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The Power Allocation Game on Dynamic Networks: Subgame Perfection

Yuke Li, and A. Stephen Morse

Abstract— In the game theory literature, there appears to
be little research on equilibrium selection for normal-form
games with an infinite strategy space and discontinuous utility
functions. Moreover, many existing selection methods are not
applicable to games involving both cooperative and noncoop-
erative scenarios (e.g., “games on signed graphs”). With the
purpose of equilibrium selection, the power allocation game
developed in [1], which is a static, resource allocation game on
signed graphs, will be reformulated into an extensive form.
Results about the subgame perfect Nash equilibria in the
extensive-form game will be given. This appears to be the first
time that subgame perfection based on time-varying graphs is
used for equilibrium selection in network games. This idea of
subgame perfection proposed in the paper may be extrapolated
to other network games, which will be illustrated with a simple
example of congestion games.

Index Terms— subgame perfect Nash equilibrium, equilib-
rium selection, time-varying graph, extensive form, network
games, games on signed graphs

I. INTRODUCTION

In [1], a power allocation game (“PAG”) is developed as a

static, distributed resource allocation game on a network of

countries (equivalently, agents or decision makers of those

countries) connected to each other as friends or adversaries.

Pure strategy Nash equilibrium classes are defined for the

purpose of making game predictions. For instance, a country

may survive in one equilibrium class but not in another [2].

An important question that has apparently not been ad-

dressed is equilibrium selection, e.g., whether there are jus-

tifiable grounds for the agents to play a certain equilibrium or

equilibrium class exclusively. For instance, can they always

play the kinds of equilibria in which a certain country

survives? Technically speaking, this is an equilibrium se-

lection problem for an N -player normal form game with an

infinite strategy space. The literature of equilibrium selection

methods for finite games (e.g., [3]–[7]) is thus irrelevant to

the purpose of this paper.

One noteworthy paper on equilibrium selection for infinite

normal form games is [8]. This work aims to generalize ap-

proaches such as Selten’s trembling hand perfection criterion

originally developed for selecting equilibria in finite games

to the case of infinite normal form games with continuous

utility functions. However, the methods in [8] cannot be

applied to the PAG because by the two preference axioms
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in [2], the real-valued utility function representation of

countries’ preference for the power allocation matrices must

be discontinuous [9]. The more recent work in [10]–[12]

contains the development of equilibrium selection methods

for infinite normal-form games with discontinuous utility

functions. But the assumptions for the utility functions in

those discontinuous games to hold include, for instance,

“payoff-security”, and are therefore inapplicable, either.

Some other existing criteria for equilibrium selection can

be shown to be unsuitable for equilibrium selection in the

PAG for more substantive reasons. Based on these criteria,

the equilibria may be required to be also “Pareto optimal”,

“coalition-proof”, and so forth, thereby refining the Nash

equilibria set. However, the definition of Pareto optimality

states that no agent can be better off without making at

least another agent worse off. This concept does not seem

appropriate for conflictual scenarios where players adopt a

certain “winner-takes-all” logic. In addition, by the concept

of coalition-proof Nash equilibria, any subset of players in

the game cannot all strictly benefit with any form of joint

deviations. But in the context of the PAG, the idea of joint

deviations by a “coalition” consisting of some countries and

their adversaries may be farfetched.

In this paper we apply the notion of time-varying graphs

to the PAG, i.e., to have the PAG take place in a sequence of

changing networked environments, and explore the subgame

perfect Nash equilibria in the extensive-form PAG. The first

investigations of extensive form games include [13], [14]

and [15]; one classic application is the Stackelberg game

for the study of market competition, where a leader acts first

before the followers choose to whether to enter the market to

compete with it. In the context of the PAG, in an “ascending

chain” sequence, the environment may gradually “expand”

to incorporate more adversary and friend relations among

countries over time. In a “descending chain” sequence, the

environment may undergo “faults” over time in the sense

that some relations may disappear. In any of the sequences,

countries optimize by sequentially allocating their power to a

queue of friends and adversaries. A single decision maker’s

optimization will be done much like in other resource alloca-

tion problems such as packing. However, a major difference

from these other problems is that in a resource allocation

game, it will be of more interest to explore multiple decision

makers’ allocation strategies which are in best responses with

one another. The idea of subgame perfection based on time-

varying graphs has seldom been used in equilibrium selection

for network games. It seems that this idea may also be

applicable to other network games, such as congestion games

(to which subgame perfection based on agents’ sequential
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moves like in the Stackelberg game has been applied, e.g.,

[16]).

This paper is organized as follows. First the power allo-

cation game formulated in [1] will be briefly summarized

in Section II. Then in Section III the extensive- form PAG

will be described and finally in Section IV results pertaining

to the new game form will be stated. In Section V a

simple example of how the method can be applicable to

congestion games will be illustrated. Lastly, modifications

to the presented idea appropriate to different contexts will

be discussed.

II. REVIEW: THE PAG IN NORMAL FORM

A. Basic Idea

By the power allocation game or PAG is meant a dis-

tributed resource allocation game between n countries with

labels in n = {1, 2, . . . , n}. The game is formulated on a

simple, undirected, signed graph G called “an environment

graph” [2] whose n vertices correspond to the countries and

whose m edges represent relationships between countries.

An edge between distinct vertices i and j, denoted by (i, j),
is labeled with a plus sign if countries i an j are friends and

with a minus sign if countries i and j are adversaries. Let the

set of all friendly pairs be RF and the set of all adversarial

pairs be RA. For each i ∈ n, Fi and Ai denote the sets of

labels of country i’s friends and adversaries respectively; it

is assumed that i ∈ Fi and that Fi and Ai are disjoint sets.

Each country i possesses a nonnegative quantity pi called

the total power of country i. An allocation of this power

or strategy is a nonnegative n × 1 row vector ui whose j

component uij is that part of pi which country i allocates

under the strategy to either support country j if j ∈ Fi

or to demise country j if j ∈ Ai; accordingly uij = 0 if

j 6∈ Fi ∪ Ai and ui1 + ui2 + · · · + uin = pi. The goal

of the game is for each country to choose a strategy which

contributes to the demise of all of its adversaries and to the

support of all of its friends.

Each set of country strategies {ui, i ∈ n} determines an

n× n matrix U whose ith row is ui. Thus U = [uij ]n×n is

a nonnegative matrix such that, for each i ∈ n, ui1 + ui2 +
· · ·+ uin = pi. Any such matrix is called a strategy matrix

and U is the set of all n× n strategy matrices.

B. Multi-front Pursuit of Survival

In [1] and [2], how countries allocate the power in the

support of the survival of its friends and the demise of

that of its adversaries is studied, which is in line with

the fundamental assumptions about countries’ behavior in

classical international relations theory. [17] The following

additional formulations are offered:

Each strategy matrix U determines for each i ∈ n, the

total support σi(U) of country i and the total threat τi(U)
against country i. Here σi : U → IR and τi : U → IR are

non-negative valued maps defined by U 7−→
∑

j∈Fi
uji +∑

j∈Ai
uij and U 7−→

∑
j∈Ai

uji respectively. Thus country

i’s total support is the sum of the amounts of power each of

country i’s friends allocate to its support plus the sum of the

amounts of power country i allocates to the destruction of all

of its adversaries. Country i’s total threat, on the other hand,

is the sum of the amounts of power country i’s adversaries

allocate to its destruction. These allocations in turn determine

country i’s state xi(U) which may be safe, precarious, or

unsafe depending on the relative values of σi(U) and τi(U).
In particular, xi(U) = safe if σi(U) > τi(U), xi(U) =
precarious if σi(U) = τi(U), or xi(U) = unsafe if σi(U) <
τi(U).

In playing the PAG, countries select individual strategies

in accordance with certain weak and/or strong preferences.

A sufficient set of conditions for country i to weakly prefer

strategy matrix V ∈ U over strategy matrix U ∈ U are as

follows

1) For all j ∈ Fi either xj(V ) ∈ {safe, precarious}, or

xj(U) ∈ {unsafe}, or both.

2) For all j ∈ Ai either xj(V ) ∈ {unsafe, precarious},

or xj(U) ∈ {safe}, or both.

Weak preference by country i of V over U is denoted by

U � V .

Meanwhile, a sufficient condition for country i to be

indifferent to the choice between V and U is that xi(U) =
xj(V ) for all j ∈ Fi ∪ Ai. This is denoted by V ∼ U .

Finally, a sufficient condition for country i to strongly

prefer V over U is that xi(V ) be a safe or precarious state

and xi(U) be an unsafe state. Strong preference by country

i of V over U is denoted by U ≺ V .

III. THE PAG IN EXTENSIVE FORM

A. Sequence of Spanning Subgraphs

Let G = (V , E) be called an “environment graph” as in

[2]. Write G for the set of all spanning subgraphs of G. Let

a sequence of spanning subgraphs G(t), t ∈ {0, 1, 2, . . . , n}
from G be such that G(t) ∈ G, t ∈ {0, 1, 2, . . . , n}. Let

Fi(t) and Ai(t) respectively be the sets of labels of country

i’s friends and adversaries at time t.

A sequence of spanning subgraphs G(t), t ∈
{0, 1, 2, . . . , n} from G is an ascending chain if G(t) ⊂
G(t+1), t ∈ {0, 1, 2, . . . , n} where by G(t) ⊂ G(t+1) we

mean that the edge set of G(t) is contained in the edge set

of G(t+ 1). Conversely, a sequence of spanning subgraphs

G(t), t ∈ {0, 1, 2, . . . , n} from G is a descending chain if

G(t+ 1) ⊂ G(t), t ∈ {0, 1, 2, . . . , n}.

Remark 1: Let the ascending sequence G(t), t ∈
{0, 1, 2, . . . , n} reach G from G(0) in n steps, i.e., G(n) =
G. For such as an ascending chain of spanning subgraphs that

reaches the environment subgraph G at time t, the number

of subgraphs at time t has to satisfy,

m−α∑

β=0

(m− α)!

β!

where m is the total number of edges in G, α is the number

of edges in G(t− 1) and β is the number of edges in G(t).



B. Sequence of Decisions

At time t ∈ {0, 1, 2, . . . , n}, every country i decides on its

strategy ui(t), i.e., the amount of resources being allocated to

its friends and adversaries labeled respectively in Fi(t) and

Ai(t), subject to its total power constraint i ∈ n, ui1(t) +
ui2(t) + · · · + uin(t) = pi. Various decision rules may be

assumed, which will be discussed in Section IV. For time

t ∈ {1, 2, . . . , n}, let the set of power allocation matrices at

layer t be represented as U(t) ⊂ Rn×n where ∀U(t) ∈ U(t)
and i ∈ n.

The information structure of the dynamic game is com-

plete information. When making each possible allocation at

time t, each country has observed the power allocation path

prior to time t, which is

U(0), U(1), . . . , U(t− 1).

At the end of the sequence, each country i receives its state

xi(U(t), t ∈ {0, 1, 2, . . . , n}) as the outcome of the power

allocation path from t = 0 to t = n,

U(0), U(1), . . . , U(n).

In other words, as consistent with a standard extensive-form

game, the power allocation outcome is only realized at t = n.

C. Sequence of Subgames

The power allocation game in extensive form can be rep-

resented by a decision tree T with n layers and a nonempty

set of decision nodes at layer t where t ∈ {0, 1, 2, . . . , n}.

As opposed to other extensive form games (e.g., two-player

games), at each decision point, all countries will decide on

their allocations on the corresponding subgraph, ending up

playing a “smaller” version of the original normal form PAG.

The root node denotes the decision point of the countries

involved in environment graph at t = 0, G(0). Each decision

node at each layer denotes the point the countries have

to decide on the allocations on the friend and adversary

relations involved in the environment graph G(t). From each

node at layer t, there grows an infinite number of branches,

the qth of which represents a possible allocation strategy

Uq(t) made by countries to those friends and adversaries.

The number of the branches between any node at layer t

and its successors at layer t+ 1 is the cardinality of U(t).
In addition, each decision node in the tree T represents

an information set. As is commonly defined, an information

set is a set of decision nodes that establishes all the possible

allocations that could have taken place in the game so far,

given what the players that will act next have observed.

Assuming complete and perfect information (i.e., the power

allocation path leading to the particular decision node has

already been observed by countries), each information set in

the tree is a singleton.

Such a decision tree defines a sequence of subgames.

In this extensive form game framework, the q-th (q ∈ N)

decision node at layer t of T (t ∈ {0, 1, 2, . . . , n}) and all

its successors make up a subgame at layer t; let the set of

subgames at layer t be κ(t). Obviously, the total number of

U1(0) Un(0)

U1(1) Un-1(1) Un(1)

t = 0
allocations on G(0)

t = 1 t =1 allocations on G(1)

t = 2 t = 2 t = 2 t =2
allocations on G(2)

Fig. 1: An example of a decision tree T up to t = 2

decision nodes in T equals the total number of subgames.

Each path in the tree T represents a power allocation path

from t = 0 to t = n, U(0), U(1), . . . , U(n). A function η :

U(0)× U(1) . . .× U(n) −→ κ(0)× κ(1) . . .× κ(n)

maps a power allocation path to a sequence of n+1 subgames

it has traversed, where the t-th subgame of this sequence can

be represented as η(U(0), U(1), U(n))t, t ∈ {0, 1, 2, . . . , n}.

As consistent with the assumptions in the normal form, there

is only a finite number of possible power allocation outcomes

realized at the terminal nodes of the tree, i.e., a number of

3n possible state vectors which countries will partially order

based on the axioms in the setup of the PAG.

D. Subgame Perfect Nash Equilibrium

In an extensive-form game, it is natural to investigate

the subgame perfect Nash equilibrium. In extensive form

games with finite strategy space, a subgame perfect Nash

equilibrium should in principle include the complete plan of

every agent’s action in every instance they would encounter;

however, it is impossible to do the same for the PAG, which

motivates the below definition based on equilibrium paths of

power allocation strategy matrices.

Definition 1 (Subgame Perfection Nash Equilibrium): A

power allocation path

U∗(0), . . . U∗(t) . . . U∗(n)

on a sequence of the spanning subgraphs of the environment

graph G is a subgame perfect Nash equilibrium for the PAG

Γ in extensive form if and only if it is an equilibrium in all

of the n+ 1 subgames it traverses.

E. Extension with Incomplete Information

Though not the focus of this paper, a straightforward

extension can be made to incorporate incomplete infor-

mation into the extensive-form PAG. Suppose there exists

an additional agent called the nature. The nature draws a

probability distribution over the space of the sequences. Let

a probability distribution over the measurable space Ω of all

possible sequences of the spanning subgraphs of G be δ,

and where the h-th sequence takes the probability mass δh.



On each possible sequence, countries play the corresponding

extensive-form game as formulated previously.

Remark 2: Denote a subgame perfect equilibrium

of a PAG assuming a possible sequence h as

(U(0), U(1), . . . , U(n))h. Assuming all countries have

a “common prior” about the probability distribution δ over

Ω, (U(0), U(1), . . . , U(n))h is always a Bayesian Nash

equilibrium (see relevant definitions in [18]).

IV. MAIN RESULTS

When analyzing subgame perfect Nash equilibrium of the

extensive-form PAG, it is necessary to assume a specific

decision rule for the game. Two specific examples are below,

where the second can be regarded as a special case of the

first.

Decision Rule 1: At time t ∈ {1, 2, . . . , n}, every country

i collects its allocations to its friends and adversaries labeled

in Fi(t−1) and Ai(t−1) back into its reserved power uii(t),
and decides how to reallocate uii(t), which is equal to pi,

to its friends and adversaries labeled in Fi(t) and Ai(t).

Decision Rule 1.1: At time t ∈ {1, 2, . . . , n}, every

country i keeps constant its allocations to its friends and

adversaries labeled in Fi(t − 1) and Ai(t − 1) that have

not disappeared at t, collects allocations to those that have

disappeared at t back into uii(t), and allocates its reserved

power uii(t) to its new friends and adversaries labeled in

Fi(t)−Fi(t− 1) and Ai(t)−Ai(t− 1).

Lemma 1: In an extensive-form PAG on a sequence of

spanning subgraphs of G, the subgame perfect Nash equi-

librium set by assuming Decision rule 1 is the superset of

subgame perfect Nash equilibrium set by assuming Decision

rule 2.

Proof: Trivial by the definition of Decision Rule 1.1.

Under Decision Rule 1, when reallocating, let every country

allocate the same amount of power as it does at t− 1 to its

friends and adversaries that still remain at t, and the rest of

the power to new friends and adversaries labeled in Fi(t)−
Fi(t− 1) and Ai(t)−Ai(t− 1).

Therefore, any subgame perfect Nash equilibrium

U∗(0), U∗(1), . . . , U∗(n) by assuming Decision rule 1.1

must also be an equilibrium path by assuming Decision rule

1.

Theorem 1: Given a pure strategy Nash equilibrium U∗

of the normal-form PAG on G, if in U∗ there exists two

countries i and j who have made zero allocations to each

other u∗
ij = u∗

ji = 0, U∗ can be realized on the equilibrium

path of a subgame perfect Nash equilibrium in an extensive-

form PAG on a sequence of spanning graphs of G. This holds

independently of the decision rule assumed.

Proof: Let an ascending chain of two environment

graphs G(0), G(1) be such that G(1) = G, and G(0) ⊂ G1

in the sense that E1 − E0 = (i, j).

Proceeding backwardly, a power allocation path

U(0), U(1) is mapped to a sequence of two subgames

κ0 and κ1. κ0 is the subgame where U1 is chosen, and κ1

is the subgame where the path U(0), U(1) is chosen, which

can be regarded as the extensive-form game itself.

Let U(1) = U(0) = U∗. At t = 1, U1 is by definition

pure strategy Nash equilibrium in κ0. At t = 0, none of

the agents would like to deviate from the strategies in U(0).
Therefore, the path U(0), U(1) is a subgame perfect Nash

equilibrium.

Theorem 2: Given any sequence of spanning subgraphs

of the environment graph of the normal-form PAG G, a

subgame perfect Nash equilibrium can always be found in the

extensive-form PAG on that sequence by assuming Decision

Rule 1.

Proof: By Decision Rule 1, at time t ∈ {0, 1, . . . , n},

suppose countries are playing the normal-form PAG on G(n).
Since it has been shown that any normal-form PAG has a

pure straetgy Nash equiilbrium, let U∗(n) be a pure strategy

Nash equilibrium of this game.

U∗(0), U∗(1), . . . , U∗(n) is an optimal path for the coun-

tries in the extensive game and obviously a subgame perfect

Nash equilibrium.

Remark 3: Given a particular subgame perfect Nash equi-

librium, the possible sequences of spanning subgraphs on

which this equilibrium is realized in the corresponding

extensive-form game always exists (by definition) but may

not be unique. For example, in Lemma 1, there exists an

opposite, descending chain of the spanning subgraphs G(1),
G(0) where U(1), U(0) = U∗ is the subgame perfect Nash

equilibrium.

Theorem 3: A balanced equilibrium U∗ of the normal-

form PAG on G as defined in [19] can be realized on the

equilibrium path of a subgame prefect Nash equilibrium in

an extensive-form PAG on a sequence of spanning subgraphs

of G by assuming Decision Rule 1.

Proof: A power allocation matrix U of a PAG is a

balanced equilibrium if

1) ∀i ∈ n such that Ai is the empty set, uii = pi.

2) ∀i ∈ n such that Ai is nonempty, uii = 0 and

∑

j∈Ai

uij = pi

3) ∀(i, j) ∈ RA, uij = uji.

Case I: RA 6= ∅. Take an adversary pair (i, j) ∈ RA.

Let an ascending chain of spanning subgraphs of G, G(0),
G(1) be such that G(1) = G, G(0) ⊂ G(1) in the sense that

E1 − E0 = (i, j).

Assuming Decision Rule 1, let U(1) = U∗ where U∗ is a

balanced equilibrium. Let U(0) be only different from U(1)
in that the allocations uij(0) = uji(0) = 0, and uii(0) =
ujj(0) = uij(1) = uji(1).

A power allocation path U(0), U(1) is thus mapped to a

sequence of two subgames κ0 and κ1. κ0 is the subgame

where U1 is chosen, and κ1 is the subgame where the path

U(0), U(1) is chosen.
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Fig. 2: An ascending chain of spanning subgraphs

U0 is a pure strategy Nash equilibrium of κ0. U(0), U(1)
constitutes a subgame perfect Nash equilibrium in the exten-

sive form game asssuming the above graph sequence.

Case II: RA = ∅. There always exists a pure strategy Nash

equilibrium of the normal-form PAG where two countries i

and j such that u∗
ij = u∗

ji = 0.

By Theorem 1, U∗ can always be realized on the equi-

librium path of a subgame perfect Nash equilibrium in an

extensive form of the PAG.

Example 1: Let the environment graph of the normal-form

PAG G is a Petersen graph. Assume that each of the ten

countries has two adversaries and two friends (itself and

one external) as shown in Fig. 2(b). Assume in addition the

ascending chain of spanning subgraphs G(0),G(1), where

G(0) contains two separate cycles of adversary relations and

G(1) = G. As illustrated in the allocation graphs in Fig. 3

whose definition is in [2], U(1) is a balanced equilibrium and

the power allocationpath U(0), U(1) is a subgame perfect

Nash equilibrium.

Theorem 4: The constructive algorithm in [1] derives a

subgame perfect Nash equilibrium in an extensive-form PAG

on a sequence of spanning subgraphs of G by assuming

5
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Fig. 3: Allocations on the ascending chain

Decision Rule 1.1.

Proof: First, let q ∈ N be the number of adversarial

pairs in RA, and m = {1, 2, . . . , q} be the set of labels.

Let γ : RA 7→ m. At time t, r−1(t) = {i, j} is the t-

th adversary pair being traversed by the algorithm. Let the

remaining power of countries i and j involved in this relation

be zi(t) and zj(t), t ∈ {1, 2, . . . , q}.

Given the environment graph of the PAG G, the algo-

rithm in [1] proceeds with traversing each adversary relation

and constructing allocations on the relation consecutively.

This actually gives rise to an ascending chain of environ-

ment graphs that reaches the G at the last step, E(0) =
RF , E(1) = RF ∪ r−1(1), . . . , E(q + 1) = RF ∪ r−1(1) ∪
r−1(2) ∪ . . . ... ∪ r−1(q). This algorithm is consistent with

Decision Rule 1.1.

Let a sequence of power allocation matrices

U(0), U(1), . . . , U(q) represent the sequence of

allocations constructed by the algorithm where

U(0) = diagonal{z1(0), z2(0), . . . , zn(0)} =
diagonal{p1, p2, . . . , pn}, and U(t + 1) =
diagonal{z1(t), z2(t), zi(t) − min{zi(t), zj(t)}, . . . , zj(t) −
min{zi(t), zj(t)}, zn(t)} +

∑
r−1(t)∈RA,t∈q

(eTi ej +



eTj ei)min{zi(t), zj(t)}, t ∈ {0, 1, . . . , q}.

A sequence of q + 1 subgames is derived. Proceeding

backwardly, κt is the subgame where the path U(q − t +
1), U(q − t+ 2), . . . , U(q) is chosen, t ∈ {0, 1, . . . , q + 1}.

In this extensive form game, no country i will want to

deviate from its strategy ui(t), t ∈ {0, 1, . . . , n}. Therefore,

the sequence of allocations represent a subgame perfect Nash

equilibrium.

Corollary 1: Given a normal-form PAG on G, if for i ∈
n, its power is no larger than the total power of its two

adversaries pi ≤
∑

j∈Ai
pj , there always exists a subgame

perfect Nash euilibrium in an extensive-form PAG on a

sequence of spanning subgraphs of G that predicts i to be

precarious at the last step n of the power allocation path,

that is, σi(U(n)) = τi(U(n)), by assuming Decision Rule

1.1.

Proof: Let q ∈ N be the number of adversarial pairs

in RA, and m = {1, 2, . . . , q} be the set of labels. Suppose

i has g adversaries (g ≤ q, and g ∈ N). Without loss of

generality, assume that the set of labels for these adversaries

is m
′ = {1, 2, . . . , g} ⊂ m. As in Theorem 3, let γ : RA 7→

m, and assume the same algorithm in [1].

From t = 0 to t = g, the algorithm proceeds with each

adversary relation of i and constructing allocations on the

relation consecutively. From t = g+1 to t = q, the algorithm

will traverse the rest of the adversarial pairs.

A sequence of power allocation matrices

U(0), U(1), . . . , U(q) constructed by the algorithm

is U(0) = diagonal{z1(0), z2(0), . . . , zn(0)} =
diagonal{p1, p2, . . . , pn}, and U(t + 1) =
diagonal{z1(t), z2(t), zi(t) − min{zi(t), zj(t)}, . . . , zj(t) −
min{zi(t), zj(t)}, zn(t)} +

∑
r−1(t)∈RA,t∈q

(eTi ej +

eTj ei)min{zi(t), zj(t)}, t ∈ {0, 1, . . . , q}.

This gives rise to an ascending chain of environment

graphs that reaches the G at the last step, E(0) =
RF , E(1) = RF ∪ r−1(1), . . . , E(g) = RF ∪ r−1(1) ∪
r−1(2) ∪ . . . ... ∪ r−1(g), . . . , E(q + 1) = RF ∪ r−1(1) ∪
r−1(2) ∪ . . . ... ∪ r−1(q).

For t ∈ {m,m + 1, . . . , q}, zi(m) = 0. By Theorem 3,

U(0), U(1), . . . , U(n) is a subgame perfect Nash equilib-

rium. Therefore, for t ∈ {m,m + 1, . . . , q}, σi(U(t)) =
τi(U(t)).

Theorem 5: Given a normal-form PAG on a complete

graph of only adversary relations, if countries’ power condi-

tion satisfies pi ≤
∑

j∈Ai
pj , a subgame perfect Nash equi-

librium in which only a country is safe, that is, σi(U(n)) >
τi(U(n)) at the last step n of the power allocation path,

can be guaranteed through a class of sequences of spanning

subgraphs assuming Decision Rule 1.1.

Proof: Given an arbitrary country i in n, the set of

adversarial pairs except for those involving i is denoted as

RA − {{i, j} : j ∈ Ai}. Note that RA − {{i, j} : j ∈ Ai}
still make up a complete subgraph of G, G′ = {n−{i}, E ′}.

Let an ascending sequence of two spanning subgraphs of

G be such that G(0) = G′ and G(1) = G.

1) If there exists a country j in the subgraph G(0), that is,

j ∈ n−{i}, such that its power is no smaller than that

of all other countries (i.e., its adversaries) combined in

the subgraph,

pj >
∑

k∈Aj−{i}

pk.

First, on G(0), let country j allocate enough to make

all of its adversaries other than i unsafe. Construct an

U(0) = [ujk(0)](n−1)×(n−1) where there holds

∀k ∈ Aj − {i}, ujk(0) > pk

and ∑

h∈Ak−{i}

ukh(0) = pk

Then on G(0), assuming Decision Rule 1.1, let country

i allocate enough to make j unsafe. Construct an

U(1) = [uij ]n×n by expanding U(0) to incorporate

the allocations between i and countries in n−{i}. Let

uij(1) > pj −
∑

k∈Aj−{i} ujk(0).
This is feasible because, as assumed, pi <

∑
j∈Ai

.

Then

pj − pi ≤
∑

k∈Aj−{i}

pk ≤
∑

k∈Aj−{i}

ujk(0)

Rearranging terms,

pi ≥ pj −
∑

k∈Aj−{i}

ujk(0).

None of the countries would like to deviate from

its strategies in U(0), U(1). Therefore, a subgame

perfect Nash equilibrium has been derived such that

σi(U(1)) > τi(U(1)) and σj(U(1)) < τj(U(1)) for

all j ∈ n− {i}.
2) If there does not exist a country in G(0) such that its

power exceeds all other countries in the subgraph. By

[19], a balancing equilibrium U ′ exists for the PAG of

the n− 1 countries on G′.

Let it be U(0) = [ujk(0)](n−1)×(n−1), where by

definition

∀j ∈ n
′, ujj(0) = 0; ∀j, k ∈ n

′, ujk(0) = ujk(0);
∑

k∈Aj−{i}

ujk(0) = pj.

In this case, as consistent with Decision Rule 1.1,

expand U(0) to incorporate the allocations between i

and countries in n−{i} to obtain U(1). ∀j ∈ n−{i},

let uij(0) =
pi

n−1 .

None of the countries would like to deviate from its

strategies in U(0), U(1). Then a subgame perfect Nash

equilibrium has been derived such that σi0(U(1)) >

τi0(U(1)) and σj(U(1)) < τj(U(1)) for all j ∈ n −
{i}.

Remark 4: An important implication from Corollary 1 and

Theorem 5 is that the particular state i can possibly be in a



PAG becomes controllable if the some particular conditions

hold, thus fulfilling the purpose of equilibrium selection.

The control is specifically done by a sequence of spanning

subgraphs of the environment graph as well as a suitably

defined decision rule.

V. EXAMPLE: APPLICATION TO OTHER NETWORK

GAMES

Consider a two-step ascending chain of a road network

where at t = 0 only road A is opened up and only at t = 1
road B is added. Let each agent’s action space be (A,B).
Similarly, a descending chain where at t = 0 the two roads

A and B both exist and at t = 1 one road, A, gets closed

down and thus disappears from the network.

Assume the following decision rule: at each step, each

agent chooses whether to take the road in the subgraph. Once

an agent has chosen a road, it cannot take any more roads

later. At t = 1, the payoffs as shown in the above table are

realized.

In the ascending chain case, the only subgame perfect

Nash equilibrium of this extensive form game is (A,B)
because agent 1 will make sure to take road A at t = 0 and

agent 2 takes road B at t = 1. Neither will have incentives

to deviate. However, when the opposite holds, i.e., when at

t = 0 only road B is opened up and only at t = 1 road A

is added, (B,A) will instead be the only subgame perfect

Nash equilibrium.

VI. CONCLUSION

This paper has focused specifically on selecting (or refin-

ing) the pure strategy Nash equilibria set of the normal-form

PAG based on the extensive-form game. Two assumptions

are invoked in the formulation of this problem. First, a state

vector is realized only at the end of a power allocation path

as the power allocation outcome. Second, the graph at each

time step is a spanning subgraph of the environment graph

in the normal-form PAG.

The ideas in the paper can be adapted to the studies

of other problems of interest. For this to happen, the two

assumptions should be relaxed. In terms of a differential

game problem where countries would optimally control

their power allocation paths in changing environments, the

problem formulation should have a state or payoff vector

realized at the end of every period on the allocation path.

Countries’ power and relations may also change over time,

either deterministically or stochastically. Moreover, the en-

vironment graph at each time instant may be any possible

signed graph of those countries. In terms of equilibrium

selection in network formation games, it should be noted that

agents’ strategies are to form or change the network itself in

these games. Accordingly instead of assuming environment

graphs that change over time, the kinds of agents that are

able to choose their strategies should be assumed to change

instead. For instance, at each time step, a subset of agents

is only allowed to choose their strategies of whether to

connect with others, where a simple leader-follower sequence

as mentioned before will be a special case.
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