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Closeness of Solutions for Singularly Perturbed Systems via Averaging

Mohammad Deghat, Saeed Ahmadizadeh, Dragan Nešić and Chris Manzie

Abstract— This paper studies the behavior of singularly
perturbed nonlinear differential equations with boundary-layer
solutions that do not necessarily converge to an equilibrium.
Using the average of the fast variable and assuming the
boundary layer solutions converge to a bounded set, results
on the closeness of solutions of the singularly perturbed system
to the solutions of the reduced average and boundary layer
systems over a finite time interval are presented. The closeness
of solutions error is shown to be of order Op?

εq, where ε is
the perturbation parameter.

I. INTRODUCTION

The singular perturbation method is a common technique

to analyze a two-time scale system via the behavior of two

auxiliary systems, namely the reduced (slow) system and the

boundary layer (fast) system. In general, the results using

the singular perturbation method either relate the stability

properties of the original system with the above-mentioned

auxiliary systems or estimate the closeness of solutions of the

original system to the solutions of the auxiliary systems; see

e.g. [1], [2, Sec. 11] for results on stability and closeness of

solutions of the classical singular perturbation problem. It is

usually assumed in the classical singular perturbation results

that the solutions of the boundary layer system converge to

a unique equilibrium manifold. The case where the solutions

converge to a bounded set, e.g. a set of limit cycles, has

been studied using the averaging method [3]–[7]. In these

results, the derivative of the slow state is averaged over a

finite or infinite time interval and the behavior of the reduced

averaged slow system, together with the behavior of the

boundary layer system, is used to describe the behavior of

the full-order system. This idea can be found in the work of

Gaitsgory et al. [8]–[10], Grammel [4], [11], [12], Artstein

et al. [3], [13], Teel et al. [5], and others [6], [14].

The problem of exponential stability of this general class

of singular perturbation is not well studied in the literature.

Among the above-mentioned results, Grammel showed in

[4] that under the exponential stability of the origin of the

reduced average system and under some other conditions

on the system model, the slow state of a delayed sin-

gularly perturbed system is exponentially stable. However,

the behavior of the fast state and also the closeness of

solutions of the singularly perturbed system to the solutions

of the reduced average and boundary layer systems when the
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reduced average system is not exponentially stable are not

studied in [4].

This paper assumes a more general class of non-delayed

singularly perturbed systems, compared to [4], and presents

closeness of solution results. In particular, it is shown that

under the exponential stability of the boundary layer system

and some other conditions on the system model and over a

finite time interval, the solutions to the singularly perturbed

system are approximated by the solutions of the reduced

average and boundary layer systems when the perturbation

parameter, ε, is small. Although Grammel did not study

closeness of solutions in [4], Teel et. al presented a closeness

of solution result in [5] which can be applied to a more

general class of singular perturbation systems. However, the

order of magnitude of error is not studied in [5]. Compared

to [5], we propose stronger conditions on the system model

and obtain stronger closeness of solution results; we show

the approximation errors are of order Op?
εq.

Notation:

‚ }z}η denotes the distance between a point z and a

bounded set η in R
m, i.e.

}z}η “ distpz, ηq “ inf
yPη

}z ´ y}. (1)

‚ A continuous function γ : Rě0 Ñ Rą0 is of class L

(i.e. γ P L) if γpsq is positive and is strictly decreasing

to zero as s Ñ 8.

‚ A continuous function α : Rě0 Ñ Rě0 is of class K8

if it is strictly increasing, αp0q “ 0 and αprq Ñ 8 as

r Ñ 8.

‚ A function δ1pεq is of order Opδ2pεqq, i.e. δ1pεq “
Opδ2pεqq, if there exist positive constants k and c such

that [2, Definition 10.1]

|δ1pεq| ď k|δ2pεq|, @|ε| ă c. (2)

If δ1pεq and δ2pεq are continuous at ε “ 0, then (2)

implies that

lim
εÑ0

|δ1pεq|
|δ2pεq| ď k ă 8. (3)

II. PRELIMINARIES

Consider a singularly perturbed system

9x “ fpx, z, εq, xp0q “ x0, (4a)

ε 9z “ gpx, z, εq, zp0q “ z0, (4b)

where ε ą 0 is a small perturbation parameter, and x P R
n

and z P R
m are respectively the slow and fast variables.
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Define the fast-time variable τ “ t{ε. Then in the τ -domain,

(4) can be written as

dx

dτ
“ εfpx, z, εq, (5a)

dz

dτ
“ gpx, z, εq. (5b)

Letting ε “ 0, (5a) becomes dx{dτ “ 0 which implies that

the slow variable x is fixed, i.e. xpτq “ x0, @τ ě 0. Then

the boundary-layer system is obtained by setting ε “ 0 in

(5b) as
dzb

dτ
“ gpx0, zb, 0q, zbp0q “ z0, (6)

where zb denotes the state of the boundary layer system, and

x0 is treated as a fixed parameter.

Let x0 P BRp0q, z0 P M , and ε P r0, ε1s where BRp0q P
R

n denotes a ball of radius R ą 0 centered at the origin, M

denotes a compact set in R
m and ε1 ą 0. Unlike the classical

singular perturbation problem, we assume the solutions to

the boundary layer system, denoted by φbpτ, x0, z0q, @x0 P
BRp0q, z0 P M , or by φbpτq for the ease of notation, do not

converge to a unique equilibrium, but converge to a bounded

set. For example, the solutions to the boundary layer system

may converge to a limit cycle.

We make the following assumptions.

Assumption 1 (Lipschitz continuity of f and g): The

functions fpx, z, εq and gpx, z, εq are locally Lipschitz

continuous in px, z, εq P BRp0q ˆ M ˆ r0, ε1s. We denote

L ą 0 as the Lipschitz constant of fpx, z, εq and gpx, z, εq
on BRp0q ˆ M ˆ r0, ε1s.

Remark 1 (Bounds on f and g): From Assumption 1, we

obtain that for any compact set BRp0q ˆ M ˆ r0, ε1s, there

exists an upper bound on fpx, z, εq and gpx, z, εq; i.e. there

exists P ą 0 such that

}fpx, z, εq} ď P, }gpx, z, εq} ď P, (7)

for all px, z, εq P BRp0q ˆ M ˆ r0, ε1s.
Assumption 2 (Forward invariance): There exists a pos-

itive constant ε1 ą 0 such that BRp0q ˆ M is forward

invariant with respect to (4) for all ε P r0, ε1s. Moreover,

BRp0q is invariant with respect to

xptq “ x̄ `
ż t̄

0

f
`

x̄, ypsq, 0
˘

ds (8)

for all t̄ ą 0, where ypsq is the solution to

dypsq
ds

“ g
`

x̄, ypsq, 0
˘

(9)

and x̄ P BRp0q is a fixed parameter.

In order to define the reduced average system, we will

assume that f
`

x, φbpτq, 0
˘

has a well-defined average. To be

more precise, we state the following assumption that imposes

conditions on f such that the average of f exists. The

conditions in this assumption are similar to the conditions

in [2, Definition 10.2].

Assumption 3: The trajectories of the boundary layer sys-

tem (6) starting from z0 P M Ă R
m, denoted by φbpτ, x, z0q,

converge exponentially fast to a bounded set η : η P M

which is possibly parametrized by x. The limit

favpxq :“ lim
T Ñ8

1

T

ż T

0

f
`

x, φbps, x, z0q, 0
˘

ds, (10)

exists and is the same for all z0 P M . There exist s˚ ą 0,

γpsq P L and αp¨q P K8 such that

1

s

›

›

›

›

›

ż τ 1`s

τ 1

´

f
`

x, φbpτ, x, z0q, 0
˘

´ favpxq
¯

dτ

›

›

›

›

›

ď γpsqα pmaxt}x}, }z0}uq (11)

holds for all τ 1 ě 0, s ą s˚ and all boundary layer solutions

φbpτ, x, z0q staring from an initial condition z0 in M for

τ P rτ 1, τ 1 ` ss. Here, x is treated as a fixed parameter.

Note that since x and z0 are assumed to be in compact

sets BRp0q and M , the term α pmaxt}x}, }z0}uq on the

right hand side of (11) could be removed if we assume

γpsq depends on R and M . We used the above notation

to emphasize the fact that the right hand side of (11) is in

general a function of }x} and }z0}.

If Assumption 3 holds, we say f
`

x, φbpτq, 0
˘

has a well-

defined average favpxq. Then the reduced average system (or

what is called the reduced system in the rest of the paper) is

defined as

9xav “ favpxavq, xavp0q “ x0. (12)

Remark 2: In general, the reduced system should be de-

fined as a differential inclusion of the form

9xav P Favpxavq,
where

Favpxq “ conv

˜

ď

z0PM

"

lim
T Ñ8

1

T

ż T

0

f
`

x, φbps, x, z0q, 0
˘

ds

*

¸

,

with convpSq denoting the closed convex hull of a set

S. This is due to the fact that fav in (10) is in general

a function of x and z0; see e.g. [3], [12]. We however

assumed in this paper that the set valued map Favpxq is

a singleton, i.e. Favpxq “ tfavpxqu; see Assumption 3. This

is a more restrictive assumption compared to [3], [12] and

more general conditions will be the topic for further research.

Therefore, we use the differential equation notation of (12)

for the reduced system.

We finally make the following assumption on fav.

Assumption 4: The function favp¨q is globally Lipschitz

with Lipschitz constant Lav ą 0.

III. MAIN RESULT

In this subsection, we analyze the closeness of solutions

of the singularly perturbed system and the reduced and

boundary layer systems over a finite time interval. This result

is independent of any stability properties of the reduced

system (12).



We aim to investigate the system on a finite time horizon

t P r0, T s where T ą 0 and t0 :“ 0. We divide this time

interval into sub intervals of the form rtl, tl`1s which all have

the same length εSε, except possibly the last interval with

length smaller than or equal to the length εSε, and the index

l is an element of the index set Iε “ t0, 1, ¨ ¨ ¨ , tT {εSεuu,

where t¨u denotes the floor function. The last time in the

sequence is equal to T . In the following lemma, we define

the mapping Sε and state some of its properties. The reason

why this specific mapping is used will become clear later in

the proof of Lemma 2 and Theorem 1.

Lemma 1: For any given L ą 0 and T ą 0, the map

ε Ñ Sε defined as1

1

ε1{4
:“ Sεe

TL

`

1`SεLeLSε

˘

(13)

has the following properties

lim
εÑ0

Sε “ 8, (14a)

lim
εÑ0

ε1{4Sε “ 0. (14b)

The proof of the above Lemma is given in the Appendix.

Denote the solution of (4) for t P r0, T s by
`

xptq, zptq
˘

and define ξptq for t P rtl, tl`1s as

ξptq :“ ξl `
ż t

tl

fpξl, ypsq, 0qds, (15)

with ξl :“ ξptlq and ξ0 “ xp0q “ x0, where yptq :

rtl, tl`1s Ñ R
m is the unique solution to

ε 9yptq “ gpξl, yptq, 0q, yptlq “ zptlq. (16)

Define

∆lptq :“ max
tlďsďt

}xpsq ´ ξpsq}, (17)

dlptq :“ max
tlďsďt

}xpsq ´ ξl}, (18)

Dlptq :“ max
tlďsďt

}zpsq ´ ypsq}, (19)

for t P rtl, tl`1s. We state the following lemma for later use.

The idea for the lemma is taken from [12].

Lemma 2: Consider the map ε Ñ Sε defined in Lemma 1

and suppose there exists a compact set BRp0q ˆM ˆ p0, ε1s
on which Assumptions 1 and 2 hold. Then for any finite

T ą 0 and for t P r0, T s, the signals ∆lptq and Dlptq, l P Iε,

defined respectively in (17) and (19) are upper bounded by

∆̄pεq and D̄pεq defined as

∆̄pεq :“
´

2εSεP ` TLpεSεP ` εq
`

1 ` LSεe
LSε

˘

¯

eTL

`

1`SεLeLSε

˘

, (20)

D̄pεq :“ SεL
`

∆̄pεq ` εSεP ` ε
˘

eLSε . (21)

Furthermore, ∆̄pεq and D̄pεq are Op?
εq.

Proof: Refer to the Appendix for the proof.

Theorem 1 (closeness of solutions over a finite time):

Consider Sε defined in Lemma 1. Suppose there exist R ą 0,

1This definition is inspired from [12].

ε1 ą 0 and a compact set M such that Assumptions 1-4

hold on px, z, εq P BRp0q ˆM ˆ p0, ε1s. Then for any finite

time interval t P r0, T s,
(i) the solutions of the singularly perturbed system (4) and

the reduced system (12) satisfy

}xptq ´ xavptq} ď Kpεq, (22)

where limεÑ0 Kpεq “ 0 and }zptq}η converges to an

F pεq neighborhood of the bounded set η exponentially

fast where F pεq : Rą0 Ñ Rą0 satisfies limεÑ0 F pεq “
0.

(ii) If we further assume there exist ε˚ P p0, ε1s, r1 ą 0

and α1 : α1 ą 2 such that for Sε ě Sε˚ , the class-L

function γpSεq satisfies

γpSεq ď r1e´α1TL

`

1`SεLeLSε

˘

, (23)

then

}xptq ´ xavptq} “ Op
?
εq (24)

holds for ε P p0, ε˚s, uniformly on t P r0, T s. More-

over, given any ta : 0 ă ta ă T , there exists ε˚˚ ď ε˚

such that
ˇ

ˇ

ˇ
}zptq}η ´ }ϕbpt{εq}η

ˇ

ˇ

ˇ
“ Op

?
εq (25)

holds uniformly on t P rta, T s when ε P p0, ε˚˚s.
Proof: (i) By Assumption 3, there exist positive con-

stants ry and βy such that the solutions to the boundary layer

system (6) satisfy

}φbpt{εq}η ď rye
´βyt{ε}z0}η. (26)

Define ωptq, t P rtl, tl`1s, l P Iε as

ωptq “ ωptlq `
ż t

tl

favpξlqds

“ ωptlq ` favpξlqpt ´ tlq, (27)

where ωptlq “ xavptlq and ξl “ ξptlq is defined in (15). We

start with the slow state and estimate an upper bound for

}xptq ´ xavptq},

}xptq ´ xavptq} ď }xptq ´ ξptq} ` }ξptq ´ ωptq}
` }ωptq ´ xavptq}. (28)

From (17) and Lemma 2, for any l in the index set Iε, the first

term on the right hand side of (28) is less than or equal to

∆̄pεq. Using Assumption 3 and the fact that ξp0q “ ωp0q “
x0, the second term can be written as

}ξptq ´ ωptq} ď }ξptlq ´ ωptlq}

`
›

›

›

›

ż t

tl

`

fpξl, ypsq, 0q ´ favpξlq
˘

ds

›

›

›

›

ď }ξptlq ´ ωptlq} ` εSεγpSεqmaxt}ξptlq}, }zptlq}u
ď TγpSεqmaxt}ξptlq}, }zptlq}u
ď TγpSεqmaxtR, z̄u, (29)



where z̄ “ maxzPM }z}. Using Assumption 4 and the

Gronwall-Bellman inequality [2, Lemma A.1], the third term

can be upper bounded by

}ωptq ´ xavptq}

ď }ωptlq ´ xavptlq} `
›

›

›

›

ż t

tl

´

favpξlq ´ fav
`

xavpsq
˘

¯

ds

›

›

›

›

“
›

›

›

›

ż t

tl

´

favpξlq ´ fav
`

xavpsq
˘

¯

ds

›

›

›

›

ď Lav

ż t

tl

}ξl ´ xavpsq}ds

ď Lav

ż t

tl

´

}ξl ´ ξpsq} ` }ξpsq ´ ωpsq}

` }ωpsq ´ xavpsq}
¯

ds

ď εSεLav

´

εSεP ` TγpSεqmaxtR, z̄u
¯

eεSεLav . (30)

Define Kpεq as

Kpεq :“ ∆̄pεq ` TγpSεqmaxtR, z̄u (31)

` εSεLav

´

εSεP ` TγpSεqmaxtR, z̄u
¯

eεSεLav .

(32)

Then we obtain from (28) and (31) that for any finite time

interval r0, T s,

}xptq ´ xavptq} ď Kpεq. (33)

Note that Kpεq is uniform in px0, z0q P BRp0q ˆ M , and

from Lemma 1 and Lemma 2, limεÑ0 Kpεq “ 0.

We now study the behavior of the fast state, zptq. Using

the triangle inequality, we obtain for t P rtl, tl`1s that

}zptq}η ď }yptq}η ` }zptq ´ yptq}. (34)

Note that yptq is the solution to (16) and is different from

φbpt{εq, the solution to the boundary layer system (6).

Indeed, the signal yptq is defined such that its value at

the time instant tl, l P Iε is equal to zptlq and changes

according to (16) over the interval rtl, tl`1s. However, the

boundary-layer system (16) can be represented as a boundary

layer model of the form (6) with ξl as the frozen parameter.

Hence the solution of (16) for t P rtl, tl`1s satisfies the same

inequality as (26), with a different initial condition, for all x

and ξl in BRp0q. So we obtain from (34) and Lemma 2 that

}zptq}η ď rye
´βyt{ε}yptlq}η ` D̄pεq

(16)“ rye
´βyt{ε}zptlq}η ` D̄pεq. (35)

Specifically, we obtain for t “ tl`1 that

}zptl`1q}η ď rye
´βySε}zptlq}η ` D̄pεq. (36)

Choose δy P p0, βyq and ε̄ ą 0 such that

e´δySε̄ ď 1

ry
. (37)

Then we obtain by inclusion for all l P Iε and all ε P
p0,mintε1, ε̄us that

}zptl`1q}η ď e´pl`1qpβy´δyqSε}z0}η ` D̄pεq
l

ÿ

k“0

e´kpβy´δyqSε

“ e´pl`1qpβy´δyqSε}z0}η

` D̄pεq1 ´ e´pβy´δyqpl`1qSε

1 ´ e´pβy´δyqSε
, (38)

and obtain for t P rtl, tl`1s that

}zptq}η ď rye
´βySε}zptlq}η ` D̄pεq

(38)ùùñ ď rye
´βySεe´lpβy´δyqSε}z0}η

` D̄pεqrye´βySε
1 ´ e´pβy´δyqlSε

1 ´ e´pβy´δyqSε
` D̄pεq

ď rye
´pβy´δyqt{ε}z0}η

` D̄pεqrye´βySε
1 ´ e´pβy´δyqlSε

1 ´ e´pβy´δyqSε
` D̄pεq, (39)

where we used l “ tl{pεSεq and tl ď t ď tl`1. Define F pεq
as

F pεq :“ D̄pεq
ˆ

1 ` rye
´βySε

1 ´ e´pβy´δyqSε

˙

. (40)

Then we obtain that

}zptq}η ď rye
´pβy´δyqt{ε}z0}η ` F pεq. (41)

where limεÑ0 F pεq “ 0. The proof of the first part of the

theorem is complete.

(ii) In the second part of the proof, we first show that

under (23), Kpεq “ Op?
εq. From Lemma 2, ∆̄pεq which

is the first term on the right hand side of (31) is of order

Op?
εq. For the the second term we have

lim
εÑ0

TγpSεqmaxtR, z̄u?
ε

(13)“ lim
εÑ0

T maxtR, z̄uγpSεqS2

εe
2TL

`

1`SεLeLSε

˘

(23)ùùñ ď T maxtR, z̄u lim
εÑ0

S2

εe
´pα1´2qTL

`

1`SεLeLSε

˘

“ 0. (42)

The last term is also of order Op?
εq. So (24) holds uniformly

for t P r0, T s when 0 ă ε ď ε˚ where ε˚ satisfies

1

ε˚1{4
:“ Sε˚eTL

`

1`S
ε˚Le

LS
ε˚

˘

. (43)

From (40) and the fact that D̄pεq “ Op?
εq, see Lemma 2,

F pεq is also of order Op?
εq as

lim
εÑ0

ˆ

1 ` rye
´βySε

1 ´ e´pβy´δyqSε

˙

“ 1 ă 8. (44)

From (26) and (41), we have
ˇ

ˇ

ˇ
}zptq}η ´ }ϕbpt{εq}η

ˇ

ˇ

ˇ

ď rye
´pβy´δyqt{ε}z0}η ` F pεq ` rye

´βyt{ε}z0}η
ď 2rye

´pβy´δyqt{ε}z0}η ` F pεq. (45)



Then since

e´pβy´δyqt{ε ď
?
ε, @pβy ´ δyqt ě ε lnp 1?

ε
q, (46)

we can choose ε˚˚ such that

pβy ´ δyqta “ ε˚˚
lnp 1?

ε˚˚
q, (47)

and we conclude that
ˇ

ˇ

ˇ
}zptq}η ´ }ϕbpt{εq}η

ˇ

ˇ

ˇ
“ Op

?
εq (48)

holds uniformly on t P rta, T s for 0 ă ε ď ε˚˚.

IV. SIMULATIONS

In this section, we present a numerical example in which

the solution of the boundary layer system converges to a

limit cycle. Consider the following system

9x “ ´x ` z1 ` εx2

ε 9z1 “ ´z1 ` z2 ` z1
a

z2
1

` z2
2

(49)

ε 9z2 “ ´z1 ´ z2 ` z2
a

z2
1

` z2
2

` εx,

and note the system is not defined for z1 “ z2 “ 0 and thus

the subset M does not include the origin. Defining r and θ

such that z1 “ r cos θ and z2 “ r sin θ, the state equations

(49) can be written in the polar coordinates as

9x “ ´x ` r cos θ ` εx2

ε 9r “ 1 ´ r ` εx sin θ (50)

ε 9θ “ ´1 ` εx
cos θ

r
.

Define z “ rz1 z2sJ and define the isolated periodic orbit η

as

η “ tz P R
2 | }z} “ 1u.

Then

}z}η “ distpz, ηq “ inf
yPη

}z ´ y} “ |}z} ´ 1| .

Letting ε “ 0 in (49), the boundary layer system can be

written as

dz1

dτ
“ ´z1 ` z2 ` z1

a

z2
1

` z2
2

dz2

dτ
“ ´z1 ´ z2 ` z2

a

z2
1

` z2
2

which is equivalent (for r ą 0) to

dr

dτ
“ 1 ´ r,

dθ

dτ
“ ´1

in polar coordinates. Thus for r ą 0, the orbit r “ }z} “ 1

is exponentially stable and the solution to the boundary layer

system is

z1pτq “
`

pr0 ´ 1qe´τ ` 1
˘

cosp´τ ` θ0q
z2pτq “

`

pr0 ´ 1qe´τ ` 1
˘

sinp´τ ` θ0q

where θ0 “ atanpz2p0q{z1p0qq and r0 “ }z0} “
a

z2
1
p0q ` z2

2
p0q. This solution can also be written as

}zpτq}η “ e´τ }z0}η.
From (10) and (12), the reduced system is defined as

9xav “ favpxavq “ ´xav

` lim
T Ñ8

1

T

ż T

0

`

pr0 ´ 1qe´s ` 1
˘

cos
`

´ s ` θ0
˘

ds

“ ´xav.

We now check the validity of Assumption 3.

1

s

›

›

›

›

›

ż τ 1`s

τ 1

´

f
`

x, φbpτq, 0
˘

´ favpxq
¯

dτ

›

›

›

›

›

“ 1

s

ˇ

ˇ

ˇ

ˇ

ˇ

ż τ 1`s

τ 1

`

pr0 ´ 1qe´τ ` 1
˘

cos
`

´ τ ` θ0
˘

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

ˇ

1

s

r0 ´ 1

2
e´τ

`

´ sinp´τ ` θ0q ´ cosp´τ ` θ0q
˘

´ 1

s
sinp´τ ` θ0q

ˇ

ˇ

ˇ

ˇ

τ“τ 1`s

τ“τ 1

ˇ

ˇ

ˇ

ˇ

ˇ

(51)

ď 2

s
maxtr0, 1u. (52)

Thus γpsq “ 2{s and Assumption 3 holds for all s˚ ą 0.

Assumption 4 also holds. Choose ε1 “ 0.15, R “ 2.5, and

M “ tz P R
2zt0u | 0.5 ď }z} ď 1.5u, and observe that

Assumptions 1 and 2 hold on px, z, εq P BRp0qˆMˆr0, ε1q.

So all conditions of Theorem 1 hold and therefore the so-

lutions of the singularly perturbed system are approximated,

for sufficiently small ε ą 0, by the solutions of the reduced

average and boundary layer systems. This is shown in Fig. 1

and Fig. 2 where the trajectories of (49) are depicted for

ε “ 0.15 and ε “ 0.015.

0 2 4 6 8 10
time t, s

-0.5

0

0.5

1

1.5

2

2.5

x

Fig. 1: The slow variable xptq of the full-order system (4)

for different values of ε.

V. CONCLUSION

In this paper, we have studied the behavior of a general

singularly perturbed system with solutions of the boundary

layer system converging exponentially fast to a bounded set.
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=

√
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z
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Fig. 2: The norm of the fast variable of the full-order system,

}zptq}.

We used averaging to eliminate the fast oscillations of the

fast state, and presented results on the closeness of solutions

of the full-order system and the reduced average system over

a finite time interval.

VI. APPENDIX

Proof of Lemma 1.

Consider the definition of Sε in (13), and note that as

ε goes to zero, Sεe
TL

`

1`SεLeLSε

˘

goes to infinity which

implies that Sε goes to infinity. Therefore limεÑ0 Sε “ 8.

To show that limεÑ0 ε
1{4Sε “ 0, observe that

lim
εÑ0

ε1{4Sε “ lim
εÑ0

e´TL

`

1`SεLeLSε

˘

. (53)

Then from limεÑ0 Sε “ 8, we obtain that limεÑ0 ε
1{4Sε “

0. l

Proof of Lemma 2.

Consider ∆lptq and dlptq defined in (17) and (18) and note

there is a bound P on the norm of f according to Remark 1.

Then for t P rtl, tl`1s, we have

dlptq “ max
tlďsďt

}xpsq ´ ξl} “ max
tlďsďt

}xpsq ´ ξpsq ` ξpsq ´ ξl}

ď max
tlďsďt

}xpsq ´ ξpsq} ` max
tlďsďt

}ξpsq ´ ξl}

ď ∆lptq ` max
tlďsďt

ż s

tl

}fpξl, ypsq, 0q}ds

ď ∆lptq ` εSεP. (54)

From (4) and (16) we have

}zptq ´ yptq} “ 1

ε

›

›

›

›

ż t

tl

´

gpxpsq, zpsq, εq ´ gpξl, ypsq, 0q
¯

ds

›

›

›

›

.

Then using the Lipschitz property of g in Assumption 1 and

the Gronwall-Bellman inequality [2, Lemma A.1], we obtain

Dlptq “ max
tlďsďt

1

ε

›

›

›

›

ż s

tl

´

gpxpsq, zpsq, εq ´ gpξl, ypsq, 0q
¯

ds

›

›

›

›

ď max
tlďsďt

L

ε

ż s

tl

´

}xpsq ´ ξl} ` }zpsq ´ ypsq} ` ε
¯

ds

(18),(19)ùùùùñ ď SεL
`

dlptq ` ε
˘

` L

ε

ż t

tl

Dlpsqds

ď SεL
`

dlptq ` ε
˘

eLSε . (55)

From (4) and (15) we have

max
tlďsďt

}xpsq ´ ξpsq} ď }xptlq ´ ξl}

` max
tlďsďt

›

›

›

›

ż s

tl

`

fpxpsq, zpsq, εq ´ fpξl, ypsq, 0q
˘

ds

›

›

›

›

(56)

and thus we obtain using (54), (55) and the Gronwall-

Bellman inequality that

∆lptq ď ∆lptlq ` L

ż t

tl

`

dlpsq ` Dlpsq ` ε
˘

ds

(55)ùùñ ď ∆lptlq ` L

ż t

tl

`

dlpsq ` ε
˘ `

1 ` LSεe
LSε

˘

ds

(54)ùùñ ď ∆lptlq ` εSεL
`

εSεP ` ε
˘`

1 ` LSεe
LSε

˘

` L
`

1 ` LSεe
LSε

˘

ż t

tl

∆lpsqds

ď
´

∆lptlq ` εSεL
`

εSεP ` ε
˘

`

1 ` LSεe
LSε

˘

¯

eεSεLp1`LSεe
LSεq. (57)

Specifically, for t “ tl`1 we have

∆lptl`1q ď
´

∆lptlq ` εSεLpεSεP ` εq
`

1 ` LSεe
LSε

˘

¯

eεSεL

`

1`SεLeLSε

˘

. (58)

From the definition of ∆lptlq in (17), we have ∆lptlq ď
∆l´1ptlq and

∆0pt1q “ max
t0ďsďt1

}xpsq ´ ξpsq}

“ max
t0ďsďt1

›

›

›

›

ż s

0

`

fpxpsq, zpsq, εq ´ fpξl, ypsq, 0q
˘

ds

›

›

›

›

ď 2εSεP,

where we assumed a bound P for the norm of f according

to Remark 1. Hence we conclude for all l in Iε that

∆lptq ď ∆lptl`1q ď ∆̄pεq, (59)

where ∆̄pεq is defined as (20). Given (54), (55) and (59), we

also obtain that

Dlptq ď Dlptl`1q ď D̄pεq, (60)

with D̄pεq defined in (21).

To show that ∆̄pεq “ Op?
εq, we split the right hand side

of (20) into the the following three terms and show that they

are all Op?
εq. We use (3) to check the order of magnitude

of each of these terms.

piq : lim
εÑ0

2εSεPeTL

`

1`SεLeLSε

˘

?
ε

(13)“ lim
εÑ0

2ε1{4P “ 0, (61)



piiq : lim
εÑ0

1?
ε
TLεSεP

`

1 ` LSεe
LSε

˘

eTL

`

1`SεLeLSε

˘

(13)“ P lim
εÑ0

1?
ε
εSε ln

ˆ

1

ε1{4Sε

˙

1

ε1{4Sε

“ P lim
εÑ0

1

Sε

ε1{4Sε ln

ˆ

1

ε1{4Sε

˙

(14)“ 0. (62)

Here, we used the fact that limxÑ0 x ln
1

x
“ 0.

piiiq : lim
εÑ0

1?
ε
TLε

`

1 ` LSεe
LSε

˘

eTL

`

1`SεLeLSε

˘

(13)“ lim
εÑ0

1?
ε
ε ln

ˆ

1

ε1{4Sε

˙

1

ε1{4Sε

“ lim
εÑ0

1

pSεq2 ε
1{4Sε ln

ˆ

1

ε1{4Sε

˙

(14)“ 0. (63)

We now show that D̄pεq “ Op?
εq. We obtain from (13) that

SεLe
LSε “ 1

TL
ln

ˆ

1

ε1{4Sε

˙

´ 1. (64)

Similarly to the above calculations for ∆̄pεq, it can be shown

using (64) that pεSεP ` εqSεLe
LSε “ Op?

εq. We show

below that SεLe
LSε∆̄pεq “ Op?

εq. Equation (64) implies

that SεLe
LSε∆̄pεq “ 1

TL
ln

´

1

ε1{4Sε

¯

∆̄pεq ´ ∆̄pεq. Given

(20), we split ln
´

1

ε1{4Sε

¯

∆̄pεq into the following three terms

and show they are Op?
εq

piq : lim
εÑ0

1?
ε
2 ln

ˆ

1

ε1{4Sε

˙

εSεPeTL

`

1`SεLeLSε

˘

(13)“ 2P lim
εÑ0

ε1{4
ln

ˆ

1

ε1{4Sε

˙

“ 2P lim
εÑ0

1

Sε

ε1{4Sε ln

ˆ

1

ε1{4Sε

˙

(14)“ 0, (65)

piiq : lim
εÑ0

1?
ε
ln

ˆ

1

ε1{4Sε

˙

TLεSεP
`

1 ` LSεe
LSε

˘

eTL

`

1`SεLeLSε

˘

(13)“ P lim
εÑ0

?
εSε

ˆ

ln

ˆ

1

ε1{4Sε

˙˙2
1

ε1{4Sε

“ P lim
εÑ0

1

Sε

ε1{4Sε

ˆ

ln

ˆ

1

ε1{4Sε

˙˙2

(14)“ 0,

(66)

where we used limxÑ0 xpln 1

x
q2 “ 0.

piiiq : lim
εÑ0

1?
ε
ln

ˆ

1

ε1{4Sε

˙

TLε
`

1 ` LSεe
LSε

˘

eTL

`

1`SεLeLSε

˘

(13)“ lim
εÑ0

?
ε

ˆ

ln

ˆ

1

ε1{4Sε

˙˙2
1

ε1{4Sε

“ lim
εÑ0

1

pSεq2 ε
1{4Sε

ˆ

ln

ˆ

1

ε1{4Sε

˙˙2

(14)“ 0.

(67)

The proof of Lemma 2 is now complete.
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