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Abstract

Classical theory for quasi-Newton schemes has focused on smooth deterministic uncon-
strained optimization while recent forays into stochastic convex optimization have largely resided
in smooth, unconstrained, and strongly convex regimes. Naturally, there is a compelling need
to address nonsmoothness, the lack of strong convexity, and the presence of constraints. Ac-
cordingly, this paper presents a quasi-Newton framework that can process merely convex and
possibly nonsmooth (but smoothable) stochastic convex problems. We propose a framework
that combines iterative smoothing and regularization with a variance-reduced scheme reliant
on using an increasing sample-size of gradients. We make the following contributions. (i) We
develop a regularized and smoothed variable sample-size BFGS update (rsL-BFGS) that gener-
ates a sequence of Hessian approximations and can accommodate nonsmooth convex objectives
by utilizing iterative regularization and smoothing. (ii) In strongly convex regimes with state-
dependent noise, the proposed variable sample-size stochastic quasi-Newton (VS-SQN) scheme
admits a non-asymptotic linear rate of convergence while the oracle complexity of computing an
ε-solution is O(κm+1/ε) where κ denotes the condition number and m ≥ 1. In nonsmooth (but
smoothable) regimes, using Moreau smoothing retains the linear convergence rate for the re-
sulting smoothed VS-SQN (or sVS-SQN) scheme. Notably, the nonsmooth regime allows for
accommodating convex constraints. To contend with the possible unavailability of Lipschitzian
and strong convexity parameters, we also provide sublinear rates for diminishing steplength vari-
ants that do not rely on the knowledge of such parameters; (iii) In merely convex but smooth
settings, the regularized VS-SQN scheme rVS-SQN displays a rate of O(1/k(1−ε)) with an
oracle complexity of O(1/ε3). When the smoothness requirements are weakened, the rate for the
regularized and smoothed VS-SQN scheme rsVS-SQN worsens to O(k−1/3). Such statements
allow for a state-dependent noise assumption under a quadratic growth property on the objec-
tive. To the best of our knowledge, the rate results are amongst the first available rates for QN
methods in nonsmooth regimes. Preliminary numerical evidence suggests that the schemes com-
pare well with accelerated gradient counterparts on selected problems in stochastic optimization
and machine learning with significant benefits in ill-conditioned regimes.

1 Introduction

We consider the stochastic convex optimization problem

min
x∈Rn

f(x) , E[F (x, ξ(ω))], (1)
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where ξ : Ω → Ro, F : Rn × Ro → R, and (Ω,F ,P) denotes the associated probability space.
Such problems have broad applicability in engineering, economics, statistics, and machine learning.
Over the last two decades, two avenues for solving such problems have emerged via sample-average
approximation (SAA) [23] and stochastic approximation (SA) [40]. In this paper, we focus on quasi-
Newton variants of the latter. Traditionally, SA schemes have been afflicted by a key shortcoming
in that such schemes display a markedly poorer convergence rate than their deterministic variants.
For instance, in standard stochastic gradient schemes for strongly convex smooth problems with
Lipschitz continuous gradients, the mean-squared error diminishes at a rate of O(1/k) while deter-
ministic schemes display a geometric rate of convergence. This gap can be reduced by utilizing an
increasing sample-size of gradients, an approach considered in [17, 9, 36, 13, 6], and subsequently
refined for gradient-based methods for strongly convex [42, 22, 21], convex [20, 14, 22, 21], and non-
smooth convex regimes [21]. Variance-reduced techniques have also been considered for stochastic
quasi-Newton (SQN) techniques [27, 51, 5] under twice differentiability and strong convexity re-
quirements. To the best of our knowledge, the only available SQN scheme for merely convex but
smooth problems is the regularized SQN scheme presented in our prior work [48] where an iterative
regularization of the form 1

2µk‖xk − x0‖2 is employed to address the lack of strong convexity while
µk is driven to zero at a suitable rate. Furthermore, a sequence of matrices {Hk} is generated using
a regularized L-BFGS update or (rL-BFGS) update. However, much of the extant schemes in this
regime either have gaps in the rates (compared to deterministic counterparts) or cannot contend
with nonsmoothness.

Figure 1: Lewis-Overton example

Quasi-Newton schemes for nonsmooth convex prob-
lems. There have been some attempts to apply (L-)BFGS
directly to the deterministic nonsmooth convex problems. But
the method may fail as shown in [28, 16, 24]; e.g. in [24], the
authors consider minimizing 1

2‖x‖
2 + max{2|x1| + x2, 3x2} in

R2, BFGS takes a null step (steplength is zero) for different
starting points and fails to converge to the optimal solution
(0,−1) (except when initiated from (2, 2)) (See Fig. 1). Con-
tending with nonsmoothness has been considered via a subgra-
dient quasi-Newton method [49] for which global convergence
can be recovered by identifying a descent direction and uti-
lizing a line search. An alternate approach [50] develops a
globally convergent trust region quasi-Newton method in which Moreau smoothing was employed.
Yet, there appear to be neither non-asymptotic rate statements available nor considerations of
stochasticity in nonsmooth regimes.

Gaps. Our research is motivated by several gaps. (i) First, can we develop smoothed generaliza-
tions of (rL-BFGS) that can contend with nonsmooth problems in a seamless fashion? (ii) Second,
can one recover determinstic convergence rates (to the extent possible) by leveraging variance re-
duction techniques? (iii) Third, can one address nonsmoothness on stochastic convex optimization,
which would allow for addressing more general problems as well as accounting for the presence
of constraints? (iv) Finally, much of the prior results have stronger assumptions on the moment
assumptions on the noise which require weakening to allow for wider applicability of the scheme.
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1.1 A survey of literature

Before proceeding, we review some relevant prior research in stochastic quasi-Newton methods and
variable sample-size schemes for stochastic optimization. In Table 1, we summarize the key advances
in SQN methods where much of prior work focuses on strongly convex (with a few exceptions).
Furthermore, from Table 2, it can be seen that an assumption of twice continuous differentiability
and boundedness of eigenvalues on the true Hessian is often made. In addition, almost all results
rely on having a uniform bound on the conditional second moment of stochastic gradient error.

Convexity Smooth Nk γk Conver. rate Iter. complex. Oracle complex.

RES [29] SC 3 N 1/k O(1/k) - -
Block BFGS [15]

SC 3
N (full grad

γ O(ρk) - -Stoch. L-BFGS [32]
periodically)

SQN [44] NC 3 N k−0.5 O(1/
√
k) O(1/ε2) -

SdLBFGS-VR [44] NC 3
N(full grad

γ O(1/k) O(1/ε) -
periodically)

r-SQN [48] C 3 1 k−2/3+ε O(1/k1/3−ε) - -

SA-BFGS [51] SC 3 N γk O(ρk) O(ln(1/ε)) O(1/ε2(ln(1/ε))4)
Progressive

NC 3 - γ O(1/k) - -
Batching [5]
Progressive

SC 3 - γ O(ρk) - -
Batching [5]

(VS-SQN) SC 3 dρ−ke γ O(ρk) O(κ ln(1/ε)) O(κ/ε)

(sVS-SQN) SC 7 dρ−ke γ O(ρk) O(ln(1/ε)) O(1/ε)

(rVS-SQN) C 3 dkae k−ε O(1/k1−ε) O(1/ε
1

1−ε ) O(1/ε(3+ε)/(1−ε))

(rsVS-SQN) C 7 dkae k−1/3+ε O(1/k1/3) O(1/ε3) O
(
1/ε(2+ε)/(1/3)

)
Table 1: Comparing convergence rate of related schemes (note that a > 1)

Convexity Smooth state-dep. noise Assumptions

RES [29] SC 3 7 λI � Hk � λI, 0 < λ ≤ λ, f is twice differentiable
Stoch. block BFGS [15]

SC 3 7
λI � ∇2f(x) � λI, 0 < λ ≤ λ, f is twice differentiable

Stoch. L-BFGS [32]

SQN for non convex [44] NC 3 7 � ∇2f(x) � λI, 0 < λ ≤ λ, f is differentiable

SdLBFGS-VR [44] NC 3 7 ∇2f(x) � λI, λ ≥ 0, f is twice differentiable

r-SQN [48] C 3 7 λI � Hk � λI, 0 < λ ≤ λ, f is differentiable

SA-BFGS [51] SC 3 7
fk(x) is standard self-concordant for every possible sam-
pling, The Hessian is Lipschitz continuous,

λI � ∇2f(x) � λI, 0 < λ ≤ λ, f is C2

Progressive Batching [5] NC 3 7 ∇2f(x) � λI, λ ≥ 0, sample size is controlled by the
exact inner product quasi-Newton test, f is C2

Progressive Batching [5] SC 3 7 λI � ∇2f(x) � λI, 0 < λ ≤ λ, sample size controlled by
exact inner product quasi-Newton test, f is C2

(VS-SQN) SC 3 3 λI � Hk � λkI, 0 < λ ≤ λk, f is C1

(sVS-SQN) SC 7 3 λkI � Hk � λkI, 0 < λk ≤ λk

(rVS-SQN) C 3
3 λI � Hk � λkI, 0 < λ ≤ λk, f is C1, has quad. growth

prop.

7 λI � Hk � λkI, f is C1

(rsVS-SQN) C 7
3 λkI � Hk � λkI, 0 < λ ≤ λk, has quad. growth prop.

7 λkI � Hk � λkI

Table 2: Comparing assumptions of related schemes

(i) Stochastic quasi-Newton (SQN) methods. QN schemes [26, 34] have proved enormously
influential in solving nonlinear programs, motivating the use of stochastic Hessian information [6].
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In 2014, Mokhtari and Riberio [29] introduced a regularized stochastic version of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [12] by updating the matrix Hk using
a modified BFGS update rule to ensure convergence while limited-memory variants [7, 30] and
nonconvex generalizations [44] were subsequently introduced. In our prior work [48], an SQN

method was presented for merely convex smooth problems, characterized by rates of O(1/k
1
3
−ε)

and O(1/k1−ε) for the stochastic and deterministic case, respectively. In [47], via convolution-based
smoothing to address nonsmoothness, we provide a.s. convergence guarantees and rate statements.
(ii) Variance reduction schemes for stochastic optimization. Increasing sample-size schemes
for finite-sum machine learning problems [13, 6] have provided the basis for a range of variance
reduction schemes in machine learning [41, 45], amongst reduction others. By utilizing variable
sample-size (VS) stochastic gradient schemes, linear convergence rates were obtained for strongly
convex problems [42, 22] and these rates were subsequently improved (in a constant factor sense)
through a VS-accelerated proximal method developed by Jalilzadeh et al. [21] (called (VS-APM)).
In convex regimes, Ghadimi and Lan [14] developed an accelerated framework that admits the
optimal rate of O(1/k2) and the optimal oracle complexity (also see [22]), improving the rate
statement presented in [20]. More recently, in [21], Jalilzadeh et al. present a smoothed accelerated
scheme that admits the optimal rate of O(1/k) and optimal oracle complexity for nonsmooth
problems, recovering the findings in [14] in the smooth regime. Finally, more intricate sampling
rules are developed in [4, 37].
(iii) Variance reduced SQN schemes. Linear [27] and superlinear [51] convergence statements
for variance reduced SQN schemes were provided in twice differentiable regimes under suitable
assumptions on the Hessian. A (VS-SQN) scheme with L-BFGS [5] was presented in strongly
convex regimes under suitable bounds on the Hessian.

1.2 Novelty and contributions

In this paper, we consider four variants of our proposed variable sample-size stochastic quasi-
Newton method, distinguished by whether the function F (x, ω) is strongly convex/convex and
smooth/nonsmooth. The vanilla scheme is given by

xk+1 := xk − γkHk

∑Nk
j=1 uk(xk, ωj,k)

Nk
, (2)

where Hk denotes an approximation of the inverse of the Hessian, ωj,k denotes the jth realization
of ω at the kth iteration, Nk denotes the sample-size at iteration k, and uk(xk, ωj,k) is given by
one of the following: (i) (VS-SQN) where F (., ω) is strongly convex and smooth, uk(xk, ωj,k) ,
∇xF (xk, ωj,k); (ii) Smoothed (VS-SQN) or (sVS-SQN) where F (., ω) is strongly convex and
nonsmooth and Fηk(x, ω) is a smooth approximation of F (x, ω), uk(xk, ωj,k) , ∇xFηk(xk, ωj,k);
(iii) Regularized (VS-SQN) or (rVS-SQN) where F (., ω) is convex and smooth and Fµk(., ω)
is a regularization of F (., ω), uk(xk, ωj,k) , ∇xFµk(xk, ωj,k); (iv) regularized and smoothed (VS-
SQN) or (rsVS-SQN) where F (., ω) is convex and possibly nonsmooth and Fηk,µk(., ω) denotes a
regularized smoothed approximation, uk(xk, ωj,k) , ∇xFηk,µk(xk, ωj,k). We recap these definitions
in the relevant sections. We briefly discuss our contibutions and accentuate the novelty of our work.

(I) A regularized smoothed L-BFGS update. A regularized smoothed L-BFGS update (rsL-BFGS)
is developed in Section 2.2, extending the realm of L-BFGS scheme to merely convex and possibly
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nonsmooth regimes by integrating both regularization and smoothing. As a consequence, SQN
techniques can now contend with merely convex and nonsmooth problems with convex constraints.

(II) Strongly convex problems. (II.i) (VS-SQN). In Section 3, we present a variable sample-size
SQN scheme and prove that the convergence rate is O(ρk) (where ρ < 1) while the iteration and
oracle complexity are proven to be O(κm+1 ln(1/ε)) and O(1/ε), respectively. Notably, our find-
ings are under a weaker assumption of either state-dependent noise (thereby extending the result
from [5]) and do not necessitate assumptions of twice continuous differentiability [32, 15] or Lip-
schitz continuity of Hessian [51]. (II.ii). (sVS-SQN). By integrating a smoothing parameter, we
extend (VS-SQN) to contend with nonsmooth but smoothable objectives. Via Moreau smooth-
ing, we show that (sVS-SQN) retains the optimal rate and complexity statements of (VS-SQN).
Additionally, in (II.i) and (II.ii), we derive rates that do not necessitate knowing either strong
convexity or Lipschitzian parameters and rely on employing diminishing steplength sequences.

(III) Convex problems. (III.i) (rVS-SQN). A regularized (VS-SQN) scheme is presented in Sec-
tion 4 based on the (rL-BFGS) update and admits a rate of O(1/k1−2ε) with an oracle complexity

of O
(
ε−

3+ε
1−ε
)

, improving prior rate statements for SQN schemes for smooth convex problems and

obviating prior inductive arguments. In addition, we show that (rVS-SQN) produces sequences
that converge to the solution in an a.s. sense. Under a suitable growth property, these statements
can be extended to the state-dependent noise regime. (III.ii) (rsVS-SQN). A regularized smoothed
(VS-SQN) is presented that leverages the (rsL-BFGS) update and allows for developing rate

O(k−
1
3 ) amongst the first known rates for SQN schemes for nonsmooth convex programs. Again

imposing a growth assumption allows for weakening the requirements to state-dependent noise.

(IV) Numerics. Finally, in Section 5, we apply the (VS-SQN) schemes on strongly convex/convex
and smooth/nonsmooth stochastic optimization problems. In comparison with variable sample-size
accelerated proximal gradient schemes, we observe that (VS-SQN) schemes compete well and out-
perform gradient schemes for ill-conditioned problems when the number of QN updates increases.
In addition, SQN schemes do far better in computing sparse solutions, in contrast with standard
subgradient and variance-reduced accelerated gradient techniques. Finally, via smoothing, (VS-
SQN) schemes can be seen to resolve both nonsmooth and constrained problems.

Notation. E[•] denotes the expectation with respect to the probability measure P and we
refer to ∇xF (x, ξ(ω)) by ∇xF (x, ω). We denote the optimal objective value (or solution) of (1)
by f∗ (or x∗) and the set of the optimal solutions by X∗, which is assumed to be nonempty. For
a vector x ∈ Rn and a nonempty set X ⊆ Rn, the Euclidean distance of x from X is denoted by
dist(x,X). Throughout the paper, unless specified otherwise, k denotes the iteration counter while
K represents the total number of steps employed in the proposed methods.

2 Background and Assumptions

In Section 2.1, we provide some background on smoothing techniques and then proceed to define the
regularized and smoothed L-BFGS method or (rsL-BFGS) update rule employed for generating the
sequence of Hessian approximations Hk in Section 2.2. We conclude this section with a summary
of the main assumptions in Section 2.3.
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2.1 Smoothing of nonsmooth convex functions

We begin by defining of L-smoothness and (α, β)-smoothability [1].

Definition 1. A function f : Rn → R is said to be L-smooth if it is differentiable and there exists
an L > 0 such that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Definition 2. [(α, β)-smoothable [1]] A convex function f : Rn → R is (α, β)-smoothable if there
exists a convex C1 function fη : Rn → R satisfying the following: (i) fη(x) ≤ f(x) ≤ fη(x) + ηβ
for all x; and (ii) fη(x) is α/η-smooth.

Some instances of (α, β)-smoothings [1] include the following: (i) If f(x) , ‖x‖2 and fη(x),
√
‖x‖22 + η2−

η, then f is (1, 1)−smoothable function; (ii) If f(x) , max{x1, x2, . . . , xn} and fη(x),η ln(
∑n

i=1 e
xi/η)−

η ln(n), then f is (1, ln(n))-smoothable; (iii) If f is a proper, closed, and convex function and

fη(x) , min
u

{
f(u) +

1

2η
‖u− x‖2

}
, (3)

(referred to as Moreau proximal smoothing) [31], then f is (1, B2)-smoothable where B denotes a
uniform bound on ‖s‖ where s ∈ ∂f(x).

It may be recalled that Newton’s method is the de-facto standard for computing a zero of a
nonlinear equation [34] while variants such as semismooth Newton methods have been employed for
addressing nonsmooth equations [10, 11]. More generally, in constrained regimes, such techniques
take the form of interior point schemes which can be viewed as the application of Newton’s method
on the KKT system. Quasi-Newton variants of such techniques can then we applied when second
derivatives are either unavailable or challenging to compute. However, in constrained stochastic
regimes, there has been far less available via a direct application of quasi-Newton schemes. We
consider a smoothing approach that leverages the unconstrained reformulation of a constrained
convex program where X is a closed and convex set and IX(x) is an indicator function:

min
x
f(x) + IX(x). (P)

Then the smoothed problem can be represented as follows:

min
x
f(x) + IX,η(x), (Pη)

where IX,η(·) denotes the Moreau-smoothed variant of IX(·) [31] defined as follows.

IX,η(x) , min
u∈Rn

{
IX(u) +

1

2η
‖x− u‖2

}
=

1

2η
d2
X(x), dX(x) , (x− proxIX (x)) = (x−ΠX(x)), (4)

ΠX(x) , argminy∈X{‖x − y‖2}, and the second equality follows from [1, Ex. 6.53]. Note that

IX,η is continuously differentiable with gradient at x given by 1
2η∇x(d2

X(x)) = 1
η (x− proxIX (x)) =

1
η (x−ΠX(x)). Our interest lies in reducing the smoothing parameter η after every iteration, a class
of techniques (called iterative smoothing schemes) that have been applied for solving stochastic
optimization [47, 21] and stochastic variational inequality problems [47]. Motivated by our recent
work [21] in which a smoothed variable sample-size accelerated proximal gradient scheme is proposed
for nonsmooth stochastic convex optimization, we consider a framework where at iteration k, an
ηk-smoothed function fηk is utilized where the Lipschitz constant of ∇fηk(x) is 1/ηk.
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2.2 Regularized and Smoothed L-BFGS Update

When the function f is strongly convex but possibly nonsmooth, we adapt the standard L-BFGS
scheme (by replacing the true gradient by a sample average) where the approximation of the inverse
Hessian Hk is defined as follows using pairs (si, yi) and ηi denotes a smoothing parameter:

si := xi − xi−1, (5)

yi :=

∑Ni−1

j=1 ∇xFηi(xi, ωj,i−1)

Ni−1
−
∑Ni−1

j=1 ∇xFηi(xi−1, ωj,i−1)

Ni−1
, (Strongly Convex (SC))

Hk,j :=

(
I− yis

T
i

yTi si

)T
Hk,j−1

(
I− yis

T
i

yTi si

)
+
sis

T
i

yTi si
, i := k − 2(m− j), 1 ≤ j ≤ m, ∀i

where Hk,0 =
sTk yk
yTk yk

I. At iteration i, we generate ∇xFηi(xi, ωj,i−1) and ∇xFηi(xi−1, ωj,i−1), implying

there are twice as many sampled gradients generated. Next, we discuss how the sequence of
approximations Hk is generated when f is merely convex and not necessarily smooth. We overlay
the regularized L-BFGS [29, 48] scheme with a smoothing, refering to the proposed scheme as
the (rsL-BFGS) update. As in (rL-BFGS) [48], we update the regularization and smoothing
parameters {ηk, µk} and matrix Hk at alternate iterations to keep the secant condition satisfied.
We update the regularization parameter µk and smoothing parameter ηk as follows.{

µk := µk−1, ηk := ηk−1, if k is odd

µk < µk−1, ηk < ηk−1, otherwise.
(6)

We construct the update in terms of si and yi for convex problems,

si := xi − xi−1, (7)

yi :=

∑Ni−1

j=1 ∇xFηδi (xi, ωj,i−1)

Ni−1
−
∑Ni−1

j=1 ∇xFηδi (xi−1, ωj,i−1)

Ni−1
+ µδ̄i si, (Convex (C))

where i is odd and 0 < δ, δ̄ ≤ 1 are scalars controlling the level of smoothing and regularization in
updating matrix Hk, respectively. The update policy for Hk is given as follows:

Hk :=

{
Hk,m, if k is odd

Hk−1, otherwise
(8)

where m < n (in large scale settings, m << n) is a fixed integer that determines the number of
pairs (xi, yi) to be used to estimate Hk. The matrix Hk,m, for any k ≥ 2m − 1, is updated using
the following recursive formula:

Hk,j :=

(
I− yis

T
i

yTi si

)T
Hk,j−1

(
I− yis

T
i

yTi si

)
+
sis

T
i

yTi si
, i := k − 2(m− j), 1 ≤ j ≤ m, ∀i, (9)

where Hk,0 =
sTk yk
yTk yk

I. It is important to note that our regularized method inherits the computational

efficiency from (L-BFGS). Note that Assumption 3 holds for our choice of smoothing.
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2.3 Main assumptions

A subset of our results require smoothness of F (·, ω) as formalized by the next assumption.

Assumption 1. (a) The function F (·, ω) is convex and continuously differentiable over Rn for any
ω ∈ Ω. (b) The function f is C1 and L-smooth over Rn.

We introduce the following assumptions of F (·, ω), parts of which are imposed in a subset of
results.

Assumption 2. (a) For every ω, F (·, ω) is τ -strongly convex. (b) For every ω, F (·, ω) is L-smooth.
(c) f(x) , g(x) + h(x), where g(x) , E[F (x, ω)], F (·, ω) is L-smooth and τ -strongly convex for
every ω, and h is a closed, convex, and proper function.

In Sections 3.2 (II) and 4.2, we assume the following on the smoothed functions Fη(·, ω).

Assumption 3. For any ω ∈ Ω, F (·, ω) is (1, β) smoothable, i.e. for any η > 0, there exists
Fη(·, ω) that is C1, convex, 1

η -smooth, and satisfies Fη(z, ω) ≤ F (z, ω) ≤ Fη(z, ω) + ηβ for any
z ∈ Rn and any ω ∈ Ω.

Let Fk , σ{x0, {ωj,0}N0
j=1, . . . , {ωj,k}

Nk
j=1}. Now assume the following on the conditional second

moment on the sampled gradient (in either the smooth or the smoothed regime) produced by the
stochastic first-order oracle.

Assumption 4 (Moment requirements for state-dependent noise).

(Smooth) Suppose w̄k,Nk , ∇xf(xk)−
∑Nk
j=1∇xF (xk,ωj,k)

Nk
.

(S-M) There exist ν1, ν2 > 0 such that E[‖w̄k,Nk‖2 | Fk] ≤
ν2
1‖xk‖2+ν2

2
Nk

a.s. for k ≥ 0.

(S-B) For k ≥ 0, E[w̄k,Nk | Fk] = 0, a.s.

(Nonsmooth) Suppose w̄k,Nk , ∇fηk(xk)−
∑Nk
j=1∇xFηk (xk,ωj,k)

Nk
, ηk > 0.

(NS-M) There exist ν1, ν2 > 0 such that E[‖w̄k,Nk‖2 | Fk] ≤
ν2
1‖xk‖2+ν2

2
Nk

a.s. for k ≥ 0.

(NS-B) For k ≥ 0, E[w̄k,Nk | Fk] = 0, a.s.

(Structured smooth) Suppose ūk = ∇xg(xk)−
∑Nk
j=1∇xF (xk,ωj,k)

Nk
.

(SS-M) There exist ν1, ν2 such that E[‖ūk,Nk‖2 | Fk] ≤
ν2
1‖xk‖2+ν2

2
Nk

a.s. for k ≥ 0.

(SS-B) For k ≥ 0, E[ūk,Nk | Fk] = 0, a.s.

Finally, we impose Assumption 1 on the sequence of Hessian approximations {Hk}. These prop-
erties follow when either the regularized update (rL-BFGS), the smoothed update (sL-BFGS),
or the regularized smoothed update (rsL-BFGS) is employed (see Lemmas 1, 7, 8, and 10).

Property 1 (Properties of Hk). (i) Hk is Fk-measurable; (ii) Hk is symmetric and positive
definite and there exist λk, λk > 0 such that λkI � Hk � λkI a.s. for all k ≥ 0.
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3 Smooth and nonsmooth strongly convex problems

In this section, we derive the rate and oracle complexity of the (rVS-SQN) scheme for smooth and
nonsmooth strongly convex problems by considering the (VS-SQN) and (sVS-SQN) schemes.

3.1 Smooth strongly convex optimization

We begin by considering (1) when f is τ−strongly convex and L−smooth. Suppose κ is defined
as κ , L/τ . Throughout, we consider the (VS-SQN) scheme, defined next, where Hk is generated
by the (L-BFGS) scheme.

xk+1 := xk − γkHk

∑Nk
j=1∇xF (xk, ωj,k)

Nk
. (VS-SQN)

Next, we derive bounds on the eigenvalues of Hk under strong convexity (see Appendix for proof).

Lemma 1 (Properties of Hk produced by (L-BFGS)). Suppose Assumptions 1 and 2 (a,b)
hold. Consider the (VS-SQN) method. Let si, yi and Hk be given by (5), where Fη = F . Then

Hk satisfies Property 1(S), with λk = λ = 1
L(m+n) and λk = λ = ((m+n)L)n+m−1

(n−1)!τn+m for all k.

Proposition 1 (Convergence in mean). Consider the iterates generated by the (VS-SQN)
scheme. Suppose Assumptions 1, 2 (a,b), and 4 (S-M), (S-B) hold. In addition, suppose {Nk} is

an increasing sequence. Then the following inequality holds for all k ≥ 1, where N0 ≥
2ν2

1λ
τ2λ

and

γk ,
1
Lλ

for all k.

E [f(xk+1)− f(x∗)] ≤
(

1− τλ

Lλ
+

2ν2
1

LτN0

)
E [f(xk)− f(x∗)] +

2ν2
1‖x∗‖2 + ν2

2

2LNk
.

Proof. See Appendix.

We now provide a result pivotal in deriving a rate and complexity statements under diminishing
steplengths, an avenue that obviates knowing strong convexity and Lipschitzian parameters.

Lemma 2. [[39], Lemma 5] Suppose {uk} is a nonnegative sequence, where

uk+1 ≤
(

1− c

ks

)
uk +

d

kt
, k ≥ 0 (10)

where 0 < s < 1, s < t, and c, d > 0. Then for k ≥ K,

uk ≤
d

ckt−s
+ o

(
1

kt−s

)
.

Theorem 1 (Optimal rate and oracle complexity). Consider the iterates generated by the
(VS-SQN) scheme. Suppose Assumptions 1, 2 (a,b) and 4 (S-M), (S-B) hold. In addition, suppose
γk = 1

Lλ
for all k.

(i) If a ,
(

1− τλ

Lλ
+

2ν2
1

LτN0

)
, Nk , dN0ρ

−ke where ρ < 1 and N0 ≥
2ν2

1λ
τ2λ

. Then for every k ≥ 1

and some scalar C, the following holds: E [f(xK+1)− f(x∗)] ≤ C(max{a, ρ})K .

9



(ii) Suppose xK+1 is an ε-solution such that E[f(xK+1)−f∗] ≤ ε. Then the iteration and oracle

complexity of (VS-SQN) are O(κm+1 ln(1/ε)) and O(κ
m+1

ε ), respectively implying that
∑K

k=1Nk ≤
O
(
κm+n+1

ε

)
.

(iii) Suppose γk = k−s and Nk = dkp−se for every k where 0 < s < 1 and s < p. In addition,

suppose c , λτ
2 and d , λ

2
L(2ν2

1‖x∗‖2+ν2
2 )

2 . Then for K sufficiently large, we have that

E [f(xk+1)− f(x∗)] ≤
(
d

ckp

)
+ o

(
1

kp

)
, k ≥ K.

Proof. See Appendix.

We prove a.s. convergence of iterates by using the super-martingale convergence lemma from [39].

Lemma 3 (super-martingale convergence theorem). Let {vk} be a sequence of nonnegative
random variables, where E[v0] < ∞ and let {χk} and {βk} be deterministic scalar sequences such
that 0 ≤ χk ≤ 1 and βk ≥ 0 for all k ≥ 0,

∑∞
k=0 χk =∞,

∑∞
k=0 βk <∞, and limk→∞

βk
χk

= 0, and
E[vk+1 | Fk] ≤ (1− χk)vk + βk a.s. for all k ≥ 0. Then, vk → 0 almost surely as k →∞.

Theorem 2 (a.s. convergence under strong convexity). Consider the iterates generated by
the (VS-SQN) scheme. Suppose Assumptions 1, 2 (a,b), and 4 (S-M), (S-B) hold. In addition,
suppose γk = 1

Lλ
for all k ≥ 0. Let {Nk}k≥0 be an increasing sequence such that

∑∞
k=0

1
Nk

< ∞

and N0 >
2ν2

1λ
τ2λ

. Then limk→∞ f(xk) = f(x∗) almost surely.

Proof. From Assumption 2 (a,b), f is τ -strongly convex and L-smooth. Recall that in (31), we
derived the following for k ≥ 0.

E [f(xk+1)− f(x∗) | Fk] ≤
(

1− τγkλ+
2ν2

1

LτNk

)
(f(xk)− f(x∗)) +

2ν2
1‖x∗‖2 + ν2

2

2LNk
.

If vk , f(xk)−f(x∗), χk , τγkλ−
2ν2

1
LτNk

, βk ,
2ν2

1‖x∗‖2+ν2
2

2LNk
, γk = 1

Lλ
, and {Nk}k≥0 be an increasing

sequence such that
∑∞

k=0
1
Nk

< ∞ where N0 >
2ν2

1λ
τ2λ

, (e.g. Nk ≥ dN0k
1+εe) the requirements of

Lemma 3 are seen to be satisfied. Hence, f(xk)−f(x∗)→ 0 a.s. as k →∞ and by strong convexity
of f , it follows that ‖xk − x∗‖2 → 0 a.s.

Having presented the variable sample-size SQN method, we now consider the special case where
Nk = 1. Similar to Proposition 1, the following inequality holds for Nk = 1:

E [f(xk+1)− f(x∗)] ≤ f(xk)− f(x∗)− γk
(

1− L

2
γkλ

)
‖H1/2

k ∇f(xk)‖2 +
γ2
kλ

2
L(ν2

1‖xk‖2 + ν2
2)

2

≤
(

1− 2γk
L2

τ
λ(1− L

2
γkλ)

)
(f(xk)− f(x∗)) +

γ2
kλ

2
L(ν2

1‖xk − x∗ + x∗‖2 + ν2
2)

2

≤

(
1− 2γkλ

L2

τ
+ γ2

kλ
2L3

τ
+

2ν2
1γ

2
kλ

2
L

τ

)
(f(xk)− f(x∗)) +

γ2
kλ

2
L(2ν2

1‖x∗‖2 + ν2
2)

2
, (11)

where the second inequality is obtained by using Lipschitz continuity of ∇f(x) and the strong
convexity of f(x). Next, to obtain the convergence rate of SQN, we use the following lemma [46].
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Lemma 4. Suppose ek+1 ≤ (1 − 2aγk + γ2
kb)ek + γ2

kc for all k ≥ 1. Let γk = γ/k, γ > 1/(2a),

K , d γ2b
2aγ−1e+ 1 and Q(γ,K) , max

{
γ2c

2aγ−γ2b/K−1
,KeK

}
. Then ∀k ≥ K, ek ≤ Q(γ,K)

k .

Now from inequality (11) and Lemma 4, the following proposition follows.

Proposition 2 (Rate of convergence of SQN with Nk = 1). Consider the iterates generated

by the (VS-SQN) scheme. Suppose Assumptions 1–2, and 4 (S-M),(S-B) hold. Let a = L2λ
τ ,

b =
λ

2
L3+2ν2

1λ
2
L

τ and c =
λ

2
L(2ν2

1‖x∗‖2+ν2
2 )

2 . Then, γk = γ
k , γ > 1

Lλ
and Nk = 1 the following

holds: E [f(xk+1)− f(x∗)] ≤ Q(γ,K)
k , where Q(γ,K) , max

{
γ2c

2aγ−γ2b/K−1
,K(f(xK)− f(x∗))

}
and

K , d γ2b
2aγ−1e+ 1.

Remark 1. It is worth emphasizing that the proof techniques, while aligned with avenues adopted
in [6, 13, 5], extend results in [5] to the regime of state-dependent noise [13]. We also observe that
in the analysis of deterministic/stochastic first-order methods, any non-asymptotic rate statements
rely on utilizing problem parameters (e.g. the strong convexity modulus, Lipschitz constants, etc.).
Similarly, in the context of QN methods, obtaining non-asymptotic bounds also requires λ and λ
(cf. [5, Theorem 3.1], [3, Theorem 3.4], and [44, Lemma 2.2]) since the impact of Hk needs to
be addressed. One avenue for weakening the dependence on such parameters lies in using line
search schemes. However when the problem is expectation-valued, the steplength arising from a
line search leads to a dependence between the steplength (which is now random) and the direction.
Consequently, standard analysis fails and one has to appeal to more refined analysis (cf. [18, 8, 35,
43]). This remains the focus of future work.

Remark 2. Note that Assumption 2, F (·, ω) is L-smooth and τ -strongly convex for every ω and
is commonly employed in stochastic quasi-Newton schemes; cf. [3, 7, 30]. This is necessitated by
the need to provide bounds on the eigenvalues of Hk. While deriving such Lipschitz constants is
challenging, there are instances when this is possible.
(i) Consider the following problem.

min
x∈X

f(x) , E
[

1
2x

TQ(ω)x+ cTx
]
.

If one has access to the form of Q(ω), then by leveraging Jensen’s inequality and under suitable
integrability requirements, one may be able to prove that f is L-smooth. More generally, if ∇xf(x) =
E[∇xf(x, ω)] and ∇xf(·, ω) is L(ω)-Lipschitz where L(ω) has finite mean given by L, then one may
conclude that f is L-smooth. We may either derive L (if we have access to the structure of L(ω))
or postulate the existence of L if L(ω) has finite expectation.
(ii) Suppose we consider the setting when F (·, ξ) is the `2-squared loss function; i.e. F (x, ξi) ,
1
2(aTi x−bi)2 where ai ∈ Rn and bi ∈ R denote the ith pair of the input and output data, respectively,

and ξi , (ai; bi) ∈ Rn+1. We obtain that ∇F (x, ξi) = (aTi x − bi)ai = (aia
T
i )x − biai. This implies

that ∇F (·, ξi) is a Lipschitz continuous mapping with the parameter Lξi := ‖aiaTi ‖2. If ξ is assumed
to have finite support based on an empirical distribution, we have that

∇f(x) = E [∇F (x, ξ)] =
1

N

N∑
i=1

∇F (x, ξi).

11



From the preceding relation and that every sample path function is L(ξ)-smooth, for any x, y ∈ Rn:

‖∇f(x)−∇f(y)‖2 = ‖E [∇F (x, ξi)−∇F (y, ξi)]‖2 ≤
∑N

i=1 ‖∇F (x, ξi)−∇F (y, ξi)‖2
N

≤
∑N

i=1 ‖aiaTi ‖2‖x− y‖2
N

.

This implies that f(x) , E [F (x, ξ)] has Lipschitz gradients with the parameter L , 1
N

∑N
i=1 ‖aiaTi ‖2.

We, however, note that the computation of L may become costly in cases where either N or n are
massive. This can be addressed to some extent by deriving an upper bound on L as follows:

L ,

∑N
i=1 ‖aiaTi ‖2

N
≤
∑N

i=1 ‖ai‖∞‖ai‖2
N

≤ maxi ‖ai‖∞
N

N∑
i=1

‖ai‖2 ≤
‖A‖F maxi ‖ai‖∞√

N
,

where A ∈ RN×n is defined as A = [aT1 ; . . . ; aTN ] and ‖A‖F denotes the Frobenius norm of A.

3.2 Nonsmooth strongly convex optimization

Consider (1) where f is a strongly convex but nonsmooth function. In this section, we focus on
the case where f(x) , h(x) + g(x), h is a deterministic, closed, convex, and proper function, g is
L−smooth and strongly convex, F (·, ω) is a convex function for every ω, where g(x) , E[F (x, ω)].
We begin by noting that the Moreau envelope of f , denoted by fη and defined as (3), retains both
the minimizers of f as well as its strong convexity as captured by the following result based on [38,
Lemma 2.19].

Lemma 5. Consider a convex, closed, and proper function f and its Moreau envelope fη. Then
the following hold: (i) x∗ is a minimizer of f over Rn if and only if x∗ is a minimizer of fη(x);
(ii) f is σ-strongly convex on Rn if and only if fη is σ

ησ+1 -strongly convex on Rn.

Consequently, it suffices to minimize the (smooth) Moreau envelope with a fixed smoothing
parameter η, as shown in the next result. For notational simplicity, we choose m = 1 but the rate
results hold for m > 1 and define fNk(x) , h(x)+ 1

Nk

∑Nk
j=1 F (x, ωj,k). Throughout this subsection,

we consider the smoothed variant of (VS-SQN), referred to the (sVS-SQN) scheme, defined
next, where Hk is generated by the (sL-BFGS) update rule, ∇xfηk(xk) denotes the gradient of
the Moreau-smoothed function, given by 1

ηk
(xk − proxηk,f (xk)), while ∇xfηk,Nk(xk), the gradient

of the Moreau-smoothed and sample-average function fNk(x), is defined as 1
ηk

(xk−proxηk,fNk
(xk))

and w̄k , ∇xfηk,Nk(xk)−∇xfηk(xk). Consequently the update rule for xk becomes the following.

xk+1 := xk − γkHk(∇xfηk(xk) + w̄k), (sVS-SQN)

and the update rule of L-BFGS that we use in this section is as follows:

si := xi − xi−1, yi := ∇xfηi,Ni−1(xi)−∇xfηi,Ni−1(xi−1),

Hk,j :=

(
I− yis

T
i

yTi si

)T
Hk,j−1

(
I− yis

T
i

yTi si

)
+
sis

T
i

yTi si
, i := k − 2(m− j), 1 ≤ j ≤ m, ∀i.

At each iteration of (sVS-SQN), the error in the gradient is captured by w̄k. We show that w̄k
satisfies Assumption 4 (NS) by utilizing the following assumption on the gradient of function.
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Assumption 5. Suppose there exists ν1, ν2 > 0 such that for all i ≥ 1, E[‖ūk‖2 | Fk] ≤
ν2
1‖xk‖2+ν2

2
Nk

holds almost surely, where ūk = ∇xg(xk)−
∑Nk
j=1∇xF (xk,ωj,k)

Nk
.

Lemma 6. Suppose Assumptions 1, 2 (a,c), and 4 hold. Let fη denote the Moreau smoothed

approximation of f and η < 2/L. Then, E[‖w̄k‖2 | Fk] ≤
4(ν2

1‖xk‖2+ν2
2 )

τ2η2Nk
for all k ≥ 0.

Proof. We begin by noting that fNk(x) is convex. Consider the two problems:

proxη,f (xk) , arg min
u

[
f(u) +

1

2η
‖xk − u‖2

]
, (12)

proxη,fNk
(xk) , arg min

u

[
fNk(u) +

1

2η
‖xk − u‖2

]
. (13)

Suppose x∗k and x∗Nk denote the optimal unique solutions of (12) and (13), respectively. From the
definition of Moreau smoothing, it follows that

w̄k = ∇xfη,Nk(xk)−∇xfη(xk) =
1

η
(xk − proxη,fNk

(xk))−
1

η
(xk − proxη,f (xk))

= proxη,fNk
(xk)− proxη,f (xk) =

1

η
(x∗Nk − x

∗
k),

which implies E[‖w̄k‖2 | Fk] = 1
η2E[‖x∗k − x∗Nk‖

2 | Fk]. The following inequalities are a consequence

of invoking strong convexity of f , convexity of fNk and the optimality conditions of (12) and (13):

f(x∗Nk) +
1

2η
‖x∗Nk − xk‖

2 ≥ f(x∗k) +
1

2η
‖x∗k − xk‖2 +

1

2

(
τ +

1

η

)
‖x∗k − x∗Nk‖

2,

fNk(x∗k) +
1

2η
‖x∗k − xk‖2 ≥ fNk(x∗Nk) +

1

2η
‖x∗Nk − xk‖

2+
1

2η
‖x∗Nk − x

∗
k‖2.

Adding the above inequalities, we have that

f(x∗Nk)− fNk(x∗Nk) + fNk(x∗k)− f(x∗k) ≥
(
τ

2
+

1

η

)
‖x∗Nk − x

∗
k‖2.

From the definition of fNk(xk) and β , τ
2 + 1

η , and by the convexity of F (·, ω) in x for a.e. ω and
and L−smoothness of function g, we may prove the following.

β‖x∗k − x∗Nk‖
2 ≤ f(x∗Nk)− fNk(x∗Nk) + fNk(x∗k)− f(x∗k)

=

∑Nk
j=1(g(x∗Nk)− F (x∗Nk , ωj,k))

Nk
+

∑Nk
j=1(F (x∗k, ωj,k)− g(x∗k))

Nk

≤

∑Nk
j=1

(
g(x∗k) +∇xg(x∗k)

T (x∗Nk − x
∗
k) + L

2 ‖x
∗ − x∗Nk‖

2 − F (x∗k, ωj,k)−∇xF (x∗k, ωj,k)
T (x∗Nk − x

∗
k)
)

Nk

+

∑Nk
j=1(F (x∗k, ωj,k)− g(x∗k))

Nk
=

∑Nk
j=1(∇xg(x∗k)−∇xF (x∗k, ωj,k))

T (x∗Nk − x
∗
k)

Nk
+ L

2 ‖x
∗ − x∗Nk‖

2

= ūTk (x∗Nk − x
∗
k) + L

2 ‖x
∗
k − x∗Nk‖

2.
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Consequently, by taking conditional expectations and using Assumption 5, we have the following.

E[β‖x∗k − x∗Nk‖
2 | Fk] = E[ūTk (x∗Nk − x

∗
k) | FK ] + L

2 E[‖x∗k − x∗Nk‖
2 | Fk]

≤ 1
τE[‖ūk‖2 | Fk] + ( τ4 + L

2 )E[‖x∗k − x∗Nk‖
2 | Fk]

=⇒ E[‖x∗k − x∗Nk‖
2 | Fk] ≤ 4

τ2E[‖ūk‖2 | Fk] ≤ 4
τ2

ν2
1‖xk‖2+ν2

2
Nk

, if η < 2/L.

We may then conclude that E[‖w̄k,Nk‖2 | Fk] ≤
4(ν2

1‖xk‖2+ν2
2 )

η2τ2Nk
.

Next, we derive bounds on the eigenvalues of Hk under strong convexity (similar to Lemma 1).

Lemma 7 (Properties of Hk produced by (sL-BFGS)). Suppose Assumptions 1 and 2 (a,c)
hold. Let si, yi and Hk be given by (5). Then Hk satisfies Property 1 with λk = ηk

(m+n) and

λk =
(
n+m
ηk

)m+n−1 (
1

(n−1)!τn+m

)
.

We now show that under Moreau smoothing, a linear rate of convergence is retained.

Theorem 3. Consider the iterates generated by the (sVS-SQN) scheme where ηk = η for all
k. Suppose Assumptions 1, 2(a,c), 4(SS-M, SS-B) and 5 hold. In addition, suppose m = 1,

η ≤ min{2/L, (8(n + 1)2/τ2)1/3}, d , 1 − τ2η3

8(n+1)2(1+ητ)
, Nk , dN0q

−ke for all k ≥ 1, N0 ≥
5(1+ητ)2

τ4

(ν2
1 )

ηγλ γ , τη2

4(1+n) , c1 , max{q, d}, and c2 , min{q, d}. (i) (a) Suppose c1 > c2. Then

E[‖xk+1 − x∗‖2] ≤ Dck+1
1 for all k where where

D ,

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+

(
10(1 + ητ)(2ν2

1‖x∗‖2 + ν2
2)

4τ3ηN0(c1 − c2)

)
.

(b) Suppose c1 = c2. Then E[‖xK+1 − x∗‖2] ≤ Dd̃K+1 where d̃ ∈ (d, 1), D̃ > 1
ln(d̃/d)e

, and

D ,

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+

(
10(1 + ητ)(2ν2

1‖x∗‖2 + ν2
2)D̃

4τ3ηN0d

)
.

(ii) Suppose xK+1 is an ε-solution such that E[f(xK+1)− f∗] ≤ ε. Then, the iteration and oracle
complexity of computing xK+1 are O(ln(1/ε)) steps and O (1/ε), respectively.
(iii) Suppose γk = k−s and Nk = dkpe where 0 < s < 1 and s < p. Suppose c , λτ

2(1+ητ) ,

d ,
(
λ

2

η + η
4

)
(8ν2

1‖x∗‖2+4ν2
2 )

τ2η2 , and d̃ , (1+ητ)d
τ . Then for K sufficiently large, we have that

E
[
‖xk − x∗‖2

]
≤ d̃

ckp
+ o

(
1

kp

)
, for k ≥ K.
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Proof. (i) From Lipschitz continuity of ∇fη and update (sVS-SQN), we have the following:

fη(xk+1) ≤ fη(xk) +∇fη(xk)T (xk+1 − xk) +
1

2η
‖xk+1 − xk‖2

= fη(xk) +∇fη(xk)T (−γHk(∇fη(xk) + w̄k,Nk)) +
1

2η
γ2 ‖Hk(∇fη(xk) + w̄k,Nk)‖ 2

= fη(xk)− γ∇fη(xk)THk∇fη(xk)− γ∇fη(xk)THkw̄k,Nk +
γ2

2η
‖Hk∇fη(xk)‖2

+
γ2

2η
‖Hkw̄k,Nk‖

2 +
γ2

η
Hk∇fη(xk)THkw̄k,Nk

≤ fη(xk)− γ∇fη(xk)THk∇fη(xk) +
η

4
‖w̄k,Nk‖

2 +
γ2

η
‖∇fη(xk)THk‖2 +

γ2

2η
‖Hk∇fη(xk)‖2

+
λ

2
γ2

2η
‖w̄k,Nk‖

2 +
γ2

2η
‖Hk∇fη(xk)‖2 +

λ
2
γ2

2η
‖w̄k,Nk‖

2,

where in the last inequality, we use the fact that 2aT b ≤ η
2γ ‖a‖

2 + 2γ
η ‖b‖

2. From Lemma 6,

E[‖w̄k‖2 | Fk] ≤
4(ν2

1‖xk‖2+ν2
2 )

η2τ2Nk
. Now by taking conditional expectations with respect to Fk, using

Lemma 7, we obtain the following.

E [fη(xk+1)− fη(xk) | Fk]

≤ −γ∇fη(xk)THk∇fη(xk) +
2γ2

η
‖Hk∇fη(xk)‖2 +

(
λ

2
γ2

η
+
η

4

)
4(ν2

1‖xk‖2 + ν2
2)

τ2η2Nk
(14)

= γ∇fη(xk)TH
1/2
k

(
−I +

2γ

η
HT
k

)
H

1/2
k ∇fη(xk) +

(
λ

2
γ2

η
+
η

4

)
4(ν2

1‖xk‖2 + ν2
2)

τ2η2Nk

≤ −γ
(

1− 2γ

η
λ

)
‖H1/2

k ∇fη(xk)‖
2 +

(
λ

2
γ2

η
+
η

4

)
8(ν2

1‖xk − x∗‖2)

τ2η2Nk

+

(
λ

2
γ2

η
+
η

4

)
(8ν2

1‖x∗‖2 + 4ν2
2)

τ2η2Nk

=
−γ
2
‖H1/2

k ∇fη(xk)‖
2 +

(
5η

16

)
8(ν2

1‖xk − x∗‖2)

τ2η2Nk
+

(
5η

16

)
(8ν2

1‖x∗‖2 + 4ν2
2)

τ2η2Nk

=
−γ
2
‖H1/2

k ∇fη(xk)‖
2 +

(
5η

2

)
(ν2

1‖xk − x∗‖2)

τ2η2Nk
+

(
5η

4

)
(2ν2

1‖x∗‖2 + ν2
2)

τ2η2Nk
,

where the second equality follows from γ = η

4λ
. Since fη is τ/(1 + ητ)-strongly convex (Lemma 5),

‖∇fη(xk)‖2 ≥ 2τ/(1+ητ) (fη(xk)− fη(x∗)) and fη(xk)−fη(x∗) ≥ τ
(1+ητ)‖xk−x

∗‖2. Consequently,
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by subtracting fη(x
∗) from both sides by invoking Lemma 7, we obtain

E [fη(xk+1)− fη(x∗) | Fk]

≤ fη(xk)− fη(x∗)−
γλ

2
‖∇fη(xk)‖2 +

5(ν2
1‖xk − x∗‖2)

2τ2ηNk
+

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk

≤
(

1− τ

1 + ητ
γλ+

(1 + ητ)

τ

(5ν2
1)

2τ2ηNk

)
(fη(xk)− fη(x∗)) +

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk

≤
(

1− τ

1 + ητ
γλ+

5ν2
1(1 + ητ)

2τ3ηN0

)
(fη(xk)− fη(x∗)) +

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk
. (15)

By observing the following relations,

− τ

1 + ητ
γλ+

5ν2
1(1 + ητ)

2τ3ηN0
≤ −1

2

τ

1 + ητ
γλ ⇐⇒ 5ν2

1(1 + ητ)

2τ3ηN0
≤ 1

2

τ

1 + ητ
γλ

⇐⇒ N0 ≥
5ν2

1(1 + ητ)2

τ4ηγλ
,

we may then conclude that if N0 ≥ 5(1+ητ)2

τ4

(ν2
1 )

ηγλ , we have that

E [fη(xk+1)− fη(x∗) | Fk] ≤
(

1− τ

2(1 + ητ)
γλ

)
(fη(xk)− fη(x∗)) +

4(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk
.

Then by taking unconditional expectations, we obtain the following sequence of inequalities:

E [fη(xk+1)− fη(x∗)] ≤
(

1− τ

2(1 + ητ)
γλ

)
E [fη(xk)− fη(x∗)] +

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk

=

(
1− (τη)n+2(n− 1)!

8(n+ 1)n+1(1 + ητ)

)
E [fη(xk)− fη(x∗)] +

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηNk
, (16)

where the last equality arises from choosing λ = η
1+n , λ = 1+n

τη (by Lemma 7 for m = 1), γ =

η

4λ
= τη2

4(1+n) and using the fact that Nk ≥ N0 for all k > 0. Let d ,
(

1− (τη)n+2(n−1)!
8(n+1)n+1(1+ητ)

)
and

bk , 5(2ν2
1‖x∗‖2+ν2

2 )
4τ2ηNk

. Then for η < 1
τ

(
8(n+1)n+1

(n−1)!

)1/(n+2)
, we have d < 1. Furthermore, by recalling

that Nk = dN0q
−ke, it follows that bk ≤

5(2ν2
1‖x∗‖2+ν2

2 )qk

4τ2ηN0
, we obtain the following bound from (16).

E [fη(xK+1)− fη(x∗)] ≤ dK+1E[fη(x0)− fη(x∗)] +

K∑
i=0

dK−ibi

≤ dK+1E[fη(x0)− fη(x∗)] +
5(2ν2

1‖x∗‖2 + ν2
2)

4τ2ηN0

K∑
i=0

dK−iqi.

We now consider three cases.
Case (1) q < d. If q < d, then

∑K
i=0 d

K−iqi = dK
∑K

i=0(q/d)i ≤ dK
(

1
1−q/d

)
. Since fη retains

the minimizers of f , τ
2(1+ητ)‖xk − x

∗‖2 ≤ fη(xk)− fη(x∗)) by strong convexity of fη, implying the
following.

τ

2(1 + ητ)
E[‖xK+1 − x∗‖2] ≤ dK+1E[fη(x0)− fη(x∗)] + dK

5(2ν2
1‖x∗‖2 + ν2

2)

4τ2ηN0 (1− q/d)
.
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Dividing both sides by τ
2(1+ητ) , the desired result is obtained.

E[‖xK+1 − x∗‖2] ≤ dK+1

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+ dK

10(1 + ητ)(2ν2
1‖x∗‖2 + ν2

2)

4τ3ηN0 (1− q/d)
= DdK+1,

where D ,

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+

(
10(1 + ητ)(2ν2

1‖x∗‖2 + ν2
2)

4τ3ηN0(d− q)

)
.

Case (2) q > d. Similarly, if d < q, E[‖xK+1 − x∗‖2] ≤ DqK+1 where

D ,

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+

(
10(1 + ητ)(2ν2

1‖x∗‖2 + ν2
2)

4τ3ηN0(q − d)

)
.

Case (3) q = d. Then, we have that

K∑
i=0

dK−iqi = (K + 1)dK ≤ 1

d
(K + 1)dk+1 ≤ 1

dD̃d̃
K+1,

where d̃ ∈ (d, 1) and D̃ > 1
ln(d̃/d)e

. Consequently, we have that E[‖xK+1 − x∗‖2] ≤ Dd̃K+1 where

D ,

(
2E[fη(x0)− fη(x∗)](1 + ητ)

τ

)
+

(
10(1 + ητ)(2ν2

1‖x∗‖2 + ν2
2)D̃

4τ3ηN0d

)
.

(ii) To find an xK+1 such that E[‖xK+1 − x∗‖2] ≤ ε, suppose d < q with no loss of generality.
Then for some C > 0, CqK ≤ ε, implying that K = dlog1/q(C/ε)e. It follows that

K∑
k=0

Nk ≤
1+log1/q(Cε )∑

k=0

N0q
−k = N0

((
1
q

)(
1
q

)log 1/q
(
C
ε

)
− 1

)
(1/q − 1)

≤ N0

(
C
ε

)
1− q

= O(1/ε).

(iii) Similar to (14) and (15) we can obtain:

E [fη(xk+1)− fη(xk) | Fk] ≤ −γk
(

1− 2γk
η
λ

)
‖H1/2

k ∇fη(xk)‖
2 +

(
λ

2
γ2
k

η
+
η

4

)
8(ν2

1‖xk − x∗‖2)

τ2η2Nk

+

(
λ

2
γ2
k

η
+
η

4

)
(8ν2

1‖x∗‖2 + 4ν2
2)

τ2η2Nk

=⇒ E [fη(xk+1)− fη(x∗) | Fk] ≤
(

1− γk
(

1− 2γk
η
λ

)
λτ

1+ητ + 1+τη
τ

(
λ

2
γ2
k

η + η
4

)
8ν2

1
η2τ2Nk

)
(fη(xk)− fη(x∗))

+

(
λ

2
γ2
k

η
+
η

4

)
(8ν2

1‖x∗‖2 + 4ν2
2)

τ2η2Nk
.
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Since γk is a diminishing sequence and Nk is an increasing sequence, for sufficiently large K we

have that
2γ2
kλλτ

η(1+ητ) + 1+τη
τ

(
λ

2
γ2
k

η + η
4

)
8ν2

1
η2τ2Nk

≤ 1
2

(
γkλτ
1+ητ

)
. Therefore, we obtain:

E [fη(xk+1)− fη(x∗) | Fk] ≤ (1− cγk) (f(xk)− f(x∗)) + d
Nk
, for k ≥ K,

where we use the fact that γk ≤ 1 and we set c = λτ
2(1+ητ) and d =

(
λ

2

η + η
4

)
(8ν2

1‖x∗‖2+4ν2
2 )

τ2η2 . Since

γk = 1
ks and Nk = dkp+se where 0 < s < 1 and p > 0, by taking unconditional expecations,

E [fη(xk)− fη(x∗)] ≤
d

ckp
+ o

(
1
kp

)
, for k ≥ K.

By leveraging the τ
1+ητ -strong convexity of fη, we may claim that

E
[
‖xk − x∗‖2

]
≤ (1 + ητ)d

cτkp
+ o

(
1

kp

)
, for k ≥ K.

4 Smooth and nonsmooth convex optimization

In this section, we weaken the strong convexity requirement and analyze the rate and oracle com-
plexity of (rVS-SQN) and (rsVS-SQN) in smooth and nonsmooth regimes, respectively.

4.1 Smooth convex optimization

Consider the setting when f is an L-smooth convex function. In such an instance, a regularization
of f and its gradient can be defined as follows.

Definition 3 (Regularized function and gradient map). Given a sequence {µk} of positive
scalars, the function fµk and its gradient ∇fk(x) are defined as follows for any x0 ∈ Rn:

fµk(x) , f(x) +
µk
2
‖x− x0‖2, for any k ≥ 0, ∇fµk(x) , ∇f(x) + µk(x− x0), for any k ≥ 0.

Then, fµk and ∇fµk satisfy the following: (i) fµk is µk-strongly convex; (ii) fµk has Lipschitzian
gradients with parameter L+µk; (iii) fµk has a unique minimizer over Rn, denoted by x∗k. Moreover,
for any x ∈ Rn [39, sec. 1.3.2],

2µk(fµk(x)− fµk(x∗k)) ≤ ‖∇fµk(x)‖2 ≤ 2(L+ µk) (fµk(x)− fµk(x∗k)) .

We consider the following update rule (rVS-SQN), where Hk is generated by rL-BFGS
scheme.

xk+1 := xk − γkHk

∑Nk
j=1∇xFµk(xk, ωj,k)

Nk
. (rVS-SQN)

For a subset of the results, we assume quadratic growth property.
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Assumption 6. (Quadratic growth) Suppose that the function f has a nonempty set X∗ of
minimizers. There exists α > 0 such that f(x) ≥ f(x∗) + α

2 dist2(x,X∗) holds for all x ∈ Rn:

In the next lemma the bound for eigenvalues of Hk is derived (see Lemma 6 in [48]).

Lemma 8 (Properties of Hessian approximations produced by (rL-BFGS)). Consider the
(rVS-SQN) method. Let Hk be given by the update rule (8)-(9) with ηk = 0 for all k, and si and
yi are defined in (7). Suppose µk is updated according to the procedure (6). Let Assumption. 1(a,b)
hold. Then the following hold.

(a) For any odd k > 2m, sTk yk > 0; (b) For any odd k > 2m, Hkyk = sk;

(c) For any k > 2m, Hk satisfies Assumption 1(S), λ = 1

(m+n)(L+µδ̄0)
, λ =

(m+n)n+m−1(L+µδ̄0)
n+m−1

(n−1)!

and λk = λµ
−δ̄(n+m)
k , for scalars δ, δ̄ > 0. Then for all k, we have that Hk = HT

k and
E[Hk | Fk] = Hk and λI � Hk � λkI both hold in an a.s. fashion.

Lemma 9 (An error bound). Consider the (VS-SQN) method and suppose Assumptions 1, 4(S-
M), 4(S-B), 1(S) and 6 hold. Suppose {µk} is a non-increasing sequence, and γk satisfies

γk ≤
λ

λ
2
k(L+ µ0)

, for all k ≥ 0. (17)

Then, the following inequality holds for all k:

E[fµk+1
(xk+1) | Fk]− f∗ ≤ (1− λµkγk)(fµk(xk)− f∗) +

λdist2(x0, X
∗)

2
µ2
kγk

+
(L+ µk)λ

2
k(ν

2
1‖xk‖2 + ν2

2)

2Nk
γ2
k . (18)

Proof. By the Lipschitzian property of ∇fµk , update rule (rVS-SQN) and Def. 3, we obtain

fk(xk+1) ≤ fµk(xk) +∇fµk(xk)
T (xk+1 − xk) +

(L+ µk)

2
‖xk+1 − xk‖2

≤ fµk(xk)− γk∇fµk(xk)
THk(∇fµk(xk) + w̄k,Nk)︸ ︷︷ ︸

Term 1

+
(L+ µk)

2
γ2
k ‖Hk(∇fµk(xk) + w̄k,Nk)‖2︸ ︷︷ ︸

Term 2

, (19)

where w̄k,Nk ,
∑Nk
j=1(∇xFµk (xk,ω(ωj,k))−∇fµk (xk))

Nk
. Next, we estimate the conditional expectation of

Terms 1 and 2. From Assumption 1, we have

Term 1 = ∇fµk(xk)
THk∇fµk(xk) +∇fµk(xk)

THkw̄k,Nk ≥ λ‖∇fµk(xk)‖2 +∇fµk(xk)
THkw̄k,Nk .

Thus, taking conditional expectations, from (19), we obtain

E[Term 1 | Fk] ≥ λ‖∇fµk(xk)‖2 + E[∇fµk(xk)
THkw̄k,Nk | Fk]

= λ‖∇fµk(xk)‖2 +∇fµk(xk)
THkE[w̄k,Nk | Fk] = λ‖∇fµk(xk)‖2, (20)
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where E[w̄k,Nk | Fk] = 0 and E[Hk | Fk] = Hk a.s. Similarly, invoking Assumption 1(S), we may
bound Term 2.

Term 2 = (∇fµk(xk) + w̄k,Nk)TH2
k(∇fµk(xk) + w̄k,Nk) ≤ λk

2‖∇fµk(xk) + w̄k,Nk‖
2

= λk
2 (‖∇fµk(xk)‖2 + ‖w̄k,Nk‖

2 + 2∇fµk(xk)
T w̄k,Nk

)
.

Taking conditional expectations in the preceding inequality and using Assumption 4 (S-M), 4 (S-B),
we obtain

E[Term 2 | Fk] ≤ λ
2
k

(
‖∇fµk(xk)‖2 + E[‖w̄k,Nk‖

2 | Fk]

+ 2∇fµk(xk)
TE[w̄k,Nk | Fk]

)
≤ λ2

k

(
‖∇fµk(xk)‖2 +

ν2
1‖xk‖2 + ν2

2

Nk

)
. (21)

By taking conditional expectations in (19), and by (20)–(21),

E[fµk(xk+1) | Fk] ≤ fµk(xk)− γkλ‖∇µk(xk)‖2 + λ
2
k

(L+ µk)

2
γ2
k

(
‖∇fµk(xk)‖2 +

ν2
1‖xk‖2 + ν2

2

Nk

)
≤ fµk(xk)−

γkλ

2
‖∇fµk(xk)‖2

(
2− λ

2
kγk(L+ µk)

λ

)
+ λ

2
k

(L+ µk)

2

γ2
k(ν2

1‖xk‖2 + ν2
2)

Nk
.

From (17), γk ≤ λ

λ
2
k(L+µ0)

for any k ≥ 0. Since {µk} is a non-increasing sequence, it follows that

γk ≤
λ

λ
2
k(L+ µk)

=⇒ 2− λ
2
kγk(L+ µk)

λ
≥ 1.

Hence, the following holds.

E[fµk(xk+1) | Fk] ≤ fµk(xk)−
γkλ

2
‖∇fµk(xk)‖2 + λ

2
k

(L+ µk)

2

γ2
k(ν2

1‖xk‖2 + ν2
2)

Nk

(iii) in Def. 3

≤ fµk(xk)− λµkγk(fµk(xk)− fµk(x∗k)) + λ
2
k

(L+ µk)

2

γ2
k(ν2

1‖xk‖2 + ν2
2)

Nk
.

By using Definition 3 and non-increasing property of {µk},

E[fµk+1
(xk+1) | Fk] ≤ E[fµk(xk+1) | Fk] =⇒

E[fµk+1
(xk+1) | Fk] ≤ fµk(xk)− λµkγk(

Term 3︷ ︸︸ ︷
fµk(xk)− fµk(x∗k)) + λ

2
k

(L+ µk)

2

γ2
k(ν2

1‖xk‖2 + ν2
2)

Nk
. (22)

Next, we derive a lower bound for Term 3. Since x∗k is the unique minimizer of fµk , we have
fµk(x∗k) ≤ fµk(x∗). Therefore, invoking Definition 3, for an arbitrary optimal solution x∗ ∈ X∗,

fµk(xk)− fµk(x∗k) ≥ fµk(xk)− fµk(x∗) = fµk(xk)− f∗ −
µk
2
‖x∗ − x0‖2.

From the preceding relation and (22), we have

E[fµk+1
(xk+1) | Fk] ≤ fµk(xk)− λµkγkE[fµk(xk)− f∗] +

λ‖x∗ − x0‖2µ2
kγk

2

+
(L+ µk)λ

2
k(ν

2
1‖xk‖2 + ν2

2)γ2
k

2Nk
.
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By subtracting f∗ from both sides and by noting that this inequality holds for all x∗ ∈ X∗ where
X∗ denotes the solution set, the desired result is obtained.

We now derive the rate for sequences produced by (rVS-SQN) under the following assumption.

Assumption 7. Let the positive sequences {Nk, γk, µk, tk} satisfy the following conditions:

(a) {µk}, {γk} are non-increasing sequences such that µk, γk → 0; {tk} is an increasing sequence;

(b)

(
1− λµkγk+

2(L+µ0)λ
2
kν

2
1γ

2
k

Nkα

)
tk+1 ≤ tk, ∀k ≥ K̃ for some K̃ ≥ 1;

(c)
∑∞

k=0 µ
2
kγktk+1 = c̄0 <∞; (d)

∑∞
k=0

µ
−2δ̄(n+m)
k γ2

k
Nk

tk+1 = c̄1 <∞;

Theorem 4 (Convergence of (rVS-SQN) in mean). Consider the (rVS-SQN) scheme and
suppose Assumptions 1, 4(S-M), 4(S-B), 1(S), 6 and 7 hold. There exists K̃ ≥ 1 and scalars c̄0, c̄1

(defined in Assumption 7) such that the following inequality holds for all K ≥ K̃ + 1:

E[f(xK)− f∗] ≤
tK̃
tK

E[fµK̃ (xK̃)− f∗] +
c̄0 + c̄1

tK
. (23)

Proof. We begin by noting that Assumption 7(a,b) implies that (18) holds for k ≥ K̃, where K̃
is defined in Assumption 7(b). Since the conditions of Lemma 9 are met, taking expectations on
both sides of (18):

E[fµk+1
(xk+1)− f∗] ≤ (1− λµkγk)E[fµk(xk)− f∗] +

λdist2(x0, X
∗)

2
µ2
kγk

+
(L+ µ0)λ

2
k(ν

2
1‖xk − x∗ + x∗‖2 + ν2

2)

2Nk
γ2
k ∀k ≥ K̃.

Now by using the quadratic growth property i.e. ‖xk − x∗‖2 ≤ 2
α (f(x)− f(x∗)) and the fact that

‖xk − x∗ + x∗‖2 ≤ 2‖xk − x∗‖2 + 2‖x∗‖2, we obtain the following relationship

E[fµk+1
(xk+1)− f∗] ≤

(
1− λµkγk+

2(L+ µ0)λ
2
kν

2
1γ

2
k

Nkα

)
E[fµk(xk)− f∗] +

λdist2(x0, X
∗)

2
µ2
kγk

+
(L+ µ0)λ

2
k(2ν

2
1‖x∗‖2 + ν2

2)

2Nk
γ2
k .

By multiplying both sides by tk+1, using Assumption 7(b) and λk = λµ
−δ̄(n+m)
k , we obtain

tk+1E[fµk+1
(xk+1)− f∗] ≤ tkE[fµk(xk)− f∗] +A1µ

2
kγktk+1 +

A2µ
−2δ̄(n+m)
k

Nk
γ2
ktk+1, (24)

where A1 , λdist2(x0,X∗)
2 and A2 , (L+µ0)λ2(2ν2

1‖x∗‖2+ν2
2 )

2 . By summing (24) from k = K̃ to K − 1,

for K ≥ K̃ + 1, and dividing both sides by tK , we obtain

E[fµK (xK)− f∗] ≤
tK̃
tK

E[fµK̃ (xK̃)− f∗] +

∑K−1
k=K̃

A1µ
2
kγktk+1

tK
+

∑K−1
k=K̃

A2µ
−2δ̄(n+m)
k γ2

ktk+1N
−1
k

tK
.
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From Assumption 7(c,d),
∑K−1

k=K̃

(
A1µ

2
kγktk+1 +A2µ

−2δ̄(n+m)
k γ2

k
tk+1

Nk

)
≤ A1c̄0 +A2c̄1. Therefore,

by using the fact that f(xK) ≤ fµK (xK), we obtain

E[f(xK)− f∗] ≤ tK̃
tK

E[fµK̃ (xK̃)− f∗] + c̄0+c̄1
tK

.

We now show that the requirements of Assumption 7 are satisfied under suitable assumptions.

Corollary 1. Let Nk , dN0k
ae, γk , γ0k

−b, µk , µ0k
−c and tk , t0(k−1)h for some a, b, c, h > 0.

Let 2δ̄(m+n) = ε for ε > 0. Then Assumption 7 holds if a+ 2b− cε ≥ b+ c, N0≥
(L+µ0)λ2ν2

1γ0

αλµ0
, b+

c < 1, h ≤ 1, b+ 2c− h > 1 and a+ 2b− h− cε > 1.

Proof. From Nk = dN0k
ae ≥ N0k

a, γk = γ0k
−b and µk = µ0k

−c, the requirements to satisfy
Assumption 7 are as follows:

(a) limk→∞ γ0k
−b = 0, limk→∞ µ0k

−c = 0⇔ b, c > 0 ;

(b)

(
1− λµkγk+

2(L+µ0)λ
2
kν

2
1γ

2
k

Nkα

)
≤ tk

tk+1
⇔
(
1− 1

kb+c
+ 1

ka+2b−cε

)
≤ (1 − 1/k)h. From the Taylor

expansion of right hand side and assuming h ≤ 1, we get
(
1− 1

kb+c
+ 1

ka+2b−cε

)
≤ 1−M/k for

some M > 0 and ∀k ≥ K̃ which means

(
1− λµkγk+

2(L+µ0)λ
2
kν

2
1γ

2
k

Nkα

)
≤ tk

tk+1
⇔ h ≤ 1, b+ c <

1, a+ 2b− cε ≥ b+ c and N0 =
(L+µ0)λ2ν2

1γ0

αλµ0
;

(c)
∑∞

k=0 µ
2
kγktk+1 <∞⇐

∑∞
k=0

1
kb+2c−h <∞⇔ b+ 2c− h > 1;

(d)
∑∞

k=0
µ
−2δ̄(n+m)
k γ2

k
Nk

tk+1 <∞⇐
∑∞

k=0
1

ka+2b−h−cε <∞⇔ a+ 2b− h− cε > 1;

One can easily verify that a = 2+ε, b = ε and c = 1− 2
3ε and h = 1−ε satisfy these conditions.

We derive complexity statements for (rVS-SQN) for a specific choice of parameter sequences.

Theorem 5 (Rate statement and Oracle complexity). Consider the (rVS-SQN) scheme and
suppose Assumptions 1, 4(S-M), 4(S-B), 1(S), 6 and 7 hold. Suppose γk , γ0k

−b, µk , µ0k
−c,

, tk = t0(k − 1)h and Nk , dN0k
ae where N0 =

(L+µ0)λ2ν2
1γ0

αλµ0
, a = 2 + ε, b = ε and c = 1− 2

3ε and
h = 1− ε.
(i) Then the following holds for K ≥ K̃ where K̃ ≥ 1 and C̃ , fµK̃ (xK̃)− f∗.

E[f(xK)− f∗] ≤ C̃ + c̄0 + c̄1

K1−ε . (25)

(ii) Let ε > 0 and K ≥ K̃ + 1 such that E[f(xK)]− f∗ ≤ ε. Then,
∑K

k=0Nk ≤ O
(
ε−

3+ε
1−ε
)

.

Proof. (i) By choosing the sequence parameters as specified, the result follows immediately from

Theorem 4. (ii) To find an xK such that E[f(xK)] − f∗ ≤ ε we have C̃+c̄0+c̄1
K̃1−ε ≤ ε which implies

that K = d
(
C̃+c̄0+c̄1

ε

) 1
1−ε e. Hence, the following holds.

K∑
k=0

Nk ≤
1+(C/ε)

1
1−ε∑

k=0

2N0k
2+ε ≤ 2N0

∫ 1+(C/ε)
1

1−ε

0
x2+ε dx =

2N0

(
1 + (C/ε)

1
1−ε
)3+ε

3 + ε
≤ O

(
ε−

3+ε
1−ε
)
.
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One may instead consider the following requirement on the conditional second moment on the
sampled gradient instead of state-dependent noise (Assumption 4).

Assumption 8. Let w̄k,Nk , ∇xf(xk) −
∑Nk
j=1∇xF (xk,ωj,k)

Nk
. Then there exists ν > 0 such that

E[‖w̄k,Nk‖2 | Fk] ≤
ν2

Nk
and E[w̄k,Nk | Fk] = 0 hold almost surely for all k, where Fk , σ{x0, x1, . . . , xk−1}.

By invoking Assumption 8, we can derive the rate result without requiring a quadratic growth
property of objective function.

Corollary 2 (Rate statement and Oracle complexity). Consider (rVS-SQN) and suppose
Assumptions 1, 1(S), 7 and 8 hold. Suppose γk = γ0k

−b, µk = µ0k
−c, tk = t0(k − 1)h and

Nk = dkae where a = 2 + ε, b = ε and c = 1− 4
3ε and h = 1− ε.

(i) Then for K ≥ K̃ where K̃ ≥ 1 and C̃ , fµK̃ (xK̃)− f∗, E[f(xK)− f∗] ≤ C̃+c̄0+c̄1
K1−ε . (ii) Let ε > 0

and K ≥ K̃ + 1 such that E[f(xK)]− f∗ ≤ ε. Then,
∑K

k=0Nk ≤ O
(
ε−

3+ε
1−ε
)

.

Remark 3. Although the oracle complexity of (rVS-SQN) is poorer than the canonical O(1/ε2),
there are several reasons to consider using the SQN schemes when faced with a choice between
gradient-based counterparts. (a) Sparsity. In many machine learning problems, the sparsity prop-
erties of the estimator are of relevance. However, averaging schemes tend to have a detrimental
impact on the sparsity properties while non-averaging schemes do a far better job in preserving
such properties. Both accelerated and unaccelerated gradient schemes for smooth stochastic convex
optimization rely on averaging and this significantly impacts the sparsity of the estimators. (See
Table 6 in Section 5). (b) Ill-conditioning. As is relatively well known, quasi-Newton schemes do
a far better job of contending with ill-conditioning in practice, in comparison with gradient-based
techniques. (See Tables 9 and 10 in Section 5.)

4.2 Nonsmooth convex optimization

We now consider problem (1) when f is nonsmooth but (α, β)-smoothable and consider the (rsVS-SQN)
scheme, defined as follows, where Hk is generated by rsL-BFGS scheme.

xk+1 := xk − γkHk

∑Nk
j=1∇xFηk,µk(xk, ωj,k)

Nk
. (rsVS-SQN)

Note that in this section, we set m = 1 for the sake of simplicity but the analysis can be extended
to m > 1. Next, we generalize Lemma 8 to show that Assumption 1 is satisfied and both the secant
condition (SC) and the secant equation (SE). (See Appendix for Proof.)

Lemma 10 (Properties of Hessian approximation produced by (rsL-BFGS)). Cons-
ider the (rsVS-SQN) method, where Hk is updated by (8)-(9), si and yi are defined in (7) and ηk
and µk are updated according to procedure (6). Let Assumption 3 holds. Then the following hold.

(a) For any odd k > 2m, (SC) holds, i.e., sTk yk > 0;

(b) For any odd k > 2m, (SE) holds, i.e., Hkyk = sk.
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(c) For any k > 2m, Hk satisfies Assumption 1(NS) with λk = 1

(m+n)(1/ηδk+µδ̄0)
and

λk =
(m+n)n+m−1(1/ηδk+µδ̄0)n+m−1

(n−1)!µ
(n+m)δ̄
k

, for scalars δ, δ̄ > 0. Then for all k, we have that Hk = HT
k

and E[Hk | Fk] = Hk and λkI � Hk � λkI both hold in an a.s. fashion.

We now derive a rate statement for the mean sub-optimality.

Theorem 6 (Convergence in mean). Consider the (rsVS-SQN) scheme. Suppose Assumptions
3, 4 (NS-M), 4 (NS-B), 1 (NS), and 6 hold. Let γk = γ, µk = µ, and ηk = η be chosen such

that (17) holds (where L = 1/η). If x̄K ,
∑K−1
k=0 xk(λµγ−C/Nk)∑K−1
k=0 (λµγ−C/Nk)

, then (26) holds for K ≥ 1 and

C =
2(1+µη)λ

2
ν2
1γ

2

αη .(
Kλµγ−

K−1∑
k=0

C

Nk

)
E[fη,µ(x̄K)− f∗] ≤ E[fη,µ(x0)− f∗] + ηB2 +

λdist2(x0, X
∗)

2
µ2γK

+
K−1∑
k=0

(1 + µη)λ
2
(2ν2

1‖x∗‖2 + ν2
2)γ2

2Nkη
. (26)

Proof. Since Lemma 9 may be invoked, by taking expectations on both sides of (18), for any

k ≥ 0 letting w̄k,Nk ,
∑Nk
j=1(∇xFηk,µk (xk,ωj,k)−∇fηk,µk (xk))

Nk
, and by letting λ , 1

(m+n)(1/ηδ+µδ̄)
, λ ,

(m+n)n+m−1(1/ηδ+µδ̄)n+m−1

(n−1)!µ(n+m)δ̄ , using the quadratic growth property i.e. ‖xk−x∗‖2 ≤ 2
α (f(x)− f(x∗))

and the fact that ‖xk − x∗ + x∗‖2 ≤ 2‖xk − x∗‖2 + 2‖x∗‖2, we obtain the following

E[fη,µ(xk+1)− f∗] ≤

(
1− λµγ+

2(1 + µη)λ
2
ν2

1γ
2

αNkη

)
E[fη,µ(xk)− f∗] +

λdist2(x0, X
∗)

2
µ2γ

+
(1 + µη)λ

2
(2ν2

1‖x∗‖2 + ν2
2)γ2

2Nkη

=⇒

(
λµγ−2(1 + µη)λ

2
ν2

1γ
2

αNkη

)
E[fη,µ(xk)− f∗] ≤ E[fη,µ(xk)− f∗]− E[fη,µ(xk+1)− f∗]

+
λdist2(x0, X

∗)µ2γ

2
+

(1 + µη)λ
2
(2ν2

1‖x∗‖2 + ν2
2)γ2

2Nkη
.

Summing from k = 0 to K − 1 and by invoking Jensen’s inequality, we obtain the following(
Kλµγ−

K−1∑
k=0

C

Nk

)
E[fη,µ(x̄K)− f∗] ≤ E[fη,µ(x0)− f∗]− E[fη,µ(xK)− f∗]

+
λdist2(x0, X

∗)

2
µ2γK +

K−1∑
k=0

(1 + µη)λ
2
(2ν2

1‖x∗‖2 + ν2
2)γ2

2Nkη
,
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where C =
2(1+µη)λ

2
ν2
1γ

2

αη and x̄K ,
∑K−1
k=0 xk(λµγ−C/Nk)∑K−1
k=0 (λµγ−C/Nk)

. Since E[f(x)] ≤ E[fη(x)] + ηkB
2 and

fµ(x) = f(x) + µ
2‖x − x0‖2, we have that −E[fη,µ(xK) − f∗] ≤ −E[fµ(xK) − f∗] + ηB2 ≤ ηB2.

Therefore, we obtain the following:(
Kλµγ−

K−1∑
k=0

C

Nk

)
E[fη,µ(x̄K)− f∗] ≤ E[fη,µ(x0)− f∗] + ηB2

+
λdist2(x0, X

∗)

2
µ2γK +

K−1∑
k=0

(1 + µη)λ
2
(2ν2

1‖x∗‖2 + ν2
2)γ2

2Nkη
.

We refine this result for a set of parameter sequences.

Theorem 7 (Rate statement and oracle complexity). Consider (rsVS-SQN) and suppose
Assumptions 3, 4 (NS-M), 4 (NS-B), 1 (NS), and 6 hold, γ,cγK−1/3+ε̄, µ,K−1/3, η , K−1/3

and Nk , dN0(k + 1)ae, where ε̄ , 5ε
3 , ε > 0, N0 > C

λµγ , C =
2(1+µη)λ

2
ν2
1γ

2

αη and a > 1. Let

δ = ε
n+m−1 and δ̄ = ε

n+m .

(i) For any K ≥ 1, E[f(x̄K)]− f∗ ≤ O(K−1/3).

(ii) Let ε > 0, a = (1+ε), and K ≥ 1 such that E[f(x̄K)]−f∗ ≤ ε. Then,
∑K

k=0Nk ≤ O
(
ε
− (2+ε)

1/3

)
.

Proof. (i) First, note that for a > 1 and N0 >
C
λµγ we have

∑K−1
k=0

C
Nk

< ∞. Therefore we can let

C4 ,
∑K−1

k=0
C
Nk
. Dividing both sides of (26) by Kλµγ−C4 and by recalling that fη(x) ≤ f(x) ≤

fη(x) + ηB2 and f(x) ≤ fµ(x), we obtain

E[f(x̄K)− f∗] ≤ E[fµ(x0)− f∗]
Kλµγ−C4

+
ηB2

Kλµγ−C4
+

λdist2
(x0,X∗)
2 µ2γK

Kλµγ−C4

+

∑K−1
k=0

(1+µη)λ
2
(2ν2

1‖x∗‖2+ν2
2 )γ2

2Nkη

Kλµγ−C4
+ ηB2.

Note that by choosing γ = cγK
−1/3+ε̄, µ = K−1/3 and η = K−1/3, where ε̄ = 5/3ε, inequality (17)

is satisfied for sufficiently small cγ . By choosingNk = dN0(k + 1)ae ≥ N0(k+ 2)a for any a > 1 and
N0 >

C
λµγ , we have that

K−1∑
k=0

1

(k + 1)a
≤ 1 +

∫ K−1

0
(x+ 1)−adx ≤ 1 +

K1−a

1− a

=⇒ E[f(x̄K)− f∗] ≤ C1

Kλµγ−C4
+

ηB2

Kλµγ−C4
+
C2λµ

2γK

Kλµγ−C4
+
C3(1 + µη)λ

2
γ2

ηN0(Kµγ−C4)
(1 +K1−a) + ηB2,

where C1 = E[fµ(x0) − f∗], C2 = dist2
(x0,X∗)
2 and C3 =

2ν2
1‖x∗‖2+ν2

2
2(1−a) . Choosing the parame-

ters γ, µ and η as stated and noting that λ = 1
(m+n)(1/ηδ+µδ̄)

= O(ηδ) = O(K−δ/3) and λ =

(m+n)n+m−1(1/ηδ+µδ̄)n+m−1

(n−1)!µ(n+m)δ̄ = O(η−δ(n+m−1)/µδ̄(n+m)
) = O(K2ε/3), where we used the assumption
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that δ = ε
n+m−1 and δ̄ = ε

n+m . Therefore, we obtain E[f(x̄K)− f∗] ≤ O(K−1/3−5ε/3 + δ/3) +

O(K−2/3−5ε/3+δ/3) +O(K−1/3) +O(K−2/3+3ε) +O(K−1/3) = O(K−1/3).
(ii) The proof is similar to part (ii) of Theorem 5.

Remark 4. Note that in Theorem 7 we choose steplength, regularization, and smoothing parameters
as constant parameters in accordance with the length of the simulation trajectory K, i.e. γ, µ, η
are constants. This is akin to the avenue chosen by Nemirovski et al. [33] where the steplength is
chosen in accordance with the length of the simulation trajectory K.

Next, we relax Assumption 6 (quadratic growth property) and impose a stronger bound on the
conditional second moment of the sampled gradient.

Assumption 9. Let w̄k,Nk , ∇xfηk(xk) −
∑Nk
j=1∇xFηk (xk,ωj,k)

Nk
. Then there exists ν > 0 such that

E[‖w̄k,Nk‖2 | Fk] ≤
ν2

Nk
and E[w̄k,Nk | Fk] = 0 hold almost surely for all k and ηk > 0, where

Fk , σ{x0, x1, . . . , xk−1}.

Corollary 3 (Rate statement and Oracle complexity). Consider the (rsVS-SQN) scheme.
Suppose Assumptions 3, 1 (NS) and 9 hold and γ,cγK−1/3+ε̄, µ,K−1/3, η , K−1/3 and Nk ,
d(k + 1)ae, where ε̄ , 5ε

3 , ε > 0 and a > 1.

(i) For any K ≥ 1, E[f(x̄K)]− f∗ ≤ O(K−1/3).

(ii) Let ε > 0, a = (1+ε), and K ≥ 1 such that E[f(x̄K)]−f∗ ≤ ε. Then,
∑K

k=0Nk ≤ O
(
ε
− (2+ε)

1/3

)
.

Remark 5. It is worth emphasizing that the unavailability of problem parameters such as the Lip-
schitz constant and the strong convexity modulus may render some methods unimplementable. In
fact, this is a prime motivation for utilizing smoothing, regularization, and diminishing steplengths
in this work; smoothing and regularization address the unavailability of Lipschitz and strong con-
vexity constants, respectively while diminishing steplengths obviate the need for knowing both sets
of parameters. Remark 2 cover some instances where such constants may indeed be available. We
briefly summarize avenues for contending with the absence of such parameters.

1. Absence/unavailability of Lipschitz constant in strongly-convex regimes (sVS-SQN). In the
absence of a Lipschitz constant but in the presence of strong convexity, we propose two distinct
avenues. We can employ Moreau-smoothing with fixed parameter η or iterative smoothing
which relies on a diminishing sequence {ηk}. This framework relies on a modified L-BFGS
update, referred to as smoothed L-BFGS and denoted by (sL-BFGS). This case is discussed
in section 3.2 and the main results are provided by Theorem 3.

2. Absence/unavailability of strong convexity constants in smooth regimes (rVS-SQN). If the
problem is either merely convex or has an unknown strong convexity modulus but satisfies L-
smoothness, then we present a regularization scheme, extending our prior work in this area to
the variance-reduced arena. The resulting scheme, referred to as the regularized VS-SQN and
denoted by (rVS-SQN), is reliant on the analogous L-BFGS update. This case is discussed
in section 4.1 and the main results are provided by Theorems 4 and 5.

3. Absence/unavailability of Lipschitz constants and strong convexity constants. If both the
Lipschitz and the strong convexity constants are unavailable, then we may overlay smoothing
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and regularization. This requires a regularized and smoothed L-BFGS update, referred to as
(rsL-BFGS), and the resulting scheme is referred to as the regularized smoothed VS-SQN
and denoted by (rsVS-SQN). This case is discussed in section 4.2 and the main results are
provided by Theorems 6 and 7.

4. Addressing unavailability of Lipschitz and strong convexity constants via diminishing steplength
schemes. One may also obviate the need for knowing the constants by utilizing diminishing
steplength sequences. This allows for deriving rate statements for a shifted recursion via some
well known results on deterministic recursions. This has now been added in Theorem 1 (iii)
((VS-SQN) in the smooth and strongly convex regime) and Theorem 3 (iii) ((sVS-SQN)
in the nonsmooth and strongly convex regime).

5. Stochastic line-search techniques. One avenue to contend with the absence of Lipschitzian
guarantees lies in leveraging line-search techniques in stochastic regimes [22, 8, 35, 43]. This
remains a goal of future work.

5 Numerical results

In this section, we compare the behavior of the proposed VS-SQN schemes with their acceler-
ated/unaccelerated gradient counterparts on a class of strongly convex/convex and smooth/nonsmooth
stochastic optimization problems with the intent of examining empirical error and sparsity of esti-
mators (in machine learning problems) as well as the ability to contend with ill-conditioning.
Example 1. First, we consider the logistic regression problem, defined as follows:

min
x∈Rn

f(x) ,
1

N

N∑
i=1

ln
(
1 + exp

(
−uTi xvi

))
, (LRM)

where ui ∈ Rn is the input binary vector associated with article i and vi ∈ {−1, 1} represents the
class of the ith article. A µ-regularized variant of such a problem is defined as follows.

min
x∈Rn

f(x) ,
1

N

N∑
i=1

ln
(
1 + exp

(
−uTi xvi

))
+
µ

2
‖x‖2. (reg-LRM)

We consider the sido0 dataset [25] where N = 12678 and n = 4932.
(1.1) Strongly convex and smooth problems: To apply (VS-SQN), we consider (Reg-LRM)
where the problem is strongly convex and µ = 0.1. We compare the behavior of the scheme with
an accelerated gradient scheme [21] and set the overall sampling buget equal to 1e4. We observe
that (VS-SQN) competes well with (VS-APM). (see Table 3 and Fig. 2 (a)).

SC, smooth SC, nonsmooth (Moreau smoothing)
VS-SQN VS-APM sVS-SQN sVS-APM

sample size: Nk ρ−k ρ−k bq−kc bq−kc
steplength: γk 0.1 0.1 η2

k η2
k

smoothing: ηk - - 0.1 0.1
f(xk) 5.015e-1 5.015e-1 8.905e-1 1.497e+0

Table 3: sido0: SC, smooth and nonsmooth
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SC, smooth SC, nonsmooth (Moreau smoothing)
VS-SQN VS-SQN VS-SQN sVS-SQN sVS-SQN sVS-SQN

sample size: Nk ρ−k k k2 bq−kc k k2

steplength: γk 0.1 1/
√
k 1/

√
k η2

k 1/
√
k 1/

√
k

smoothing: ηk - - - 0.1 0.1 0.1
f(xk) 5.015e-1 5.019e-1 5.098e-1 8.905e-1 1.358e+0 8.989e-1

Table 4: sido0: SC, smooth and nonsmooth

Next, in Table 4, we compare the behavior of (VS-SQN) in constant versus diminishing
steplength regimes and observe that the distinctions are modest for these problem instances.
(1.2) Strongly convex and nonsmooth: We consider a nonsmooth variant where an `1 regu-
larization is added with λ = µ = 0.1:

min
x∈Rn

f(x) :=
1

N

N∑
i=1

ln
(
1 + E

(
−uTi xvi

))
+
µ

2
‖x‖2 + λ‖x‖1. (27)

From [2], a smooth approximation of ‖x‖1 is given by the following

n∑
i=1

Hη(xi) =

{
x2
i /2η, if |xi| ≤ η
|xi| − η/2, o.w.

,

where η is a smoothing parameter. The perfomance of (sVS-SQN) is shown in Figure 2 (b) while
parameter choices are provided in Table 3 and the total sampling budget is 1e5. We see that
empirical behavior of (VS-SQN) and (sVS-SQN) is similar to (VS-APM) [21] and (rsVS-
APM) [21], respectively. Note that while in the strongly convex regimes, both schemes display
similar (linear) rates, we do not have a rate statement for smoothed (sVS-APM) [21].

Figure 2: Left to right: (a) SC smooth, (b) SC nonsmooth, (c) C smooth, (d) C nonsmooth

(1.3) Convex and smooth: We implement (rVS-SQN) on the (LRM) problem and compare the
result with VS-APM [21] and r-SQN [48]. We again consider the sido0 dataset with a total budget
of 1e5 while the parameters are tuned to ensure good performance. In Figure 2 (c) we compare
three different methods while the choices of steplength and sample size can be seen in Table 5. We
note that (VS-APM) produces slightly better solutions, which is not surprising since it enjoys a rate
of O(1/k2) with an optimal oracle complexity. However, (rVS-SQN) is competitive and appears
to be better than (r-SQN) by a significant margin in terms of the function value. In addition, the
last three columns of Table 4 capture the distinctions in performance between employing constant
versus diminishing steplengths.
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convex, smooth convex, nonsmooth
rVS-SQN r-SQN VS-APM rsVS-SQN sVS-APM

sample size: Nk k2+ε 1 k2+ε (k + 1)1+ε (k + 1)1+ε

steplength: γk k−ε k−2/3 1/(2L) K−1/3+ε 1/(2k)

regularizer: µk k2/3ε−1 k−1/3 - K−1/3 -

smoothing: ηk - - - K−1/3 1/k
f(xk) 1.38e-1 2.29e-1 9.26e-2 6.99e-1 7.56e-1

Table 5: sido0: C, smooth and nonsmooth

(1.4.) Convex and nonsmooth: Now we consider the nonsmooth problem in which λ = 0.1.

min
x∈Rn

f(x) :=
1

N

N∑
i=1

ln
(
1 + exp

(
−uTi xvi

))
+ λ‖x‖1. (28)

We implement rsVS-SQN scheme with a total budget of 1e4. (see Table 5 and Fig. 2 (d)) observe
that it competes well with (sVS-APM) [21], which has a superior convergence rate of O(1/k).
(1.5.) Sparsity We now compare the sparsity of the estimators obtained via (rVS-SQN) scheme
with averaging-based stochastic gradient schemes. Consider the following example where we con-
sider the smooth approximation of ‖.‖1, leading to a convex and smooth problem.

min
x∈Rn

f(x) :=
1

N

N∑
i=1

ln
(
1 + exp

(
−uTi xvi

))
+ λ

n∑
i=1

√
x2
i + λ2,

where we set λ = 1e-4. We chose the parameters according to Table 5, total budget is 1e5 and ‖xK‖0
denotes the number of entries in xK that are greater than 1e-4. Consequently, n0 , n − ‖xK‖0
denotes the number of “zeros” in the vector. As it can be seen in Table 6, the solution obtained
by (rVS-SQN) is significantly sparser than that obtained by (VS-APM) and standard stochastic
gradient. In fact, SGD produces nearly dense vectors while (rVS-SQN) produces vectors, 10% of
which are sparse for λ2 = 1e-6.

rVS-SQN (VS-APM) SGD
Nk k2+ε k2+ε 1

# of iter. 66 66 1e5
n0 for λ2 = 1e-5 144 31 0
n0 for λ2 = 1e-6 497 57 2

Table 6: sido0: Convex, smooth

Example 2. Impact of size and ill-conditioning. In Example 1, we observed that (rVS-SQN)
competes well with VS-APM for a subclass of machine learning problems. We now consider a
stochastic quadratic program over a general probability space and observe similarly competitive
behavior. In fact, (rVS-SQN) often outperforms (VS-APM) [21] (see Tables 7 and 8). We
consider the following problem.

min
x∈Rn

E
[

1

2
xTQ(ω)x+ c(ω)Tx

]
,

where Q(ω) ∈ Rn×n is a random symmetric matrix such that the eigenvalues are chosen uniformly
at random and the minimum eigenvalue is one and zero for strongly convex and convex problem,
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(VS-SQN) (VS-APM)
n E[f(xk)− f(x∗)] E[f(xk)− f(x∗)]
20 3.28e-6 5.06e-6
60 9.54e-6 1.57e-5
100 1.80e-5 2.92e-5

Table 7: Strongly convex:
(VS-SQN) vs (VS-APM)

(rVS-SQN) (VS-APM)
n E[f(xk)− f(x∗)] E[f(xk)− f(x∗)]
20 9.14e-5 1.89e-4
60 2.67e-4 4.35e-4
100 5.41e-4 8.29e-4

Table 8: Convex:
(rVS-SQN) vs (VS-APM)

respectively. Furthermore, cω = −Q(ω)x0, where x0 ∈ Rn×1 is a vector whose elements are chosen
randomly from the standard Gaussian distribution. In Tables 9 and 10, we compare the behavior of
(rVS-SQN) and (VS-APM) when the problem is ill-conditioned in strongly convex and convex
regimes, respectively. In strongly convex regimes, we set the total budget equal to 2e8 and maintain
the steplength as equal for both schemes. The sample size sequence is chosen to be Nk = d0.99−ke,
leading to 1443 steps for both methods. We observe that as m grows, the relative quality of the
solution compared to (VS-APM) improves even further. These findings are reinforced in Table
10, where for merely convex problems, although the convergence rate for (VS-APM) is O(1/k2)
(superior to O(1/k) for (rVS-SQN), (rVS-SQN) outperforms (VS-APM) in terms of empirical
error. Note that parameters are chosen similar to Table 5.

E[f(xk) − f(x∗)]
κ (VS-SQN), m = 1 (VS-SQN), m = 10 (VS-APM)

1e5 9.25e-4 2.656e-4 2.600e-3
1e6 9.938e-5 4.182e-5 4.895e-4
1e7 1.915e-5 1.478e-5 1.079e-4
1e8 1.688e-5 6.304e-6 4.135e-5

Table 9: Strongly convex:
Performance vs Condition number (as m changes)

E[f(xk) − f(x∗)]
L (rVS-SQN), m = 1 (rVS-SQN), m = 10 (VS-APM)

1e3 4.978e-4 1.268e-4 1.942e-4
1e4 3.288e-3 2.570e-4 3.612e-2
1e5 8.571e-2 3.075e-3 2.794e+0
1e6 3.367e-1 3.203e-1 4.293e+0

Table 10: Convex:
Performance vs Condition number (as m changes)

Example 3. Constrained Problems. We consider the isotonic constrained LASSO problem.

min
x=[xi]ni=1∈Rn

{
1

2

p∑
i=1

‖Aix− bi‖2 | x1 ≤ x2 ≤ . . . ≤ xn

}
, (29)

where A = [Ai]
p
i=1 ∈ Rn×p is a matrix whose elements are chosen randomly from standard Gaussian

distribution such that the A>A � 0 and b = [bi]
p
i=1 ∈ Rp such that b = A(x0 + σ) where x0 ∈ Rn is

chosen such that the first and last n
4 of its elements are chosen from U([−10, 0]) and U([0, 10]) in

ascending order, respectively, while the other elements are set to zero. Further, σ ∈ Rn is a random
vector whose elements are independent normally distributed random variables with mean zero and
standard deviation 0.01. Let C ∈ Rn−1×n be a matrix that captures the constraint, i.e., C(i, i) = 1
and C(i, i+1) = −1 for 1 ≤ i ≤ n−1 and its other components are zero and let X , {x : Cx ≤ 0}.
Hence, we can rewrite the problem (29) as minx∈Rn f(x) := 1

2

∑p
i=1 ‖Aix− bi‖2 + IX(x). We know

that the smooth approximation of the indicator function is IX,η = 1
2ηd

2
X(x). Therefore, we apply

(rsVS-SQN) on the following problem

min
x∈Rn

f(x) ,
1

2

p∑
i=1

‖Aix− bi‖2 +
1

2η
d2
X(x). (30)

Parameter choices are similar to those in Table 5 and we note from Fig. 3 (Left) that empirical
behavior appears to be favorable.
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Figure 3: Left: (sVS-SQN) Right: (sVS-SQN) vs. BFGS

Example 4. Comparison of (s-QN) with BFGS In [24], the authors show that a nonsmooth
BFGS scheme may take null steps and fails to converge to the optimal solution (See Fig. 1) and
consider the following problem.

min
x∈R2

1

2
‖x‖2 + max{2|x1|+ x2, 3x2}.

In this problem, BFGS takes a null step after two iterations (steplength is zero); however (s-QN)
(the deterministic version of (sVS-SQN)) converges to the optimal solution. Note that the optimal
solution is (0,−1) and (s-QN) reaches (0,−1.0006) in just 0.095 seconds (see Fig. 3 (Right)).

6 Conclusions

Most SQN schemes can process smooth and strongly convex stochastic optimization problems and
there appears be a gap in the asymptotics and rate statements in addressing merely convex and
possibly nonsmooth settings. Furthermore, a clear difference exists between deterministic rates and
their stochastic counterparts, paving the way for developing variance-reduced schemes. In addition,
much of the available statements rely on a somewhat stronger assumption of uniform boundedness
of the conditional second moment of the noise, which is often difficult to satisfy in unconstrained
regimes. Accordingly, the present paper makes three sets of contributions. First, a regularized
smoothed L-BFGS update is proposed that combines regularization and smoothing, providing a
foundation for addressing nonsmoothness and a lack of strong convexity. Second, we develop a vari-
able sample-size SQN scheme (VS-SQN) for strongly convex problems and its Moreau smoothed
variant (sVS-SQN) for nonsmooth (but smoothable) variants, both of which attain a linear rate
of convergence and an optimal oracle complexity. To contend with the possible unavailability of
strong convexity and Lipschitzian parameters, we also derive sublinear rates of convergence for
diminishing steplength variants. Third, in merely convex regimes, we develop a regularized VS-
SQN (rVS-SQN) and its smoothed variant (rsVS-SQN) for smooth and nonsmooth problems
respectively. The former achieves a rate of O(1/K1−ε) while the rate degenerates to O(1/K1/3−ε)
in the case of the latter. Finally, numerics suggest that the SQN schemes compare well with their
variable sample-size accelerated gradient counterparts and perform particularly well in comparison
when the problem is afflicted by ill-conditioning.
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[22] A. Jofré and P. Thompson, On variance reduction for stochastic smooth convex optimiza-
tion with multiplicative noise, Mathematical Programming, 174 (2019), pp. 253–292.

[23] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, The sample average approxi-
mation method for stochastic discrete optimization, SIAM Journal on Optimization, 12 (2002),
pp. 479–502.

[24] A. S. Lewis and M. L. Overton, Behavior of BFGS with an exact line search on nonsmooth
examples, 2008.

[25] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, Rcv1: A new benchmark collection for text
categorization research, Journal of machine learning research, 5 (2004), pp. 361–397.

[26] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimiza-
tion, Mathematical programming, 45 (1989), pp. 503–528.

[27] A. Lucchi, B. McWilliams, and T. Hofmann, A variance reduced stochastic Newton
method, arXiv:1503.08316, (2015).
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7 Appendix

Proof of Proposition 1. From Assumption 2 (a,b), f is τ -strongly convex and L-smooth. From
Lipschitz continuity of ∇f(x) and update rule (VS-SQN), we have the following:

f(xk+1) ≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
‖xk+1 − xk‖2

= f(xk) +∇f(xk)
T (−γkHk(∇f(xk) + w̄k,Nk)) +

L

2
γ2
k ‖Hk(∇f(xk) + w̄k,Nk)‖ 2,

where w̄k,Nk ,
∑Nk
j=1(∇xF (xk,ωj,k)−∇f(xk))

Nk
. By taking expectations conditioned on Fk, using Lemma

1, and Assumption 4 (S-M) and (S-B), we obtain the following.

E [f(xk+1)− f(xk) | Fk] ≤ −γk∇f(xk)
THk∇f(xk) +

L

2
γ2
k‖Hk∇f(xk)‖2 +

γ2
kλ

2
L

2
E[‖w̄k,Nk‖

2 | Fk]

= γk∇f(xk)
TH

1/2
k

(
−I +

L

2
γkHk

)
H

1/2
k ∇f(xk) +

γ2
kλ

2
L(ν2

1‖xk‖2 + ν2
2)

2Nk

≤ −γk
(

1− L

2
γkλ

)
‖H1/2

k ∇f(xk)‖2 +
γ2
kλ

2
L(ν2

1‖xk‖2 + ν2
2)

2Nk
=
−γk

2
‖H1/2

k ∇f(xk)‖2 +
ν2

1‖xk‖2 + ν2
2

2LNk
,

where the last equality follows from γk = 1
Lλ

for all k. Since f is strongly convex with modulus τ ,

‖∇f(xk)‖2 ≥ 2τ (f(xk)− f(x∗)). Therefore by subtracting f(x∗) from both sides, we obtain:

E [f(xk+1)− f(x∗) | Fk] ≤ f(xk)− f(x∗)− γkλ

2
‖∇f(xk)‖2 +

ν2
1‖xk − x∗ + x∗‖2 + ν2

2

2LNk

≤
(

1− τγkλ+
2ν2

1

LτNk

)
(f(xk)− f(x∗)) +

2ν2
1‖x∗‖2 + ν2

2

2LNk
, (31)

35



where the last inequality is a consequence of f(xk) ≥ f(x∗) + τ
2‖xk − x

∗‖2. Taking unconditional
expectations on both sides of (31), choosing γk = 1

Lλ
for all k and invoking the assumption that

{Nk} is an increasing sequence, we obtain the following.

E [f(xk+1)− f(x∗)] ≤
(

1− τλ

Lλ
+

2ν2
1

LτN0

)
E [f(xk)− f(x∗)] +

2ν2
1‖x∗‖2 + ν2

2

2LNk
.

Proof of Theorem 1. From Assumption 2 (a,b), f is τ -strongly convex and L-smooth. (i)

Let a ,
(

1− τλ

Lλ
+

2ν2
1

LτN0

)
, bk , 2ν2

1‖x∗‖2+ν2
2

2LNk
, and Nk , dN0ρ

−ke ≥ N0ρ
−k. Note that, choosing

N0 ≥
2ν2

1λ
τ2λ

leads to a < 1. Consider C , E[f(x0)− f(x∗)] +
(

2ν2
1‖x∗‖2+ν2

2
2N0L

)
1

1−(min{a,ρ}/max{a,ρ}) .

Then by Prop. 1, we obtain the following for every k ≥ 1.

E [f(xK+1)− f(x∗)] ≤ aK+1E [f(x0)− f(x∗)] +

K∑
i=0

aK−ibi

≤ aK+1E [f(x0)− f(x∗)] +
(max{a, ρ})K(2ν2

1‖x∗‖2 + ν2
2)

2N0L

K∑
i=0

(
min{a, ρ}
max{a, ρ}

)K−i
≤ aK+1E [f(x0)− f(x∗)] +

(
(2ν2

1‖x∗‖2 + ν2
2)

2N0L

)
(max{a, ρ})K

1− (min{a, ρ}/max{a, ρ})
≤ C(max{a, ρ})K .

Furthermore, we may derive the number of steps K to obtain an ε-solution. Without loss of

generality, suppose max{a, ρ} = a. Choose N0 ≥
4ν2

1λ

τ2λ
, then a =

(
1−

(
τλ

2Lλ

))
= 1 − 1

ακ , where

α = 2λ
λ . Therefore, since 1

a = 1
(1− 1

ακ
)
, by using the definition of λ and λ in Lemma 1 to get

α = 2λ
λ = O(κm+n), we obtain that(

ln(C)− ln(ε)

ln(1/a)

)
=

(
ln(C/ε)

ln(1/(1− 1
ακ))

)
=

(
ln(C/ε)

− ln((1− 1
ακ))

)
≤

(
ln(C/ε)

1
ακ

)
= O(κm+n+1 ln(C̃/ε)),

where the bound holds when ακ > 1. It follows that the iteration complexity of computing an
ε-solution is O(κm+1 ln(Cε )). (ii) To compute a vector xK+1 satisfying E[f(xK+1) − f∗] ≤ ε, we
consider the case where a > ρ while the other case follows similarly. Then we have that CaK ≤ ε,
implying that K = dln(1/a)(C/ε)e. To obtain the optimal oracle complexity, we require

∑K
k=1Nk

gradients. If Nk = dN0a
−ke ≤ 2N0a

−k, we obtain the following since (1− a) = 1/(ακ).

ln(1/a)(C/ε)+1∑
k=1

2N0a
−k ≤ 2N0(

1
a − 1

) (1

a

)3+ln(1/a)(C/ε)

≤
(
C

ε

)
2N0

a2(1− a)
=

2N0ακC

a2ε
.

Note that a = 1− 1
ακ and α = O(κm+n), implying that

a2 = 1− 2/(ακ) + 1/(α2κ2) ≥ α2κ2 − 2ακ2 + 1

α2κ2
≥ α2κ2 − 2ακ2

α2κ2
=

(α2 − 2α)

α2

=⇒ κ

a2
≤ α2κ

(α2 − 2α)
=

(
α

α− 2

)
κ =⇒

ln(1/a)(C/ε)+1∑
k=1

a−k ≤ 2N0α
2κC

(α− 2)ε
= O

(
κm+n+1

ε

)
.
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(iii) Similar to (31), using strong convexity of f and choosing Nk = dkp−se and γk = k−s, we can
obtain the following.

E [f(xk+1)− f(xk) | Fk] ≤ −γk
(

1− L

2
γkλ

)
‖H1/2

k ∇f(xk)‖2 +
γ2
kλ

2
L(ν2

1‖xk‖2 + ν2
2)

2Nk

=⇒ E [f(xk+1)− f(x∗) | Fk] ≤
(

1− γk(1− Lλγk
2 )λτ +

γ2
kλ

2
Lν2

1
τNk

)
(f(xk)− f(x∗)) +

γ2
kλ

2
L(2ν2

1‖x∗‖2+ν2
2 )

2Nk
.

Since γk is a diminishing sequence and Nk is an increasing sequence, for sufficiently large K we

have that
Lλγ2

kλτ
2 +

γ2
kλ

2
Lν2

1
τNk

≤ 1
2γkλτ . Therefore, we obtain:

E [f(xk+1)− f(x∗) | Fk] ≤
(

1− γkλτ
2

)
(f(xk)− f(x∗)) +

γ2
kλ

2
L(2ν2

1‖x∗‖2+ν2
2 )

2Nk

=
(
1− c

ks

)
(f(xk)− f(x∗)) + d

kp+s
, for k ≥ K,

where c , λτ
2 and d , λ

2
L(2ν2

1‖x∗‖2+ν2
2 )

2 . Then by taking unconditional expectations and recalling
that 0 < s < 1, s < p, we may invoke Lemma 2 to claim that there exists K such that

E [f(xk+1)− f(x∗)] ≤
(
d

ckp

)
+ o

(
1

kp

)
, k ≥ K.

Proof of Lemma 1 and Lemma 10 : First we prove Lemma 10 and then we show that how
the result in Lemma 1 can be proved similarly. Recall that λk and λk denote the minimum and
maximum eigenvalues of Hk, respectively. Also, we denote the inverse of matrix Hk by Bk.

Lemma 11. [48] Let 0 < a1 ≤ a2 ≤ . . . ≤ an, P and S be positive scalars such that
∑n

i=1 ai ≤ S

and Πn
i=1ai ≥ P . Then, we have a1 ≥ (n−1)!P

Sn−1 .

Proof of Lemma 10: It can be seen, by induction on k, that Hk is symmetric and Fk
measurable, assuming that all matrices are well-defined. We use induction on odd values of k > 2m
to show that the statements of part (a), (b) and (c) hold and that the matrices are well-defined.
Suppose k > 2m is odd and for any odd value of t < k, we have sTt yt > 0, Htyt = st, and part
(c) holds for t. We show that these statements also hold for k. First, we prove that the secant
condition holds.

sTk yk = (xk − xk−1)T

∑Nk−1
j=1

(
∇F

ηδ
k

(xk,ωj,k−1)−∇F
ηδ
k

(xk−1,ωj,k−1)

)
Nk−1

+ µδk(xk − xk−1)


=

∑Nk−1
j=1

[
(xk−xk−1)T (∇F

ηδ
k

(xk,ωj,k−1)−∇F
ηδ
k

(xk−1,ωj,k−1))

]
Nk−1

+ µδk‖xk − xk−1‖2 ≥ µδk‖xk − xk−1‖2,

where the inequality follows from the monotonicity of the gradient map ∇F (·, ω). From the induc-
tion hypothesis, Hk−2 is positive definite, since k−2 is odd. Furthermore, since k−2 is odd, we have
Hk−1 = Hk−2 by the update rule (8). Therefore, Hk−1 is positive definite. Note that since k− 2 is

odd, the choice of µk−1 is such that 1
Nk−1

∑Nk−1

j=1 ∇Fηδk(xk−1, ωj,k−1)+µk−1xk−1 6= 0 (see the discus-

sion following (6)). SinceHk−1 is positive definite, we haveHk−1

(
1

Nk−1

∑Nk−1

j=1 ∇Fηδk(xk−1, ωj,k−1) + µk−1xk−1

)
6=
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0, implying that xk 6= xk−1. Hence sTk yk ≥ µδk‖xk − xk−1‖2 > 0, where the second inequality is a
consequence of µk > 0. Thus, the secant condition holds. Next, we show that part (c) holds for
k. Let λk and λk denote the minimum and maximum eigenvalues of Hk, respectively. Denote the
inverse of matrix Hk in (9) by Bk. It is well-known that using the Sherman- Morrison-Woodbury
formula, Bk is equal to Bk,m given by

Bk,j = Bk,j−1 −
Bk,j−1sis

T
i Bk,j−1

sTi Bk,j−1si
+
yiy

T
i

yTi si
, i := k − 2(m− j) 1 ≤ j ≤ m, (32)

where si and yi are defined by (7) and Bk,0 =
yTk yk
sTk yk

I. First, we show that for any i,

µδk ≤
‖yi‖2

yTi si
≤ 1/ηδk + µδk, (33)

Let us consider the function h(x) := 1
Ni−1

∑Ni−1

j=1 Fηδk
(x, ωj,i−1)+

µδk
2 ‖x‖

2 for fixed i and k. Note that

this function is strongly convex and has a gradient mapping of the form 1
Ni−1

∑Ni−1

j=1 ∇Fηδk(xi−1, ωj,i−1)+

µδkI that is Lipschitz with parameter 1
ηδk

+µδk. For a convex function h with Lipschitz gradient with

parameter 1/ηδk + µδk, the following inequality, referred to as co-coercivity property, holds for any
x1, x2 ∈ Rn(see [39], Lemma 2): ‖∇h(x2)−∇h(x1)‖2 ≤ (1/ηδk + µδk)(x2 − x1)T (∇h(x2)−∇h(x1)).
Substituting x2 by xi, x1 by xi−1, and recalling (7), the preceding inequality yields

‖yi‖2 ≤ (1/ηδk + µδk)s
T
i yi. (34)

Note that function h is strongly convex with parameter µδk. Applying the Cauchy-Schwarz inequal-
ity, we can write

‖yi‖2

sTi yi
≥ ‖yi‖2

‖si‖‖yi‖
=
‖yi‖
‖si‖

≥ ‖yi‖‖si‖
‖si‖2

≥ yTi si
‖si‖2

≥ µδk.

Combining this relation with (34), we obtain (33). Next, we show that the maximum eigenvalue
of Bk is bounded. Let Trace(·) denote the trace of a matrix. Taking trace from both sides of (32)
and summing up over index j, we obtain

Trace(Bk,m) = Trace(Bk,0)−
m∑
j=1

Trace

(
Bk,j−1sis

T
i Bk,j−1

sTi Bk,j−1si

)
+

m∑
j=1

Trace

(
yiy

T
i

yTi si

)
(35)

= Trace

(
‖yi‖2

yTi si
I

)
−

m∑
j=1

‖Bk,j−1si‖2

sTi Bk,j−1si
+

m∑
j=1

‖yi‖2

yTi si
≤ n‖yi‖

2

yTi si
+

m∑
j=1

(1/ηδk + µδk) = (m+ n)(1/ηδk + µδk),

where the third relation is obtained by positive-definiteness of Bk (this can be seen by induction
on k, and using (32) and Bk,0 � 0). Since Bk = Bk,m, the maximum eigenvalue of the matrix Bk
is bounded. As a result,

λk ≥
1

(m+ n)(1/ηδk + µδk)
. (36)
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In the next part of the proof, we establish the bound for λk. From Lemma 3 in [30], we have

det(Bk,m) = det(Bk,0)
∏m
j=1

sTi yi
sTi Bk,j−1si

. Multiplying and dividing by sTi si, using the strong convexity

of the function h, and invoking (33) and the result of (35), we obtain

det(Bk) = det

(
yTk yk

sTk yk
I

) m∏
j=1

(
sTi yi

sTi si

)(
sTi si

sTi Bk,j−1si

)
≥
(
yTk yk

sTk yk

)n m∏
j=1

µδk

(
sTi si

sTi Bk,j−1si

)

≥ (µk)
(n+m)δ

m∏
j=1

1

(m+ n)(1/ηδk + µδk)
=

µ
(n+m)δ
k

(m+ n)m(1/ηδk + µδk)
m
. (37)

Let αk,1 ≤ αk,2 ≤ . . . ≤ αk,n be the eigenvalues of Bk sorted non-decreasingly. Note that since
Bk � 0, all the eigenvalues are positive. Also, from (35), we know that αk,` ≤ (m + n)(L + µδ0).
Taking (34) and (37) into account, and employing Lemma 11, we obtain

αk,1 ≥
(n− 1)!µ

(n+m)δ
k

(m+ n)n+m−1(1/ηδk + µδk)
n+m−1

.

This relation and that αk,1 = λ
−1
k imply that

λk ≤
(m+ n)n+m−1(1/ηδk + µδk)

n+m−1

(n− 1)!µ
(n+m)δ
k

. (38)

Therefore, from (36) and (38) and that µk is non-increasing, we conclude that part (c) holds for k
as well. Next, we show that Hkyk = sk. From (32), for j = m we obtain

Bk,m = Bk,m−1 −
Bk,m−1sks

T
kBk,m−1

sTkBk,m−1sk
+
yky

T
k

yTk sk
,

where we used i = k − 2(m − m) = k. Multiplying both sides of the preceding equation by sk,
and using Bk = Bk,m, we have Bksk = Bk,m−1sk − Bk,m−1sk + yk = yk. Multiplying both sides of
the preceding relation by Hk and invoking Hk = B−1

k , we conclude that Hkyk = sk. Therefore,
we showed that the statements of (a), (b), and (c) hold for k, assuming that they hold for any
odd 2m < t < k. In a similar fashion to this analysis, it can be seen that the statements hold for
t = 2m + 1. Thus, by induction, we conclude that the statements hold for any odd k > 2m. To
complete the proof, it is enough to show that part (c) holds for any even value of k > 2m. Let
t = k−1. Since t > 2m is odd, relation part (c) holds. Writing it for k−1, and taking into account
that Hk = Hk−1, and µk < µk−1, we can conclude that part (c) holds for any even value of k > 2m
and this completes the proof.

Proof of Lemma 1: We observe that Lemma 1 is the special case of Lemma 10, where the
objective f function is L-smooth and τ -strongly convex. Similar to (36), by noting that µk = 0 and
1
ηk

= L for all k, we may show that λk = λ = 1
L(m+n) for all k. Furthermore from the τ -strongly

convex nature of f , akin to (38), we obtain that λ = ((m+n)L)n+m−1

(n−1)!τn+m .
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