parts.

Under (SA), we may solve a unique maximal solution

Π ∈ Sn from (3) such that A − BR−1BT Π − ρ
2

I is stable.

This ensures the construction of (4)-(5). Note that we do not

require Q ≥ 0.

Define

x̃ = e−ρt/2x̄, s̃ = e−ρt/2s.

We obtain
[

dx̃
dt
ds̃
dt

]
= H

[
x̃

s̃

]
+

[
0

η̃Γ

]
, (10)

where x̃(0) = x0, η̃Γ = e−
ρ
2 tηΓ , and

H =

[
A −BR−1BT

QΓ −A T

]
, A = A−BR−1BT Π − ρ

2
I. (11)

Note that η̃Γ in (10) is a function of t. Since QΓ is

symmetric, H is a Hamiltonian matrix.

C. Existence and Uniqueness of a Solution

Consider the general matrix differential equation

dz

dt
= Kz+ψ(t), (12)

where z = [zT
1 ,z

T
2 ]

T , z1,z2 ∈ Rn, K ∈ R2n×2n and for some

C > 0, |ψ(t)| ≤Ce−
ρt
2 for all t ≥ 0, and where z1(0) is given.



Definition 3: The matrix K ∈ R2n×2n is said to satisfy

condition (H0) if there exists an invertible real matrix U =
(Ui j)1≤i, j≤2, where U11 ∈Rn×n is invertible, such that

U−1KU =

[
F11 F12

0 F22

]
,

where F11 and −F22 are n× n stable matrices.

Let M1 be an (n+m)× (n+m) real (or complex) matrix

which has an n-dimensional invariant subspace V . If V is

spanned by the columns of an (n+ m)× n matrix whose

leading n× n sub-matrix is invertible, V is called a graph

subspace [6], [18].

Remark 1: A matrix K satisfying (H0) has n stable eigen-

values and the associated n-dimensional stable invariant

subspace of K is a graph subspace.

Lemma 4: Suppose K in (12) satisfies (H0). Then for the

given z1(0), there exists a unique

z2(0) =U21U−1
11 z1(0)

+ (U21U
−1
11 U12 −U22)

∫ ∞

0
e−F22τ [V21,V22]ψ(τ)dτ

such that (12) has a bounded solution on [0,∞), where V =
U−1 = (Vi j)1≤i, j≤2. In this case, for some ε0 > 0, z(t)eε0t is

still bounded on [0,∞).
Proof: For (12), we apply a change of variable to define

y =U−1z, (13)

where y = [yT
1 ,y

T
2 ]

T , yi ∈ Rn. We have

dy1

dt
= F11y1 +F12y2 +ϕ1(t), (14)

dy2

dt
= F22y2 +ϕ2(t), (15)

where U−1ψ = [ϕT
1 ,ϕ

T
2 ]

T . We proceed to find a bounded

solution y. Since −F22 is stable, there is a unique choice of

y2(0) =−
∫ ∞

0
e−F22τ ϕ2(τ)dτ

such that y2(t) = −∫ ∞
t eF22(t−τ)ϕ2(τ)dτ is bounded, which

further determines a bounded y1 regardless of y1(0). Using

the relation (13) at t = 0, we next uniquely determine

y1(0) =U−1
11 [z1(0)−U12y2(0)]. (16)

Finally, we obtain z2(0) =U21y1(0)+U22y2(0), which gives

a bounded solution z of (12) on [0,∞). It can be checked that

for some ε0 > 0, z(t)eε0t is still bounded on [0,∞).
The choice of z2(0) is unique since otherwise by (13) we

may construct two different bounded solutions y 6= ŷ, where

we necessarily have y1(0) 6= ŷ1(0), y2(0) = ŷ2(0), which is

impossible in view of (16).

The proof of the existence result in the theorem below

reduces to showing the stable invariant subspace of H is a

graph subspace.

Theorem 5: Assume that the pair (A,B) is stabilizable and

the Hamiltonian matrix H in (11) has no eigenvalues with

zero real parts. Then there exists a unique initial condition

s0 such that (4)-(5) has a solution (x̄,s) ∈Cρ/2([0,∞),R2n).

Proof: Since A is stable, both (A ,B) and

(A ,BR−1BT ) are stabilizable [33]. Consider the ARE

XA +A
T X −XBR−1BT X −QΓ = 0. (17)

By Corollary 1, there exists a unique maximal real sym-

metric solution X+ such that A − BR−1BT X+ is stable.

Denote U =

[
I 0

X+ I

]
. So U−1 =

[
I 0

−X+ I

]
. Then

U−1HU =

[
I 0

−X+ I

][
A −BR−1BT

QΓ −A T

][
I 0

X+ I

]

=

[
AC −BR−1BT

0 −A T
C

]
,

where AC =A −BR−1BT X+ is stable. By Lemma 4, after se-

lecting the initial condition s0 =X+x0−
∫ ∞

0 eA T
C τ ηΓ e−ρτ/2dτ ,

the resulting solution (x̄,s) ∈ Cρ/2([0,∞),R2n). And s0 is

unique.

For the special case QΓ ≤ 0, since A is stable, (17) has

a unique positive semi-definite solution X by the standard

theory of Riccati equations [33]. On the other hand, by [18,

Theorem 9.3.3], in this case H necessarily has no eigenvalues

with zero real parts.

Example 1: Consider a scalar model with A = a, B = b 6=
0, R = r > 0, Q = q > 0, Γ = γ . Then QΓ = (2γ − γ2)q.

Denote aρ = a−ρ/2 and br = b/
√

r. We solve the Riccati

equation ρΠ = 2aΠ − b2Π/r + q to obtain Π = (aρ +√
a2

ρ + qb2
r)/b2

r . Then H in (11) becomes

H =


−

√
a2

ρ + qb2
r −b2

r

(2γ − γ2)q
√

a2
ρ + qb2

r


 .

The characteristic equation det(λ I−H) = 0 reduces to λ 2 =
a2

ρ +qb2
r (1−γ)2. Therefore, H has eigenvalues with zero real

parts if and only if a= ρ/2 and γ = 1 when b 6= 0 and q> 0.

Example 2: We continue with the system in Example 1

for the case a = ρ/2 and γ = 1. The SCE equation system

now becomes[
˙̄x(t)
ṡ(t)

]
=

[ρ
2
−√

q|br| −b2
r

q
ρ
2
+
√

q|br|

][
x̄(t)
s(t)

]
,

where x̄(0) is given. We obtain the solution
[

x̄(t)
s(t)

]
= e

ρt
2

[
1−√

q|br|t −b2
r t

qt 1+
√

q|br|t

][
x̄(0)
s(0)

]
,

which is not in Cρ/2([0,∞),R2) unless x̄(0) = s(0) = 0.

Example 3: Consider the system given in Example 2. We

have Π =
√

q/|br|, A = −√
q|br|, QΓ = q. The Riccati

equation (17) now has the solution X =−√
q/|br|< 0, and

A −b2
r X = 0 implying X being almost stabilizing, which is

due to the two zero eigenvalues of H.

D. Computational Methods for the ARE

Consider ARE (7). Let Ho be defined by (8). This part

describes the numerical method for a stabilizing solution

when Qo may not be positive semi-definite. Denote

W =

[
U1

U2

]
∈ C

2n×n.



Proposition 6: Suppose i) Ho has no eigenvalues with

zero real parts and

Ho

[
U1

U2

]
=

[
U1

U2

]
So, (18)

where So is stable; ii) (Ao,M) is stabilizable. Then U1 is

invertible and U2U−1
1 is real, symmetric and satisfies (7),

and Ao −MU2U−1
1 is stable.

Proof: This proposition holds as a corollary to The-

orems 13.5 and 13.6 in [35] under condition ii). In this

case the invariant subspace of Ho associated with the n

stable eigenvalues is a (complex) graph subspace, and U1

is necessarily invertible.

In fact, by Proposition 1, there exists X satisfying (7) such

that Ao −MX is stable. It is straightforward to verify [6]

Ho

[
I

X

]
=

[
I

X

]
(Ao −MX).

Remark 2: Since Ho has n eigenvalues in the open left and

right half planes, respectively, there exist U1,U2 to satisfy

condition i) in Proposition 6.

A similar method of using invariant subspace to solve

a discrete-time algebraic Riccati equation was presented in

[27], where the state weight matrix Q is positive semi-

definite.

To apply Proposition 6 to numerically solve the ARE, one

needs to first find a set of basis vectors of the stable invariant

subspace of Ho. Now we introduce a convenient method to

find such a set of vectors.

Proposition 7: [20] Assume the Hamiltonian matrix Ho ∈
R2n×2n has no eigenvalues with zero real parts. Then there

exists an orthogonal transformation W ∈R2n×2n such that

W T HoW =

[
H11 H12

0 H22

]
= Ĥo,

where H11 ∈ Rn×n is a stable matrix.

We refer to Ĥo as the real Schur form and W consists of

2n independent vectors which are called Schur vectors. If

we partition W into four n× n blocks

[
W11 W12

W21 W22

]
,

[
W11

W21

]

consists of n Schur vectors corresponding to stable Schur

block H11 and provides a specific choice of the vectors to

span the stable invariant subspace in Proposition 6 and W−1
11

exists.

III. EXTENSION TO MEAN FIELD GAMES

We consider a Nash game of N players with dynamics

and costs given by (1)-(2). By mean field game theory [13],

[14], [15], the decentralized strategies for the game may be

designed by using the following ODE system:





dx̄

dt
= (A−BR−1BT Π)x̄−BR−1BT s, (19)

ds

dt
= QΓ x̄+(ρI−AT +ΠBR−1BT )s+Qη , (20)

where x̄(0) = x0 is given. Define x̃ = e−ρt/2x̄ and s̃ = e−ρt/2s.

We obtain




dx̃

dt
= A x̃−BR−1BT s̃, (21)

ds̃

dt
= QΓ x̃−A

T s+ η̃, (22)

where x̃(0) = x0, A = A−BR−1BT Π − ρ
2

I, η̃ = e−ρt/2Qη .

Notice that QΓ is generally asymmetric and the coefficient

matrix in (21)-(22) does not have a Hamiltonian structure.

However, we can apply the invariant subspace method in

Section II-C to find a solution (x̄,s) ∈ Cρ/2([0,∞),R2n).
Denote

Mmfg =

[
A −BR−1BT

QΓ −A T

]
. (23)

Theorem 8: Suppose Mmfg in (23) satisfies condition (H0)

with U = (Ui j)1≤i, j≤2, where U11 is invertible, such that

U−1MmfgU =

[
M11 M12

0 M22

]
,

where M11 and −M22 are stable. Then for any given x0 in

(19)-(20), there exists a unique

s0 =U21U−1
11 x0+(U21U−1

11 U12−U22)

∫ ∞

0
e−M22τV22Qηe−

ρ
2 τ dτ,

where V = U−1 = (Vi j)1≤i, j≤2, such that (19)-(20) has a

solution (x̄,s) ∈Cρ/2([0,∞),R2n).

Proof: The theorem follows from Lemma 4.

IV. NUMERICAL EXAMPLES

A. Riccati Equation and SCE Equation System

Consider ARE (17), where A = A − BR−1BT Π − ρ
2

I.

We compute the stabilizing solutions of (3) and (17) and

further solve the SCE equation system. In the examples, we

specify the system parameters, including the matrix A, which

further determine A . The computation follows the notation

in Theorem 5 and its proof.

Example 4: Consider the scalar system: A = 2, B =
1, Q = 2, R = 1, η = 1, ρ = 1, Γ = 1 and the initial

condition x0 = 1. We have QΓ = Q > 0 and Π = 3.5616.

The SCE equation system (4)-(5) becomes

[
dx̄
dt
ds
dt

]
=

[
−1.5616 −1.0000

2 2.5616

][
x̄

s

]
,

and

H =

[
−2.0616 −1.0000

2.0000 2.0616

]
.

The eigenvalues of H are −1.5 and 1.5, which have no zero

real parts. By solving (17) using Schur vectors, we obtain

X+ =−0.5615 and AC =−1.5.

We select s0 = X+x0 −
∫ ∞

0 e(A
T

C − ρ
2 I)τ ηΓ dτ = −0.5615.

Under the initial condition (x0,s0) = (1,−0.5615), we obtain

(x̄(t),s(t)) = (e−t ,−0.5616e−t) ∈C1/2([0,∞),R2).
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Fig. 1. Solution of (x̄,s) in Example 5

Example 5: Consider the system with parameters

A =

[
1 −1

0 2

]
, B =

[
1

1

]
, Q =

[
1 0

0 −0.5

]
, η =

[
1

0

]
,

Γ = γ

[
1 0

0.5 1

]
, ρ = 1, R = 1, γ = 2

and initial condition x0 =

[
1

1

]
. We have QΓ =

[
0.5 0.5
0.5 0

]
.

Both Q and QΓ are indefinite. We solve

Π =

[
3.5483 −5.6810

−5.6810 12.6724

]
.

The SCE equation system is




dx̄1
dt

dx̄2
dt

ds1
dt

ds2
dt


= (H +

ρ

2
I)




x̄1

x̄2

s1

s2


+




0

0

−1

0


 ,

and the Hamiltonian matrix

H =




2.6327 −7.9914 −1.0000 −1.0000

2.1327 −5.4914 −1.0000 −1.0000

0.5000 0.5000 −2.6327 −2.1327

0.5000 0 7.9914 5.4914


 .

The eigenvalues of H are −1.0655 ± 0.6208i, 1.0655 ±
0.6208i, so H has no eigenvalues with zero real parts.

Solving (17) with Schur vectors, we have

X+ =

[
−2.0373 2.7519

2.7519 −4.1941

]
, AC =

[
1.9181 −6.5492

1.4181 −4.0492

]
.

We select

s0 = X+x0 −
∫ ∞

0
e(A

T
C − ρ

2 I)τ ηΓ dτ =

[
2.3185

−3.7513

]
.

For the initial condition (1,1, 2.3185,−3.7513), we compute

the solution (x̄,s) which is displayed in Fig. 1.

1) Comparison: We compare with a fixed point method,

which is used to analyze the SCE equation system by

verifying a contraction condition in [15]. Consider (10). By

the method in [15], [24], the solution x̃(t) is a fixed point to

the equation x(·) =Ψ (x(·)) where

[Ψ(x)](t) = eA tx0 +

∫ t

0
eA (t−s)BR−1BT

·
[∫ ∞

s
e−A T (s−τ)

(
QΓ x(τ)+ e−

ρ
2 τ ηΓ

)
dτ

]
ds,

where we look for x(·) ∈ Cb([0,∞),Rn), i.e., the set of

bounded and continuous functions on [0,∞) with norm |x|∞ =
supt≥0 |x(t)|. The fixed point exists and is unique if there

exists β ∈ (0,1) such that |Ψ(x)−Ψ(y)|∞ ≤ β |x− y|∞. Let

‖ · ‖ denote the Frobenius norm. We have the estimate

‖[Ψ(x)](t)− [Ψ(y)](t)‖

= ‖
∫ t

0
eA (t−s)BR−1BT

·
{∫ ∞

s
e−A T (s−τ) [QΓ (x(τ)− y(τ))]dτ

}
ds‖

≤ ‖x− y‖
∫ ∞

0
‖eA sBR−1BT‖

(∫ ∞

0
‖eA T τ QΓ ‖dτ

)
ds.

Let β =
∫ ∞

0

∥∥eA sBR−1BT
∥∥(

∫ ∞
0 ‖eA T τ QΓ ‖dτ)ds. We note

that the upper bound estimate may not be tight.

For Example 5 with γ = 2, we numerically obtain β =
6.34694 > 1, which does not validate the contraction con-

dition. If we set γ = 0.05 instead, then β = 0.736681 < 1

implying the contraction condition.

B. The Mean Field Game

The next example uses the Schur decomposition for a

general square real matrix.

Example 6: Consider A =

[
5 −5

0 10

]
, B =

[
1

1

]
, Q =

[
1 0

0 1

]
, η =

[
1

0

]
, Γ =

[
5 0

2.5 5

]
, ρ = 2, R = 1, and the

initial condition is x0 =

[
1

1

]
. By (23), we calculate

Mmfg =




14.7999 −42.0915 −1.0000 −1.0000

10.7999 −28.0915 −1.0000 −1.0000

5.0000 0 −14.7999 −10.7999

2.5000 5.0000 42.0915 28.0915


 ,

which has eigenvalues 9.2522, 1.7783, −2.0950 and

−8.9356. The Schur decomposition represents Mmfg as

U




−8.9356 −13.4806 27.2557 −35.7593

0 −2.0950 −46.5898 −32.5048

0 0 9.2522 −15.8037

0 0 0 1.7783


U−1,

where

U =




−0.5425 −0.6081 −0.0928 0.5721

−0.3060 −0.4284 −0.3027 −0.7945

0.5543 −0.1947 −0.7863 0.1911

−0.5521 0.6394 −0.5305 0.0700


 .
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Fig. 2. Solution of (x̄,s) in Example 6

For U11 =

[
−0.5425 −0.6081

−0.3060 −0.4284

]
, det(U11) = 0.0464> 0, so

U11 is invertible. We select the initial condition

s0 =U21U−1
11 x0 +(U21U−1

11 U12 −U22)
∫ ∞

0
e−M22τV22Qηe−

ρτ
2 dτ

=

[
2.31075

−4.11538

]
.

Fig. 2 shows the solution (x̄,s) for (19)-(20).

V. CONCLUSION

This paper develops a methodology to prove the existence

and uniqueness of the solution of the LQ social optimization

problem when the corresponding Hamiltonian matrix has

no eigenvalues on the imaginary axis. We also develop a

numerical method for solving the ODE system by applying

an invariant subspace method. We further extend the invariant

subspace method to solve LQ mean field games.
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