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Nonlinear attitude estimation from biased vector and gyro measurements

Philippe Martin and Ioannis Sarras

Abstract— This paper considers the problem of attitude
estimation for rigid bodies using measurements from a triaxial
rate gyro and two other vector sensors (e.g. accelerometers,
magnetometers). The novelty is to take into account biases not
only on the gyro, but also on one of the vector measurements.
The attitude estimation is achieved by a nonlinear, “geometry-
free”, observer. We also study the observability of the system
and obtain conditions under which the reconstruction of both
the attitude and the biases is possible. Under these persistency-
of-excitation conditions, and through an explicit Lyapunov
analysis, we then establish the global asymptotic and local
exponential convergence of the observer. The theoretical results
are illustrated by a thorough numerical simulation.

I. INTRODUCTION

Through the last decades a plethora of works have been
devoted to the problem of the reconstruction of the orienta-
tion of a rigid body. This line of research has been further
accelerated by the increasing technological developments and
applications in deploying rigid bodies, such as quadrotors,
satellites and aircraft. Depending on the vehicle and the
mission specifications, a number of sensors are used, for
example triaxial rate gyros, accelerometers, magnetometers
or barometers, to provide information that can be exploited
to reconstruct the vehicle orientation, or attitude, in three-
dimensional space.

Even though attitude can be modeled in different ways, the
usual parameterizations adopted in the literature are in terms
of rotation matrices, quaternions or Euler angles, each with
its advantages and drawbacks. Using these parameterizations,
and when at least two vector measurements are available, it
has been well established that a variety of algorithms can
provide an estimate of the attitude, see [1]–[9]. While a large
number of the past contributions involves optimization-based
methods or stochastic filtering, the most recent approaches
that hinge upon the design of nonlinear observers have been
particularly successful as they can provide a large domain of
convergence along with a simple gain tuning. Additionally,
when the inherent geometry of the problem (e.g. SO(3))
is not incorporated in the observer design, as in [6]–[9], it
is possible to avoid the topological obstacles of the other
approaches and achieve global stability results.

The aforementioned works propose observers based on
different methodologies, but share the same hypotheses on
the measurements, that is they consider biased angular ve-
locity signals and unbiased vector measurements. However,
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and especially with low-cost sensors, the reality is that
biases affect also the vector observations. Although there are
various EKF-based implementations that consider such bi-
ases, with a noticeable reference being [10] which discusses
informally that observability requires rotational motion, to
our knowledge, this is the first analytical work on nonlin-
ear observability and observer design that tackles explicitly
biases in both angular velocity and vector measurements.

The objective of this work is to study the additional
presence of biases in the vector observations in the attitude
estimation problem. We focus here on the case of one
unbiased and one biased measurement. More precisely, under
the assumption of one persistent (unbiased) vector mea-
surement, we design a nonlinear, “geometry-free” observer
that ensures global asymptotic stability (GAS) and local
exponential stability (LES) of the errors of all the estimated
variables (the gyro and vector biases, as well as the two
directions necessary attitude reconstruction). The stability
analysis relies on an explicit Lyapunov function, with the
advantage of not requiring an explicit knowledge of the
bound on the angular velocity, as is often done in the
literature. The proposed observer builds upon previous works
of the authors presented in [9] that considered only bias in
the angular velocity measurements.

The paper runs as follows: the model used in the observer
design is described in section II; an obervability analysis then
follows in III; the observer is presented in section IV, and
its convergence is proved; finally, section V illustrates the
excellent behavior of the observer on a detailed simulation.

II. THE DESIGN MODEL

We consider a moving rigid body subjected to the angular
velocity ω (in body axes). The rotation matrix (from body to
inertial axes) R ∈ SO(3) defining its orientation is related
to ω by

Ṙ = Rω×, (1)

where the skew-symmetric matrix ω× is defined by ω×x :=
ω × x whatever the vector x.

The rigid body is equipped with a triaxal rate gyro measur-
ing the angular velocity ω, and two additional triaxial sensors
(for example accelerometers or magnetometers) providing
the measurements of two vectors α and β. These two vectors
correspond to the expression in body axes of two known
independent vectors αi and βi which are constant in inertial
axes. In other words, α := RTαi, β := RTβi. We readily
find, since αi, βi are constant,

α̇ = α× ω
β̇ = β × ω.



As usual, we consider that the rate gyro is biased, and rather
provides the measurement ωm := ω+b, where b is a slowly-
varying (for instance with temperature) unknown bias. In
addition, we consider that the measurement of α is also
biased while β is not, that is

αm := α+ bα (2)
βm := β. (3)

The effect of these biases on attitude estimation may be
important when the observer gains are small, hence it is
worth estimating their values. But being not exactly constant,
these cannot be calibrated offline and must be estimated
online together with the attitude.

Our objective consists is the design of an estimator that
can reconstruct online the orientation matrix R(t) and the
biases b, bα, using i) the measurements of the gyro and of
the two vector sensors; ii) the knowledge of the constant
vectors αi and βi.

The model on which the design will be based therefore
consists of the dynamics

α̇ = α× ω (4)
β̇ = β × ω (5)
ḃ = 0 (6)
ḃα = 0 (7)

together with the measurements

ωm := ω + b (8)
αm := α+ bα (9)
βm := β. (10)

Notice (4)-(5) can be written in terms of the known signals
αm, ωm as

α̇m = (αm − bα)× (ωm − b) (11)
β̇m = βm × (ωm − b). (12)

III. OBSERVABILITY ANALYSIS

Contrary to the case where two vector measurements are
available without biases as e.g. in [9], the design model (4)–
(7) with the two biases is not necessarily observable. Indeed,
assuming ω sufficiently differentiable, we can write for all
k ≥ 1

α̇m = αm × ωm − αm × b+ bα × b− bα × ωm
α(k+1)
m = b× α(k)

m − bα × ω(k)

+ Fk(ωm, · · · , ω(k)
m , αm, · · · , α(k)

m )

β̇m = βm × ωm − βm × b
β(k+1)
m = b× β(k)

m

+ Gk(ωm, · · · , ω(k)
m , βm, · · · , β(k)

m )

where Fk, Gk are some (polynomial) maps. Stacking these
relations, we find

b×
(
αm α̇m · · ·

)
− bα ×

(
ωm − b ω̇m · · ·

)
=
(
α̇m α̈m · · ·

)
+ F(ωm, ω̇m, · · · , αm, α̇m, · · · )

b×
(
βm β̇m β̈m · · ·

)
=
(
β̇m β̈m · · ·

)
+ G(ωm, ω̇m, · · · , βm, β̇m, · · · ).

It is clear that the biases will be observable if they can be
expressed in terms of αm, βm, ωm and their derivatives.
From the second relation we can observe for example that b
is observable if and only if the matrix

(
βm β̇m β̈m · · ·

)
is of rank 2. Then, from the first relation we have that bα is
observable if and only if the matrix

(
ω ω̇ · · ·

)
is also of

rank 2.
To design an observer for this scenario, we will consider

the following slightly stronger property than observability,
namely persistence of excitation (PE) for β(t) and ω(t).

Assumption 1: There exist some constants T, µ > 0, such
that for all t ≥ 0,

− 1

T

∫ t+T

t

β2
×(σ)dσ ≥ µI. (13)

Similarly, there exist some constants Tω, µω > 0, such that
for all t ≥ 0,

− 1

Tω

∫ t+Tω

t

ω2
×(σ)dσ ≥ µωI. (14)

Remark 1: Let us note that the two aforementioned PE
conditions are intimately related. This can be seen by observ-
ing that in (5) ω acts as input and thus, affects the behavior
of β and β̇. Hence, it seems that in practical scenarios
essentially only the PE condition of ω should be required.

IV. THE OBSERVER

In this section, we show that the state of the design
system (4)–(7) can be estimated by the observer

˙̂αm := (α̂m − b̂α)× (ωm − b̂)− kα(α̂m − αm)
˙̂
βm := β̂m × (ωm − b̂m)− kβ(β̂m − βm)

˙̂
b := lβ β̂m × βm

˙̂
bα := mα(ωm − b̂)× (α̂m − αm),

where kα, kβ , lβ ,mα are strictly positive constants.
Let us define the errors eα := α̂m−αm, eβ := β̂m−βm,

ebα := b̂α − bα, eb := b̂− b. Then, the error dynamics gives

ėα =(eα − ebα)× ω − kαeα − (eα − ebα + α)× eb(15)
ėbα=mα(ω − eb)× eα (16)

ėβ =eβ × ω − kβeβ − β̂m × eb (17)

ėb =lβeβ × β̂m (18)

We can now state our main result.
Theorem 1: Assume kα, lα, lβ ,mα > 0 and ω, ω̇

bounded. Then, provided the persistent excitation condi-
tion (13) holds, the origin of the error system (15)-(18) is
globally (locally) asymptotically (exponentially) stable.



Proof: First, for the subsystem (eα, ebα)
consider the candidate Lyapunov function
V0(eα, ebα) = 1

2 (lα|eα|2 + lα
mα
|ebα|2). After straightforward

calculations, and using the property of the scalar triple
product 〈x, y × z〉 = 〈y, z × x〉 = 〈z, x × y〉 for any
x, y, z ∈ R3, along with Young’s inequality and the fact that
|α| = 1, its time-derivative along trajectories of the error
dynamics gives

V̇0 = −lα〈eα, kαeα〉 − lα〈eα, eb × ebα〉 − lα〈eα, α× eb〉
− lα〈eα, ebα × ω〉+ lα〈ebα, ω × eα〉 − lα〈ebα, eb × eα〉

≤ −lα(kα − ε)|eα|2 +
lα
4ε
|eb|2.

For the second subsystem (eβ , ebβ) we can construct a
strict Lyapunov function, under the assumption of a persis-
tently exciting β(t), as follows.

Consider the candidate Lyapunov function
V := σ1V1 + σ2V

2
1 + V3 + V4 where the coefficients

σ1, σ2 > 0 are yet to be defined, and

V1(eβ , eb) :=
1

2
|eβ |2 +

1

2lβ
|eb|2

V3(eβ , eb) :=
1

2

∣∣∣∣β × eβ − kβ
lβ
eb

∣∣∣∣2
V4(eb, t) :=

kβ
lβ
〈eb,Ψ(t)eb〉,

Ψ(t) is the 3 × 3 symmetric matrix defined by
Ψ(t) := (1 + c2β)TI + 1

T

∫ t+T
t

∫ s
t
β2
×(τ)dτds, where

cβ ≥ |β×| = |βi×| for the matrix norm induced by the 2-
norm on R3. The form of V4 is inspired by the construction
of strict Lyapunov functions for persistently excited
time-varying systems in [11], [12, p. 288]; notice Ψ(t)
satisfies

TI � Ψ(t) � (1 + c2β)TI. (19)

Clearly, V is positive definite and radially unbounded. We
next compute the derivatives of its pieces along the trajec-
tories of the error system (17)–(18). First, V̇1 = −kβ |eβ |2,
where we have used 〈x, x×y〉 = 0 and 〈x, y×z〉 = 〈z, x×y〉.

d

dt
V 2
1 = −kβ |eβ |4 −

kβ
lβ
|eβ |2 |eb|2

V̇3 = 〈kβ
lβ
eb − β × eβ , β2

×eb + β × (eβ × eb)

+ (eβ × β)× ω〉

≤ kβ
lβ
〈eb, β2

×eb〉+
kβ
lβ
|eβ | |eb|2 + |eβ |2 |eb|

+
(

1 +
kβ
lβ
cω

)
|eβ | |eb|

≤ kβ
lβ
〈eb, β2

×eb〉+
3ε

2
|eb|2 +

1

2ε

(kβ
lβ
|eβ | |eb|

)2
+

1

2ε
|eβ |4 +

1

2ε

(
1 +

kβ
lβ
cω

)2
|eβ |2 ;

for the first line of V̇3, we have used (x×y)× z+ (y× z)×
x + (z × x) × y = 0; for the second line, 〈x, x × y〉 = 0

and |β| = |βi| = 1; for the third line, three times Young’s
inequality xy ≤ εx2

2 + y2

2ε . Finally,

Ψ̇(t) =
1

T

∫ t+T

t

β2
×(τ)dτ − β2

×(t)

V̇4 =
kβ
lβ
〈eb,

1

T

∫ t+T

t

β2
×(τ)dτ eb〉

+ 2kβ〈eβ × β,Ψ(t)eb〉 −
kβ
lβ
〈eb, β2

×eb〉

≤ 2kβ(1 + c2β)T |eβ | |eb| −
kβ
lβ
µ |eb|2 −

kβ
lβ
〈eb, β2

×eb〉

≤ 2

ε
k2β(1 + c2β)2T 2 |eβ |2 −

(kβ
lβ
µ− ε

2

)
|eb|2

− kβ
lβ
〈eb, β2

×eb〉;

for the second line of V̇4, we have used (19), |β| = 1, and
assumption (13); for the third line, Young’s inequality.

Collecting all the pieces, we eventually find

V̇ ≤ −µ′ |eb|2 − σ′1 |eβ |
2 − σ′2 |eβ |

4 − σ′′2 |eβ |
2 |eb|2 ,

with σ′1 := σ1kβ − 1
2ε

(
1 +

kβ
lβ
cω

)2
− 2

εk
2
β(1 + c2β)2T 2 |eβ |2,

µ′ :=
kβ
lβ
µ− ε

2 , σ′2 := σ2kβ − 1
2ε , σ′′2 := σ2 − 1

2ε
kβ
lβ

. All the
above coefficients are strictly positive since ε and σ1, σ2 can
be freely chosen, infinitely small and large respectively. As
such V is a strict Lyapunov function, proving uniform global
asymptotic stability of the equilibrium (eβ , eb) = (0, 0).
Notice the bound cω need not be known, since σ1 can
always been chosen large enough to achieve σ′1 > 0.

Now, taking the time-derivative of the composite Lya-
punov function W := V0(eα, ebα) + σ3V (eβ , eb, t), with
σ3 > 0 to be defined, results in

Ẇ ≤ −
(
σ3µ

′ − lα
4ε

)
|eb|2 − lα(kα − ε)|eα|2 − σ′1 |eβ |

2

= −σ′3|eb|2 − σ4|eα|2 − σ′1 |eβ |
2

where σ′3 := σ3µ
′− lα4ε , σ4 := lα(kα−ε). The aforementioned

coefficients are strictly positive as ε is chosen small enough
and σ3 is chosen large enough.

Since W (t) is bounded from below and Ẇ ≤ 0, W (t)
reaches a finite limit as t → ∞. On the other hand, Ẅ
is a polynomial in terms of eα, eβ , eb, ebα, ω(t), ω̇(t); as W
is bounded, since ω(t), ω̇(t) are also assumed bounded, so
are eα, eβ , eb, ebα, hence Ẅ . With W having a finite limit
and Ẇ begin uniformly continuous, due to boundedness of
Ẅ , we can conclude by Barbalat’s lemma that Ẇ (t) tends
to 0 as t→∞, and so do eα(t), eβ(t), eb(t).

The components of ëα, ëβ , ëbα are polynomials in terms
of eα, eβ , eb, ebα; as eα, eβ , eb, ebα, ω are bounded, so
are ëα, ëβ , ëbα,. Now, eα(t), eβ(t), eb(t) have a finite
limit, namely 0, and ėα, ėβ , ėb are uniformly continu-
ous (since ëα, ëβ , ëb are bounded): by Barbalat’s lemma
ėα(t), ėβ(t), ėb(t) tend to 0 as t→∞. Using the dynamics,
this implies that −ebα(t)× ω(t)→ 0.

Proceeding similarly for higher derivatives of
eα, and putting everything together finally yields



−ebα(t)×
(
ω(t)ω̇(t) ω̈(t) · · ·

)
→ 0. Under persistence

of ω the observability condition holds and hence, obtain
ebα(t)× ω(t)→ 0. This concludes the GAS claim.

The LES claim can be established as follows. First,
consider the first-order approximation of (17)-(18) around
the equilibrium point (ēβ , ēb) := (0, 0); it reads

δėβ = δeβ × ω − β × δeb − kβδeβ (20)
δėb = −lββ × δeβ . (21)

This is a linear time-varying system (LTV) in the skew-
symmetric form of [13], that satisfies the conditions of
Theorem 1 of [13] with A(t) := −kβI − ω×(t), B(t) :=
β×(t), C(t) := lββ×(t), P := lβI for β(t) persistently-
exciting and β(t), β̇(t) bounded. Thus, we can conclude local
exponential stability.

Now, let us consider the first-order approximation of (15)-
(16) around the equilibrium point (ēα, ēbα) := (0, 0), that
yields

δėα = δeα × ω − kαδeα − α× δeb (22)
δėbα = −mαω × δeα. (23)

This is again an LTV system in the skew-symmetric form
but with an additional linear term, α × δeb. Since the
nominal system, i.e. for δeb = 0, with A(t) := −kαI −
ω×(t), B(t) := ω×(t), C(t) := mαω×(t), P := mαI ,
ω(t) persistently-exciting and ω(t), ω̇(t) bounded, is locally
exponentially stable and the additional term satisfies a linear
growth condition, from standard arguments on cascaded
time-varying systems (e.g Proposition 2.3 of [14]) we can
conclude LES of the origin of (20)-(23).

Finally, we will be able to obtain the true orientation
matrix R by using the above estimates and the knowledge
of αi and βi.

Corollary 1: Under the assumptions of Theorem 1, the
matrix R̃ defined by

R̃T :=
(

α̂
|αi|

α̂×β̂
|αi×βi|

α̂×(α̂×β̂)
|αi×(αi×βi)|

)
·RTi

Ri :=
(
αi
|αi|

αi×βi
|αi×βi|

αi×(αi×βi)
|αi×(αi×βi)|

)
globally converges to R.

Proof: By Theorem 1, α̂→ α and β̂ → β. Hence,

R̃T →
(

α
|αi|

α×β
|αi×βi|

α×(α×β)
|αi×(αi×βi)|

)
·RTi

=
(
RTαi
|αi|

RTαi×RT βi
|αi×βi|

RTαi×(RTαi×RT βi)
|αi×(αi×βi)|

)
·RTi

= RTRiR
T
i

= RT ,

where we have used RT (u× v) = RTu×RT v since R is a
rotation matrix.

V. SIMULATIONS

The good behavior of the observer is now illustrated
in simulation. All the units in this section are SI units
(m,s,rad,. . . ). The constant vectors αi and βi are respectively
(1, 0, 0)T and (0, 0, 1)T .

Fig. 1. Components of true ω (red) and measured ωm (blue), in rad s−1.

Fig. 2. Components of true α (red), measured αm (blue) and estimated α̂
(orange).

The main practical problem is to enforce the persistent
excitation condition (13), which may not hold for the desired
trajectory to be followed. The idea is then to suitably modify
this desired trajectory by oscillating around it. We illustrate
the approach on a very simple situation, namely hovering,
for which (13) is clearly not satisfied; indeed, β(t) = βi
and ω(t) = 0 for all t. Instead, we consider approximate
hovering with β(t) ≈ βi and ω(t) ≈ 0. In terms of the
usual Euler angles φ, θ, ψ, this can be achieved by choosing:
φ(t)� 1 and T -periodic; θ(t)� 1 and T

k -periodic for some
positive integer k; ψ as prescribed by the desired trajectory
(no approximation is needed), i.e., ψ(t) = 0 in our case.



Fig. 3. Components of true β (red), measured βm (blue) and estimated β̂
(orange).

Fig. 4. Components of true b (red) and estimated b̂ (blue).

Indeed,β =

β1β2
β3

 =

 − sin θ
sinφ cos θ
cosφ cos θ

 ≈
−θφθ

1

 ≈ βi. The

angular velocity ω realizing the approximated hovering is
then obtained by inverting the kinematic relationφ̇ cos θ

θ̇

ψ̇ cos θ

 =

cos θ sinφ cos θ cosφ cos θ
0 cosφ − sinφ
0 sinφ cosφ

ω,

which is (1) expressed in terms of the Euler angles. Then,

−β2
× ≈

 1 φθ θ
φθ 1 −φ
θ −φ θ2 + φ2

. Integrating over the period

Fig. 5. Components of true bα (red) and estimated b̂α (blue).

T yields

− 1

T

∫ t+T

t

β2
×(τ)dτ ≈

1 0 0
0 1 0
0 0 1

T

∫
(θ2 + φ2)

 , (24)

the terms
∫
φθ � 1 are not strictly zero, but can be neglected

since they contribute little to the matrix positivity. In the
simulation, we choose φ(t) := 0.2 sin(2π t2 ) and θ(t) :=
0.2 sin(2π t4 ), which gives 1

T

∫
(θ2 +φ2) = 0.08; (13) is then

satisfied with T = 2 and µ ≈ 0.08.
The system starts in the initial state R(0) := I, i.e.(
φ(0), θ(0), ψ(0)

)
:= (0, 0, 0), and then undergoes the

angular velocity ω(t) displayed in Fig. 1. The observer is
fed with the measured signals ωm, αm and βm, see Fig.
1 to 3. The measured angular velocity ωm is affected by
the (unknown) slowly drifting bias b, see Fig. 1 and 4;
though this is hardly visible on the figures, b does vary from
(5, 7, 3)T × 10−2 to (5.15, 7.15, 3.15)T × 10−2. The mea-
sured vector αm is affected by the (unknown) constant bias
bα = (−0.3,−0.1, 0.2)T . All the measurement signals are
corrupted by band-limited independent gaussian white noises
(sample time 10−3, noise powers 10−6 for the components
of αm, βm and 10−7 for those of ωm). The characteristics of
the biases and noises are representative of MEMS sensors.
Finally, the tuning gains are set to (kα,mα, kβ , lβ) :=
(2, 10, 1, 10). The observer is initialized with no error, but
suddenly reinitialized to very different values at t = 10. As
expected, the estimated quantities α̂, β̂, b̂ and b̂α converge
to their true values after the reinitialization, see Fig. 2 to 5.
Fig. 6-7-8 show the reconstruction of the Euler angles φ, θ, ψ
from the estimated vectors α̂, β̂. The trajectory is indeed an
approximation of hovering.



Fig. 6. True φ (red) and estimated φ̂ (blue), in rad.

Fig. 7. True θ (red) and estimated θ̂ (blue), in rad.

VI. CONCLUSION

We have presented a simple nonlinear “geometry-free” ob-
server for attitude, vector bias and gyro bias estimation. This
seems to be the first work considering both a gyro bias and
a vector bias in the attitude estimation. Through a Lyapunov
analysis, the designed estimator is shown to guarantee global
asymptotic convergence and local exponential convergence.
In addition, simulations demonstrate that it performs very
well, even in the presence of noise and slowly-varying biases.

The case of two vector biases bα and bβ also seems
tractable: though we have so far not been able to provide a
convergence proof, we have checked in simulation the good
behavior of the observer

˙̂αm = (α̂m − b̂α)× (ωm − b̂)− kα(α̂m − αm)
˙̂
βm = (β̂m − b̂β)× (ωm − b̂)− kβ(β̂m − βm)

˙̂
b = lαα̂m × αm + lβ β̂m × βm

˙̂
bα = mα(ωm − b̂)× (α̂m − αm)
˙̂
bβ = mβ(ωm − b̂)× (β̂m − βm),

where the positive constants kα, kβ , lα, lβ ,mα,mβ are tun-
ing gains. This will be the focus of future work.

Fig. 8. True ψ (red) and estimated ψ̂ (blue), in rad.
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