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Abstract

A central issue in the analysis of multi-stable systems is that of controlling the relative size of the 

basins of attraction of alternative states through suitable choices of system parameters. We are 

interested here mainly in the stochastic version of this problem, that of shaping the stationary 

probability distribution of a Markov chain so that various alternative modes become more likely 

than others.

Although many of our results are more general, we were motivated by an important biological 

question, that of cell differentiation. In the mathematical modeling of cell differentiation, it is 

common to think of internal states of cells (quanfitied by activation levels of certain genes) as 

determining the different cell types. Specifically, we study here the “PU.1/GATA-1 circuit” which 

is involved in the control of the development of mature blood cells from hematopoietic stem cells 

(HSCs). All mature, specialized blood cells have been shown to be derived from multipotent 

HSCs.

Our first contribution is to introduce a rigorous chemical reaction network model of the PU.1/

GATA-1 circuit, which incorporates current biological knowledge. We then find that the resulting 

ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting 

the fact that differentiation networks have, by definition, alternative stable steady states. When 

considering instead the stochastic version of this chemical network, we analytically construct the 

stationary distribution, and are able to show that this distribution is indeed capable of admitting a 

multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to 

bias the probabilities towards different stationary states. We remark that certain changes in system 

parameters can be physically implemented by a biological feedback mechanism; tuning this 

feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell 

types over others.
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I. INTRODUCTION

In cell-fate gene regulatory networks (GRNs), attractors are typically associated with 

biological phenotypes [1], [2]. Hence, a great issue of interest in the theory of multi-stable 

GRNs is that of shaping the relative size of the basins of attraction of the multiple attractors 

by suitable choices of system parameters, including constant inputs, as well as the use of 

time-varying inputs to drive the state from one region of attraction to another. For stochastic 

systems, the first of these questions can be translated into the shaping of the stationary 

probability distribution of an associated Markov chain. Also for stochastic systems, 

variations of parameters (which can be adjusted by means of appropriate feedback 

mechanisms, as discussed later) can be used in order to reshape this distribution, so that the 

time evolution of the distribution of states of this Markov chain will converge to the desired 

landscape. In this paper, we present a case study of this issue in an important biological 

context, that of differentiation of stem cells into different types of blood cells. We introduce 

a biochemical model that represents known biological data, and then remark that the 

deterministic model of this network does not exhibit multistationarity, which contradicts 

experimental data and hence suggests that one cannot ignore randomness in this model. We 

then proceed to analyze this model from the point of view of stochastic multistationarity and 

show how to shape the stationary distribution via controlling the parameters.

Deterministic models are usually justified under the assumptions of sufficiently large volume 

and sufficiently large number of molecules [3], or, under some conditions such as fast 

promoter kinetics [4], as will be discussed in the text. In such cases, an ODE model captures 

the system’s dynamics, and it produces a similar qualitative behaviour to the one produced 

by the stochastic model. However, these assumptions are not usually satisfied in practice due 

to the fact that cell-fate GRNs have usually very low gene copy numbers. For instance, an 

investigation of the stochastic model of the toggle switch [5] has shown an increase in the 

number of admissible phenotypes. Furthermore, endogenous GRNs in eukaryotic cells can 

have the binding/unbinding rate of transcription factors (TFs) to promoters occurring at a 

slower rate than transcription and translation due to the complicating effects of chromatin 

structure and regulation [4],[6], [7]. Therefore, the qualitative behaviour produced by 

deterministic models can be erroneous.

The specific network studied in this paper is the PU.1-GATA-1 GRN, which is involved in 

lineage determination in hematopoietic stem cells (HSCs) [8], [9]. All mature, specialized 

blood cells have been shown to be derived from multipotent HSCs [10]-[11]. The classical 

hierarchical tree-like model of blood cells (hematopoiesis) describes the differentiation of 

HSCs into progenitor cells which have the ability to further differentiate into committed 

cells [12], [13], [14]. The decision to commit to a particular lineage is thought to depend on 

the relative expression levels of certain TFs [15], [16], [17]. Here we consider two particular 

TFs, PU.1 and GATA-1, which self-activate and interact antagonistically [8], [9], [18] as 

pictorially depicted in Fig. 1. These two TFs are thought to be involved in reinforcing the 

lineage commitment of a differentiating HSC, typically at the Common Myeloid Progenitor 

(CMP) state, to either the Megakaryocyte-Erythroid Progenitor (MEP) or the Granulocyte-

Macrophage Progenitor (GMP). Commitment to the MEP or GMP phenotype results in the 

differentiation to the erythroid or myeloid/lymphoid lineages, respectively [19]. The 
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expression level of GATA-1 has been shown to increase down the lineage from HSC to MEP 

and the TF is a key regulator of erythroid genes [20], [21]. Similarly, PU.1 expression 

increases as cells differentiate to the myeloid/lymphoid lineage [19] and has been shown to 

be critical for myeloid cell regulation. Early progenitor cells around the CMP stage have 

been shown to have relatively low levels of GATA-1 and PU.1 compared to more 

differentiated cells [21], [22]. The PU.1-GATA-1 network has been extensively studied since 

the early 2000s [8], [9], [18]. Previous models of the PU.1-GATA-1 GRN in the literature 

make assumptions on the biological interaction between the TFs to explain the biologically 

expected bistable property of this GRN, in which one stable state corresponds to high levels 

of GATA-1 and low levels of PU.1 and vice-versa. However, some of these assumptions 

have not been experimentally validated. Specifically, the studies in [23] and [24] assume 

high cooperativity of TFs (n=2 and 4, respectively), though mutual repression and self-

activation have been shown to occur primarily in their monomeric form [25], [26], [8]. The 

model presented in [27] introduces a gene X that transcriptionally represses PU.1 and is 

activated by GATA-1, which has not been experimentally identified. The model studied in 

[28] assumes both TFs can directly bind to each others’ promoters and transcriptionally 

repress each other but this has not been shown. In this paper, we consider a set of 

biomolecular reactions for the system, in which none of these assumptions are made. 

Interestingly, we mathematically demonstrate that the corresponding ODE model is 

monostable, which does not agree with the fact that the network should be capable of 

exhibiting two phenotypes, high GATA-1, low PU.1 (MEP) and low GATA-1, high PU.1 

(GMP). We therefore use the same biomolecular reactions to construct the CME model 

under the assumptions of low gene copy number and slow promoter kinetics and analytically 

demonstrate that the resulting stationary distribution can have multiple modes, each possibly 

corresponding to a cell phenotype, including the MEP and GMP phenotypes.

This paper is organized as follows. In Section II, we present a system of biochemical 

reactions that describe the PU.1-GATA-1 GRN. In Section III, we derive a deterministic 

ODE model of this GRN and demonstrate that this system is unable to demonstrate 

bistability. In Section IV, a stochastic model with slow promoter kinetics is presented. 

Section V presents a numerical example of how one would use our techniques in order to 

shape the distribution. The conclusion is given in section VI. The appendix lists the 

biological modeling assumptions that have lead to the reaction model.

II. MODEL OF REACTIONS

The reactions that describe this model are given below. The biological justification for the 

model is included in the appendix. Here p0 (shown in Fig. 2(a)) and g0 are the unbound 

promoters of TFs PU.1 (P) and GATA-1 (G):

p0 + P
d0

a0 p1, g0 + G
d0′

a0′ g1, (1)
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p1 + G
d1′

a1′ p2, g1 + P
d1

a1 g2, (2)

p0
αp0 p0 + P, g0

αg0 g0 + G, (3)

p1
αp1 p1 + P, g1

αg1 g1 + G, (4)

P
δP ∅ , G

δG ∅ . (5)

The reversible binding reactions between the unbound promoters (p0 and g0) and their TFs 

(P and G) to form complexes p1 (shown in Fig. 2(b)) and g1, respectively are given by (1). 

Reactions (2) describe the formation of complexes p2 and g2 by reversible binding of G(P) 

with p1(g1), respectively. These complexes represent the “off” state of the promoter wherein 

the gene is silenced as shown in Fig. 2(c) for p2. Reactions (3) describe the leaky promoter 

one-step production of P and G with rates αp0 and αg0, respectively. P(G) is produced at rate 

αp1(αg1) when it is bound to its promoter as shown in reactions (4). Lastly, reactions (5) 

describe the decay of transcription factors. Since the genes are self-activating, we have αp0 < 

αp1 and αg0 < αg1. To simplify the model, we assume that there is no expression from the 

repressed p2 and g2 configurations.

III. DETERMINISTIC MODEL

The most common model for reaction networks is a deterministic model [29]. It assigns to 

each species a state variable corresponding to its concentration. The time-evolution of 

species’ concentrations is given by an ordinary differential equation of the form:

ẋ = ΓR(x), (6)

where x ∈ ℝn is the concentration vector. Γ is called the stoichiometry matrix of the network, 

and R(x) = [R1(x), …, Rm(x)]T is the reaction rate function which are to be defined below. 

Assume that the ith reaction is given as:

∑
i = 1

n
αijXi ∑

i = 1

n
βijXi,

where αij, βij are the stoichiometric coefficients. Then the corresponding stoichiometry 
vector is: γj = [β1j − α1j, …, βnj − αnj]T, and the stoichiometry matrix is given as

Γ : = γ1, …, γm . (7)
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A conservation law for a reaction network is a positive vector v ∈ ℝ ≥ 0
n  such that vT Γ = 0. 

Multiplying both sides of (6) by vT and integrating yields ∑i = 1
n xi(t) ≡ M where M is the 

conserved quantity.

The most commonly used form for reaction rate function is the Mass-Action kinetics [29], 

which is given as follows:

Rj(x) = kj ∏
i = 1

n
xi

αij, (8)

where kj is the kinetic constant.

Setting the derivatives to zero for the mass-action ODE (6) and performing algebraic 

manipulations, we obtain a quintic equation. It is not easy to show directly that this equation 

has a unique solution for all possible choices of kinetic parameters, however. Thus, in order 

to determine the number of positive equilibria, we use the advanced deficiency algorithm 

developed in [30], [31],[32], and implemented in the “Chemical Reaction Network” toolbox 

[33]. When the algorithm is applied to our network (1)–(10), it shows that it cannot admit 

multiple positive equilibria for any combination of kinetic parameters. Hence, the 

deterministic model cannot explain the bistable behaviour observed experimentally [19], 

[20], [21].

IV. STOCHASTIC MODELING WITH SLOW PROMOTER KINETICS

The validity of the deterministic model rests on high copy numbers of the species in the 

GRN. However, this assumption is not usually satisfied in differentiation networks where 

TFs are expressed through genes located on the chromosome, which has one or two copies 

only. Nevertheless, the issue of low gene copy numbers has been overlooked in the literature 

by assuming high protein copy numbers and fast promoter kinetics [4], i.e. the binding and 

unbinding of TFs to the genes are assumed to be much faster than protein production and 

decay. The underlying justification for this approximation is that the fast promoter kinetics 

will “smooth out” the discrete effects of low gene copy numbers. However, this simplifying 

assumption does not generally hold in eukaryotic cells, which have more complex 

transcription machinery [4]. In such cells, transcriptional regulation is often mediated by an 

additional regulation layer dictated by DNA methylation and histone modifications, 

commonly referred to as chromatin dynamics. For example, the presence of nucleosomes 

makes binding sites less accessible to TFs and therefore TF-gene binding/unbinding is 

modulated by the stochastic process of chromatin opening [34], [35], [36]. Several 

experiments have confirmed the role of the aforementioned complex transcription processes 

in slow promoter kinetics [37], [38], [39], [40].

Since it is difficult to characterize the stationary distribution of the Chemical Master 

Equation (CME) [29] in general, our aim is to investigate the effect of slow promoter 

kinetics on the steady-state landscape of the network, and whether it can lead to the 

emergence of more than one phenotype in contrast to the unique one predicted by the 

deterministic model.
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Let X(t) ∈ ℤ ≥ 0
n  be the vector of copy numbers of all the species in the network and let the 

stoichiometry matrix Γ be defined as in (7). The CME employs propensity functions 

assigned to each reaction, and we assume that they follow the form of Mass-Action kinetics. 

However, the expression of the propensity functions is slightly different at low molecule 

number from the reaction rate functions given (8). Nevertheless, in the special case where 

the stoichiometric coefficients αij ≤ 1, then (8) can be used.

Let px(t) = Pr[X(t) = x]. Then, the CME is given by [29]:

ṗx(t) = ∑
j = 1

m
R x − γj px − γj(t) − R(x)px(t) . (9)

Let x0, x1, x2 be an enumeration of ℤ ≥ 0
n , and let

p(t) = px0, px1, .. T ,

then the CME (6) can be written as:

ṗ = Λp(t), (10)

where Λ is the infinitisimal generator of the Markov chain defined elementwise as:

λxx: =

Rj(x)  if ∃j such that x = x − γj

− ∑
j = 1

m
Rj(z)  if x = x

0  otherwise.

(11)

Considering the network (1)–(10), we assume that there is one copy number for each gene. 

Hence, the conservation laws imply that ∑k = 1
3 pk(t) = ∑k = 1

3 gk(t) = 1. Therefore, we can 

replace the six stochastic processes pk(t), gk(t) with two processes p, g defined as p(t) = i iff 
pi(t) = 1, and similarly for g.

We employ the results presented in [41] to analyze the time-scale separation scenario 

described above. The gene reactions (1)–(4) are assumed to be much slower than the protein 

reactions (5)–(10). To express this separation we start by decomposing X(t) = [D(t)T, Y 

(t)T]T, where D(t) = [p(t), g(t)]T ∈ {0, 1, 2}2, Y (t) = [P(t), G(t)]T ∈ ℤ ≥ 0
2 .

The probability distribution vector is decomposed correspondingly as:

p(t) = p00(t), p01(t), … . , p22(t) T ,

where pij(t) = [py0ij(t), py1ij(t), py2ij(t), ‥]T, pyij(t) = Pr[Y (t) = y, p(t) = i, g(t) = j], and {y0, 

y1, ‥} is an enumeration of ℤ ≥ 0
2 .
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Hence, using the notation above we can decompose the CME (10) as [41]:

ṗ(t) = Λp(t) = (Λ + εΛ)p(t), (12)

where

Λ =
Λ00

⋱
Λ22

, and p(t) =
p00(t)

⋮
p22(t)

, (13)

where ε > 0 is assumed to be small. The slow matrix Λ contains the reaction rates from the 

gene reactions (1)–(4), while the fast matrix Λ contains the reactions corresponding to the 

protein reactions (1)–(5). Each of the submatrices on the diagonal representation of Λ in (13) 

can be interpreted as representing an infinitesimal generator for the network conditioned on 

a certain gene state, i.e Λij is the infinitesimal generator for the Markov chain conditioned on 

p(t) = i, g(t) = j.

The above representation allows us to decompose the state space into weakly coupled 

ergodic classes. The dynamics on each class consists of uncoupled birth-death processes 

which are known to have a steady state Poisson distribution. Hence, the overall stationary 

distribution is expected to be close to a mixture of Poisson distributions as ε → 0.

Using singular perturbation techniques, the following theorem can be stated.

Theorem 1 ([41]): Given the network (1)–(10) and the CME (10), assume that πε is the 

marginal stationary distribution for P, G. Writing πε = π + επ1 + o(ε), we have:

π = lim
ε 0+

πε = ∑
i = 1

3
∑
j = 1

3
ρijP P, G; αPi/δP , αGi/δG , (14)

where P(x, y; a, b): = ax
x!

by
y! e−a − b, ρ = ρ00, ρ01, …, ρ22

T  is the normalized principal 

eigenvector of the following matrix:

1T 0T … 0T

0T 1T … 0T

⋱
0T 0T … 1T

Λ πY 00 πY 01… πY 22 , (15)

where πY|ij(P, G) = P(P, G; αPi/δP, αGi/δG).

Remark 1: Theorem 1 presents a reduction of an infinite dimensional Markov chain into a 

finite dimensional Markov chain which has nine states only. The matrix in (15) is the 

infinitesimal generator for the reduced order Markov chain. Instead of computing a product 

of infinite dimensional matrices, we can use the procedure described in [41]. For every state 

(i, j), the procedure entails replacing a reaction of the form:
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X + pi
a pi′,

with

pi
αE[X | p = i, g = j] pi′,

where E denotes conditional expectation.

Remark 2: If a mode is defined as a local maximum of a stationary distribution, then our 

theorem does not necessarily imply that the stationary distribution has nine modes since the 

peak values of two Poisson distributions can be very close to each other. In the remainder of 

the paper, we will call each Poisson distribution in the mixture a “mode” in the sense that it 

represents a component in the mixture distribution. The number of local maxima of a 

distribution can be found easily given the above expression.

V. Case Study: Controlling the distribution

While the deterministic model cannot explain the emergence of bistability, the stochastic 

modeling framework has shown the capacity to produce up to nine modes.

In order to estimate the probability landscape of the network we need to estimate the ratio of 

protein production rate in the active state to the leakage. We found that we can use the 

following ratio for PU.1 gene αP1 : αP0 ≈ 100 : 1, and αG1 : αG0 ≈ 5 − 10 : 1 for the 

GATA-1 gene [42],[43]. This implies that the production ratios of the gene states p0, g0 and 

p2, g2 are close to each other compared to the production ratio of p1 and g1. Hence, we can 

group the nine modes of the landscape into four groups as follows:

1. (low,low)≔ {(αp0/δP, αg0/δG), (αp0/δP, 0), (0, αg0/δG), (0, 0)}.

2. (low,high)≔ {(αp0/δP, αg1/δG), (0, αg1/δG)}.

3. (high,low)≔ {(αp1/δP, αg0/δG), (αp1/δP, 0)}.

4. (high,high)≔ {(αp1/δP, αg1/δG)}.

For convenience, will refer to weight corresponding to each mode as pℓℓ, pℓh, phℓ, phh 

respectively.

The weighting coefficients in (14) play a crucial role in the “visibility” of a certain mode in 

the landscape, since a very small coefficient implies that the corresponding mode can be 

ignored in the analysis as it is unlikely to be biologically observable. However, the 

expression of the weighting coefficients for this network is complicated by the fact that we 

obtain a high-order rational polynomial which is hard to optimize or to derive analytic 

bounds for. Therefore, we adopt a numerical approach as will be explained below.

In order to illustrate the results, consider the network with the following production ratios:
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αP0
δP

= 25,
αP1
δP

= 2500,
αG0
δG

= 250,
αG1
δG

= 2500.

Hence, the weighting coefficients in (14) depend on four association ratios, namely 

d0/a0, d0′ /a0′ , d1/a1, d1′ /a1′ . We study two cases that correspond to biologically relevant 

phenotypes.

First, we are interested in the bistable phenotype where the network behaves as a toggle 

switch that has antagonistic modes. We assume that d0/a0 = d1/a1 := k1, d0′ /a0′ = d1′ /a1′ : = k2 .
In this case, numerical computations show that phh < 0.01, which is negligible. Hence, we 

are interested in minimizing pℓℓ, while keeping phl, plh relatively balanced. Figure 3-a shows 

the contour curves for intervals of interest. We can achieve low pℓℓ and balanced probabilities 

of the antagonistic modes by choosing k1, k2 ≤ 5. Figure 3-b depicts the probability 

distribution for parameters in this range. We can clearly see that the system is bistable.

Second, we are interested in a tristable phenotype where we have a (high,high) phenotype in 

addition to the two antagonistic phenotypes. We assume that d0/a0 = d0′ /a0′ : = k1, 

d1′ /a1′ = d1/a1: = k2. In this case, we are interested in keeping pℓℓ negligible. Hence, we 

choose to keep pℓℓ < 0.07, having phh with at least 0.2 probability, while keeping phl, plh 

relatively balanced. Figure 4-a shows the contour curves for intervals of interest. We can 

have the desired phenotype with k1 ≤ 4, k2 ≥ 1250. Figure 3-b depicts the probability 

distribution for parameters in this range. We see the system is tristable, where the 

probabilities phℓ ≈ phh ≈ pℓh ≈ 1/3, pℓ ≈ 0.

Next, we investigate the control objective of increasing the production and decay reaction 

while keeping them at a fixed ratio. This can be interpreted as adding the following reactions 

to the network:

∅
K

Kp* P, ∅
K

Kg* G, (16)

Note this implies that the stationary distribution at the limit of slow promoter kinetics is 

given as:

π = ∑
i = 1

3
∑
j = 1

3
ρijP P, G; αPi + Kp*

δP + K , αGi + Kg*
δG + K , (17)

and for a sufficiently high K, the distribution becomes unimodal at a chosen mode (p*, g*). 

This procedure can be interpreted as a high-gain state-feedback to “stabilize” a chosen point 

in the space [44]. Figure 5 shows a numerical example where the nominal network has the 

bistable phenotype (as shown in Figure 3-b), and then the “controller” reactions (16) are 

included which produces a uni-modal distribution at a desired location.
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VI. Conclusion

We have studied the PU.1-GATA-1 differentiation GRN which is involved in lineage 

determination by committing to either the myeloid/lymhoid or erythroid lineage. Literature 

search was used to identify key reactions, which include self-activation, mutual repression 

and monomeric TF binding. A deterministic model consistent with these findings and faith-

ful to biological reality does not admit bistability, a defining behavior of this differentiation 

network. We have shown that adopting a stochastic model and assuming realistic slow 

promoter kinetics enables the network to exhibit multimodality, and we can control the 

shape of the distribution.
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VII.: Appendix: Modeling the PU.1/GATA.1 network

Here we seek to model the differentiation of the PU.1-GATA-1 GRN at the bistable CMP 

stage, where overexpression of either TF leads to a different, positive stable steady state. The 

list of modeling assumptions we use to derive both deterministic and stochastic models are:

• PU.1 and GATA-1 transcriptionally self-activate their respective production [45], 

[46].

• PU.1 represses GATA-1 production by binding to the complex formed by 

GATA-1 and its promoter. This complex forms repressive chromatin structure 

effectively silencing transcription (the PU.1-GATA-1 complex has been shown to 

be present at repressed GATA-1 target genes) [47], [48].

• Similarly, GATA-1 represses production of PU.1 by binding to it on its target 

genes and prevents the recruitment of co-activators (such as cJun), which are 

critical for PU.1-mediated transcriptional activation [48], [8].

• PU.1 cannot directly bind to the GATA-1 promoter. [8] reports that PU.1 blocks 

GATA-1 activation without affecting GATA-1 mRNA, protein expression, or 

nuclear translocation.

• GATA-1 cannot directly bind to the PU.1 promoter. [49] reports two GATA-1 

binding sites on the PU.1 locus, a −18 kb site, which has not been shown to have 

a functional regulatory role, and a −17 bp site that potentially transcriptionally 

represses PU.1 production. However, [45] reports that the −14 kb PU.1 URE (to 

which GATA-1 cannot directly bind) is significantly more critical than the 

proximal promoter (which includes the −17 bp GATA-1 binding site) in myeloid 

cell line 416B for PU.1 expression. Therefore, here we only consider the 

contribution of the PU.1 URE (either activation or repression when bound with 

GATA-1).

• All TF interaction occurs in their monomeric form. ETS TFs, such as PU.1 

typically bind as monomers (both to DNA and other proteins) [25]. Though there 

is evidence of GATA-1 dimerization [26], it exists primarily in its monomeric 
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form. In particular, GATA-1 self-activation and binding to PU.1 occurs only in its 

monomeric form [26], [8].

• The promoters of both TFs are leaky [45], [46].

• Protein production occurs in a one-step process (no intermediary mRNA 

dynamics).
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Fig. 1. 
PU.1-GATA-1 GRN demonstrating self-activation and mutual repression.
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Fig. 2. 
Promoter states: (a) p0 representing leaky production, (b) p1 with self-activated production, 

and (c) p2 when the promoter is fully repressed.
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Fig. 3. The association ratios can be chosen to have a bistable system.
(a) Contour curves for the probabilities pℓℓ, phℓ. The curves are plotted for the intervals 0 ≤ pℓℓ 
≤ 0.07, 0.25 ≤ phl ≤ 0.75. The variables on the axes are k1: = d0/a0 = d1/a1, 

k2: = d0′ /a0′ = d1′ /a1′ . (b) The probability distribution for k1 = k2 = 1 computed using (14). 

The probability of the corresponding modes are pℓℓ = 0.021, phℓ = 0.485, pℓh = 0.494, phh ≈ 0.
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Fig. 4. The association ratios can be chosen to have a tristable system.
(a) Contour curves for the probabilities pℓℓ, phℓ, phh. The curves are plotted for the intervals 0 

≤ pℓℓ ≤ 0.07, 0.25 ≤ phl ≤ 0.45, 0.1 ≤ phh ≤ 0.3. The variables on the axes are 

k1: = d0/a0 = d0′ /a0′ , k2: = d1′ /a1′ = d1/a1. The values for the contours for pℓℓ are 

0.01,0.02,..,0.07 from left to right, (b) The probability distribution for k1 = 0.1, k2 = 2500 

computed using (14). The probability of the corresponding modes are phh = 0.333, phℓ = 

0.332, pℓh = 0.334, pℓℓ ≈ 0.001. Note that the (high,high) mode has a third of the probability 

despite having a small height.
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Fig. 5. Increasing production and decay rates simultaneously produces a uni-modal distribution 
at a desired location
The probability distribution for k1 = 0.1, k2 = 1, K = 50, p* = g* = 1250 computed using 

(17), where k1: = d0/a0 = d1/a1, k2: = d0′ /a0′ = d1′ /a1′ . Note that the distribution is uni-modal.
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