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Abstract— A recent development in data-driven modelling
addresses the problem of identifying dynamic models of in-
terconnected systems, represented as linear dynamic networks.
For these networks the notion network identifiability has been
introduced recently, which reflects the property that different
network models can be distinguished from each other. Network
identifiability is extended to cover the uniqueness of a single
module in the network model. Conditions for single module
identifiability are derived and formulated in terms of path-
based topological properties of the network models.

I. INTRODUCTION

Systems in engineering are becoming increasingly com-
plex and interconnected. In many control, monitoring and
optimization applications it is advantageous to model a
system as a set of interconnected modules. Linear dynamic
networks are formed by interconnecting modules according
to a structured topology. Given the increasing availability
of sensors, it is attractive to develop tools for data-driven
modelling of linear dynamic networks. There are several
interesting topics of research, including the development of
methods to estimate the dynamics of one, several or all
modules embedded in the network from a given data set,
or estimating its topology [1], [2], [3], [4].

The objective in data driven modelling is to select a
model that best represents the data from a set of candidate
models, for example by using the setup introduced in [5], [6].
When identifying either a full network or a subnetwork, it
is important that the candidate models can be distinguished
from each other. For this purpose, the concept of network
identifiability has been introduced in[7], as a follow up
on system theoretic results of [1]. In this setting, network
identifiability is dependent on the presence and location of
external excitation signals, on structural information on the
network topology and the disturbance correlation structure.

The analysis in [7] has been concentrated on identifiability
of a full network on the basis of all node variables being
measured. An alternative problem is formulated in [8] where
identifiability of all or some of the modules is studied on
the basis of a subset of node signals being measured. The
results in [8] are formulated for the particular situation that
all nodes are excited by external excitation signals and that
the network is noise-free. Moreover, it is shown that the
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conditions for identifiability can be recast into attractive path-
based conditions if the concept of network identifiability is
considered in a generic sense.

In this paper we will extend the identifiability analysis of
[7] in two different ways. First we will cover identifiability
of a single module in a noise disturbed network where all
nodes are measured, in other words under what conditions
is a module of interest identifiable? And secondly we will
show that, in line with the approach in [8], the conditions for
identifiability can be formulated as path-based conditions, if
we consider the identifiability concept in a generic sense.
This allows for a simple verification of identifiability based
on the topology of the network models.

In Section II-A the problem setup is provided and we
recall the main results of [7]. Next the concept of single
module identifiability is defined, after which necessary and
sufficient conditions are formulated for this type of network
identifiability. Then it is shown that these conditions can be
formulated as path-based conditions on the network, for the
situation that we accept network identifiability as a generic
concept.

II. PRELIMINARIES

A. Network setup

Following the basic setup of [5], a dynamic network is
built up out of L scalar internal variables or nodes w j,
j = 1, . . . ,L, and K external variables rk, k = 1, . . .K. Each
internal variable is described as:

w j(t) =
L

∑
l=1
l 6= j

G jl(q)wl(t)+
K

∑
k=1

R jk(q)rk(t)+ v j(t) (1)

where q−1 is the delay operator, i.e. q−1w j(t) = w j(t−1);

• G jl , R jk are proper rational transfer functions, and the
single transfers G jl are referred to as modules.

• rk are external variables that can directly be manipu-
lated by the user;

• v j is process noise, where the vector process v =
[v1 · · ·vL]

T is modelled as a stationary stochastic process
with rational spectral density, such that there exists a p-
dimensional white noise process e := [e1 · · ·ep]

T , p≤ L,
with covariance matrix Λ > 0 such that

v(t) = H(q)e(t).

For p = L, H is square, stable, monic and minimum-phase.
The situation p < L is referred to as the rank-reduced noise
case, and for a detailed description we refer to [7].
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When combining the L node signals we arrive at the full
network expression

w1

w2
...

wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L
GL1 · · · GL L−1 0




w1

w2
...

wL

+R


r1

r2
...

rK

+H


e1

e2
...

ep


which results in the matrix equation:

w = Gw+Rr+He. (2)

The network transfer function that maps the external signals
r and e into the node signals w is denoted by:

T (q) :=
[
Twr(q) Twe(q)

]
, with (3)

Twr(q) := (I−G(q))−1 R(q), and (4)

Twe(q) := (I−G(q))−1 H(q). (5)

As a shorthand notation we use U(q) :=
[
H(q) R(q)

]
. The

identification problem to be considered is the problem of
identifying the network dynamics (G,R,H,Λ) on the basis
of measured variables w and r.

Remark 1: The dynamic network formulation above is
related to what has been called the Dynamic Structure
Function (DSF) as considered for disturbance-free systems
in [9], [3], [10].

In order to arrive at a definition of network identifiability
we need to specify a network model and network model set.

Definition 1 (network model): A network model of a net-
work with L nodes, and K external excitation signals, with
a noise process of rank p≤ L is defined by the quadruple:

M = (G,R,H,Λ)

with
• G∈RL×L(z), diagonal entries 0, all modules proper and

stable1;
• R ∈ RL×K(z), proper;
• H ∈ RL×p(z), stable, with a stable left inverse, and[

Ip 0
]

H(q) is monic.
• Λ ∈ Rp×p, Λ > 0;
• the network is well-posed2 [6], with (I−G)−1 proper

and stable. �
The noise model H is defined to be non-square in the case
of a rank-reduced noise (p < L).

Definition 2 (network model set): A network model set
for a network of L nodes, K external excitation signals,
and a noise process of rank p ≤ L, is defined as a set of
parametrized matrix-valued functions:

M :=
{

M(θ) =
(
G(q,θ),R(q,θ),H(q,θ),Λ(θ)

)
,θ ∈Θ

}
,

with all models M(θ) satisfying the properties as listed in
Definition 1. �

1The assumption of having all modules stable is made in order to
guarantee that Twe (5) is a stable spectral factor of the noise process that
affects the node variables.

2This implies that all principal minors of (I−G(∞))−1 are nonzero.

A path in the network is a sequence of modules. More
precisely there exists a path through nodes wn1 , . . . ,wnk if

Gn1n2Gn2n3 · · ·Gn(k−1)nk 6= 0.

B. Identifiability

Identification is usually performed on the basis of second-
order properties of w and r. Therefore in [7] network
identifiability is defined as a property of the model set, on
the basis of those second-order properties.

Definition 3 (Network identifiability from [7]): The net-
work model setM is globally network identifiable at M0 :=
M(θ0) if for all models M(θ1) ∈M,

Twr(q,θ1) = Twr(q,θ0)
Φv̄(ω,θ1) = Φv̄(ω,θ0)

}
⇒M(θ1) = M(θ0), (6)

where Φv̄ is the spectrum of v̄(t) := w(t)−Twr(q)r(t). M is
globally network identifiable if (6) holds for all M0 ∈M.�
Under some conditions on feedthrough in modules, the
implication can be re-written.

Proposition 1 (from [7]): LetM be a network model that
satisfies either
• all modules in G(q,θ) are strictly proper, or
• there are no algebraic loops3 and Λ(θ) is diagonal for

all θ ∈Θ.
Then M is globally network identifiable at M0 := M(θ0) if
for all models M(θ1) ∈M,

{T (q,θ1) = T (q,θ0)}⇒ (7)
{(G(θ1),R(θ1),H(θ1)) = (G(θ0),R(θ0),H(θ0))}.

Network model setM is globally network identifiable if (7)
holds for all M0 ∈M. �
The results later in this paper also hold for for situations
where modules are allowed to have algebraic loops; see [7]
for more details on the treatment of that situation.

Necessary and sufficient conditions for network identifi-
ability can be formulated. To this end we need to intro-
duce some notation. Considering row j, define Ťj as the
transfer function from signals r and e that are not input
to parameterized transfers in U j?(θ), to node signals w
that are input to parameterized transfers in G j?(θ). The
number of parameterized transfers in G j?(θ) and U j?(θ)
are αi and βi respectively. More formally, let Pj be the
permutation that gathers all parameterized modules on the
left of G j?(θ)Pj, and let Q j be the permutation that gathers
all non-parameterized transfers on the left of U j?(θ)Q j, then

Ťj(q,θ) :=
[
Iα j 0

]
P−1

j T (q,θ)Q j

[
IK+p−β j

0

]
. (8)

Theorem 1 (Part of Theorem 2 from [7]): Let M satisfy
the properties of Proposition 1, and additionally satisfy:

a. Every parametrized entry in the model {M(z,θ),θ ∈Θ}
covers the set of all proper rational transfer functions;

3an algebraic loop is a path where n1 = nk and
limz→∞ Gn1n2 (z)Gn2n3 (z) · · ·Gn(k−1)nk (z) 6= 0



b. All parametrized transfer functions in the model M(z,θ)
are parametrized independently (i.e. there are no com-
mon parameters).

Then
1) M is globally network identifiable at M(θ0) if and

only if
• each row j of the transfer function matrix[

G(θ) U(θ)
]

has at most K + p parameterized
entries, and

• for each j, Ťj(θ0) defined by (8) has full row rank.
2) M is globally network identifiable if and only if

• each row j of the transfer function matrix[
G(θ) U(θ)

]
has at most K + p parameterized

entries, and
• for each j, Ťj(θ) defined by (8) has full row rank

for all θ ∈Θ. �

III. EXTENSION TO SINGLE-MODULE IDENTIFIABILITY

In this section the identifiability of just part of the network,
or a single module is treated. To this end we formalize
identifiability of particular properties of M as suggested in
[7]. First we define identifiability of a row of M, in order
to evaluate identifiabilty around a certain node in a network,
after which identifiability of a particular module is treated.

Definition 4: For network models that satisfy the condi-
tions of Proposition 1, row j of network model set M is
globally network identifiable at M0 :=M(θ0) if for all models
M(θ1) ∈M,

T (q,θ1) = T (q,θ0)}⇒

 G j?(q,θ1) = G j?(q,θ0)
R j?(q,θ1) = R j?(q,θ0)
H j?(q,θ1) = H j?(q,θ0)

. (9)

Row j of network model set M is globally network identi-
fiable if (9) holds for all M0 ∈M. �
The conditions in Theorem 1 are formulated independently
for each row, so it is straightforward to obtain conditions
under which a specific row of M is identifiable.

Corollary 1: LetM be a network model set defined as in
Theorem 1, and Ťj(θ) defined by (8), then

1) Row j of network model set M is globally network
identifiable at M(θ0) if and only if
• row j of the transfer function matrix[

G(θ) U(θ)
]

has at most K + p parameterized
entries, and

• Ťj(θ0) has full row rank.
2) Row j of network model set M is globally network

identifiable if and only if
• row j of the transfer function matrix[

G(θ) U(θ)
]

has at most K + p parameterized
entries, and

• Ťj(θ) has full row rank for all θ ∈Θ. �
When we are interested in one specific module, then the

above definition is still conservative. It is possible that a
module is identifiable, even when other modules of that row
are not, which is illustrated by the following example.

Example 1: Consider a set of network models of the
topology shown in Figure 1, described by

w1
w2
w3
w4

=


0 0 0 0
0 0 0 0
0 G32 0 0

G41 G42 G43 0




w1
w2
w3
w4

+


1 0
0 1
0 0
0 0

[r1
r2

]
, (10)

where all modules G ji are parameterized. The response of
the node variables is given by w = Tr with

T = (I−G)−1R =


1 0
0 1
0 G32

G41 G42 +G32G43

 . (11)

From T we can directly determine G41 and G32, but we can
not distinguish between G42 and G43. For node 4 there are
three parameterized transfer functions, but only two excita-
tions, so the model set is not globally network identifiable,
but we can see that particular modules are identifiable. �

To define identifiability of a specific module the implica-
tion (9) is made even more specific.

Definition 5: For network models that satisfy the condi-
tions of Proposition 1, module G ji of network model set M
is globally network identifiable at M0 := M(θ0) if for all
models M(θ1) ∈M,

{T (q,θ1) = T (q,θ0)}⇒ {G ji(q,θ1) = G ji(q,θ0)}. (12)

Module G ji of network model set M is globally network
identifiable if (12) holds for all M0 ∈M. �
It is obvious that identifiability of every module holds for ev-
ery model set that is globally network identifiable. However
now the interesting question is whether the conditions can be
relaxed, such that identifiability of a module is guaranteed,
even when other modules are not identifiable.

In order to find identifiability conditions for a single
module G ji, assume without loss of generality that this
module corresponds to the top row of Ťj. Then define Ťj,(i,?)
as the top row of Ťj, and Ťj,(−i,?) by

Ťj(q,θ) =
[

Ťj,(i,?)(q,θ)
Ťj,(−i,?)(q,θ)

]
(13)

So Ťj,(−i,?) is Ťj with the row corresponding to node wi
removed. The following Theorem now specifies necessary
and sufficient conditions for the identifiability condition (12).

w1 w4

r1

G41

w2

r2

G42

w3

G43

G32

Fig. 1. Example network model where some modules are identifiable.



Theorem 2: Let M be a network model set defined as in
Theorem 1, then

1) Module G ji of network model set M is globally
network identifiable at M(θ0) if and only if

rank(Ťj(θ0))> rank(Ťj,(−i,?)(θ0)). (14)

2) Module G ji of network model set M is globally
network identifiable if and only if

rank(Ťj(θ))> rank(Ťj,(−i,?)(θ)) (15)

for all θ ∈Θ. �
The proof is collected in the appendix.

The essential part of the theorem is that if the row of
Ťj corresponding to node wi is a linear independent row,
then the module is identifiable. Note that there is no explicit
requirement on the number of parameterized elements in
Theorem 2. We do not require uniqueness of all modules,
so we can have fewer equations than unknowns.

Example 2 (Example 1 continued): For node 4 there are
three parameterized transfer functions, while there are only
two excitations. The matrix to be evaluated is

Ť4 =

1 0
0 1
0 G32

 (16)

of dimension 3×2, so that it can never be full row rank.
When evaluating the three modules on row 4 individually,

only one row is linearly independent of the others. For
module G41 the matrices to be checked are

Ť4(1,?) =
[
1 0

]
, Ť4(−1,?) =

[
0 1
0 G32

]
. (17)

We can then clearly see that Ť4(1,?) is linearly independent
of Ť4(−1,?) and also that

rank(Ť4(−1,?)) = 1 < rank(Ť4) = 2,

such that the condition of Theorem 2 is satisfied for G41.
It can be shown that rows 2 and 3 of Ť4 are linearly

dependent, and so G42 and G43 are both not identifiable.

IV. PATH-BASED IDENTIFIABILITY CONDITIONS

In this section the rank conditions used for network
identifiability are formulated as topology based conditions.
The core idea is that the rank of T depends on the topology of
the network. We base our reasoning on concepts presented in
[8], where network identifiability is considered for situations
where not all nodes are measured. We adapt the identifiability
definition in [8] to our problem setting, and then formulate
topological conditions on the basis of disjoint paths, which
will be defined later.

The identifiability concept treated in [8] differs from
Definition 3, and we formulate the following definition in
order to use their approach.

Definition 6 (Generic network identifiability):
• M is generically globally network identifiable if (7)

holds for almost all M0 ∈M.

• Row j of network model set M is generically globally
network identifiable if (9) holds for almost all M0 ∈M.

• Module G ji of network model set M is generically
globally network identifiable if (12) holds for almost
all M0 ∈M. �

The only difference between Definitions 3 and 6 is the
exception of a set of zero measure. Implications that come
with this different definitions are discussed in Section V.

The rank conditions of Theorems 1 and 2, Corollary 1 can
directly be formulated for the generic network identifiability.

Corollary 2: The model setM, row j of model setM, or
module G ji of model set M is generically globally network
identifiable by the conditions 2) of Theorem 1, Corollary 1,
Theorem 2 respectively upon replacing the phrase “for all
θ ∈Θ” by “for almost all θ ∈Θ”. �

The proof is a trivial extension of the proof of Theorem
1 found in [7] and the proof of Theorem 2.

In order to formulate topological conditions under which
a model set is generically globally network identifiable, the
notion of disjoint paths is introduced following the approach
in [8] and the definition in [12]. Consider two paths in the
network, then we can say that these two paths are disjoint
if they have no common nodes, including their start and end
nodes or excitations. For a set of l paths, these paths are
disjoint if every pair of paths is disjoint.

Essentially what this means is that if there exists a set of
disjoint paths from some excitations rk, el to some nodes
wi, then every one of those nodes has ’its own’ source of
excitation. Note that when two paths are disjoint, there may
still exist modules that connect the nodes in the paths, and
there may exist loops around the nodes.

In [12] the notion of a set of disjoint paths is connected to
the rank of a transfer matrix. This is defined on the basis of
state-space systems in the following way. A parameterized
state-space system is defined with matrices A,B,C, and the
open-loop transfer from input to output is defined as C(sI−
A)−1B. Then the generic rank of the transfer matrix C(sI−
A)−1B is defined as the rank that C(sI−A)−1B has for almost
all parameters. From the paper then the relation between rank
and disjoint paths is formulated.

Theorem 3 (Theorem 2 from [12]): Let GΣ be the graph
corresponding to the state-space system

ẋ = Ax+Bu

y =Cx.
(18)

The maximum number of disjoint paths in GΣ from signals in
u to signals in y is equal to the generic rank of C(sI−A)−1B.
�

This state-space representation is very similar to the net-
work representation. If we take a network with C = I and
first order modules, then this network is equivalent to the
state-space model. In that case we have that

C(sI−A)−1B = (I−G)−1U = T, (19)

where the graph GΣ has the same topology as G. When the
order of the modules of G is allowed to be greater than
1, then this has no effect on the topology of G, and also



the generic rank of T does not depend on the order of the
modules in the network.

Proposition 2: LetM be a set of network models M with
strictly proper modules. Let U be a set of excitations, i.e. a
set of some rk and el , and let Y be a set of nodes wi. The
maximum number of disjoint paths in M from excitations in
U to nodes in Y is equal to the generic rank of the transfer
TYU (q,θ) from excitations in U to nodes in Y . �

Using Proposition 2 the conditions on Ťj of Corollary 2
can be explained using disjoint sets. The Ťj is the trans-
fers from external signals rk, el that are input to non-
parameterized transfers, to node signals wi that are input
to parametrized modules that map to w j. So then we know
that the generic row rank of Ťj can be checked by checking
whether there are a sufficient number of disjoint paths from
excitations in U j to nodes in Y j.

Proposition 3: Let Y j be the set of nodes wk which are an
input to a G jk that is parameterized. Let α j be the number
of parameterized modules that map into node j, i.e. the
cardinality of Y j. Let U j be the set of excitations rk, el that
are not an input to a R jk, H jl that is parameterized. The
three conditions on matrix rank referred to in Corollary 2
are equivalently formulated as:

1) For each j, there is a set of α j disjoint paths from
excitations in U j to nodes in Y j;

2) There is a set of α j disjoint paths from excitations in
U j to nodes in Y j;

3) For the module of interest G ji, let Ȳ j = Y j \wi. There
is a set P of the maximum number of disjoint paths
from excitations in U j to nodes in Ȳ j, and an additional
path from excitations in U j to wi that is disjoint to the
paths in P . �

In order to satisfy condition 1) or 2) there is an implicit
requirement on the number of available excitations, which
is directly related to the maximum number of parameterized
elements in conditions 1) and 2) of Corollary 2. For condition
3) there is no minimum number of excitations, but there is
the implicit requirement that there is a ’surplus’ excitation
that can form a disjoint path to the module of interest.

In order to check the conditions of Proposition 3, all
that must be done is check which transfer functions are
parameterized, and check whether the necessary paths are
present in the network. This is illustrated in an example.

Example 3 (Example 2 continued): Now using the topol-
ogy based condition the identifiability of modules is checked.

In order to check the identifiability of modules that map
into node w4 we see that Y4 = {w1,w2,w3}, so α4 = 3. There
are only two excitations present in the network which are not
an input to w4, U4 = {r1,r2}, so immediately we know that
there can not be 3 disjoint paths from excitation to Y4, and
that row 4 of M is not generically network identifiable.

For identifiability of single modules we see that there are
two disjoint paths from U4 to Y4. Then for module G42 we
see there are two disjoint paths from U4 to Ȳ4 = {w1,w3},
so G42 is not generically network identifiable. However
for module G41 there is just one disjoint path from U4 to
Ȳ4 = {w2,w3}, so G41 is generically network identifiable.

Basically when w1 is removed, there is a surplus excitation
r1 that can not form a disjoint path to w3.

V. DISCUSSION ON DEFINITION OF IDENTIFIABILITY

Path-based conditions are based on generic rank, and not
’normal’ rank. The difference between the two definitions
of identifiability is the exception of a zero-measure set
of models, so network identifiability is more strict than
generic network identifiability. When one model inM is not
identifiable, then M is not network identifiable, but it can
be generically network identifiable. In order to understand
the difference between the definitions, we need to understand
which models cause the difference, and whether those models
are important. An illustration of this is given in an example.

w2 w1G12

G21

v1

Fig. 2. A closed-loop network representing a set of models.

Example 4: Suppose we have a parameterized set of mod-
els as depicted in Figure 2, with

G =

[
0 G12

G21 0

]
, H =

[
1
0

]
, T 0 =

 1
1−G0

12G0
21

G0
21

1−G0
12G0

21

 .
Now the identifiability question is whether G12 and G21 can
be uniquely determined from[

0 G12
G21 0

] 1
1−G0

12G0
21

G0
21

1−G0
12G0

21

=

[
1
0

]
. (20)

When G0
21 6= 0, then T 0 has two non-zero entries, and (20)

consists of two independent equations with two unknowns.
However if G0

21 = 0, then T 0 has a 0 entry, and (20) has
one trivial equation, such that G12 can not be determined
uniquely. If we have a-priori knowledge that G0

21 6= 0, then
G12 can be determined uniquely, and we want to classify the
model set as identifiable. However in a topology detection
situation we would like to determine whether G12 and G21
are zero or non-zero, so the possibility that G0

21 = 0 must be
taken into account. Precisely in that situation the G12 can not
be determined from data, and we want to classify the model
set as non-identifiable. �

Typically there are three possible objectives in a network
identification problem: topology detection, identification of
all modules, or identification of a single module. For prob-
lems where modules may be 0, such as in topology detection
problems, we have to be able to distinguish between all possi-
ble models, even when modules are 0. So for those problems
global network identifiability is the desired concept.



VI. CONCLUSIONS

The notion of network identifiability has been extended to
cover the case of single-module identifiability. Necessary and
sufficient conditions for single module identifiability have
been obtained, and it has been shown that when considering
a generic version of the identifiability concept, the necessary
and sufficient conditions can be reformulated in terms of
path-based conditions that can simply be verified on the basis
of the network topology.

APPENDIX

A. Proof of Theorem 2

The left hand side of the implication (12) can be written
as

(I−G(θ))T =U(θ), (21)

where we use shorthand notation T = T (θ0), G(θ) = G(θ1)
and U(θ) =U(θ1). By inserting the permutation matrices P
and Q as in (8) we obtain for row j:

(I−G(θ)) j?PP−1T Q =U j?(θ)Q (22)

leading to

(I−G(θ))
(1)
j? T (1)

j +(I−G)
(2)
j? T (2)

j =
[
U (1)

j? U(θ)
(2)
j?

]
, (23)

with P−1T Q =

[
T (1)

j

T (2)
j

]
. Note that Ťj = T (1)

j

[
IK+p−β

0

]
. The

right-hand block in (23) corresponding to U(θ)
(2)
j? does not

add to the uniqueness of the module of interest since it
is fully parameterized (conditions a,b of Theorem 1), so
equivalently we can consider

(I−G(θ))
(1)
j? T̆j +ρ =U (1)

j? , (24)

with ρ the left 1× (K+ p−β ) block of (I−G)
(2)
j? T (2)

j . Now

since ρ and U (1)
j? are independent of θ we have that (I−

G(θ))
(1)
ji is uniquely specified if and only if (I−G(θ))

(1)
ji is

uniquely specified in the left-nullspace of Ťj.
Sufficiency:

Define some transfer matrix X(q) of dimension (K + p−
β )×1 with the following properties:
• Ťj(−i,?)(q,θ0)X(q) = 0, and
• Ťj(i,?)(q,θ0)X(q) 6= 0,

where Ťj(−i,?) and Ťj(i,?) are defined in (13). This X exists
because condition (14) requires that Ťj(−i,?)(q,θ0) is not full
column rank, and condition (14) implies that Ťj(i,?)(q,θ0) is
linearly independent from the rows of Ťj(−i,?)(q,θ0). Now
define an (K+ p−β )×(K+ p−β ) full rank transfer matrix
Z(q) which has X as its first column. Then (24) can be post-
multiplied with Z to obtain an equivalent set of equations,
leaving the set of solutions for G ji invariant. The first column
of ŤjZ is

Ťj(q,θ0)X(q) =
[

Ťj(i,?)(q,θ0)X(q)
0

]
, (25)

such that, for this choice of Z, G ji can be uniquely deter-
mined from

(I−G(θ))
(1)
j?

[
Ťj(i,?)X

0

]
= (U (1)

j? −ρ)X . (26)

If G ji is unique for this particular choice of Z, it must be
unique in the original problem also.

Necessity:
The converse of condition (14) is that rank

(
Ťj(q,θ0)

)
=

rank
(
Ťj(−i,?)(q,θ0)

)
. In this case the row of Ťj(q,θ0) cor-

responding to G ji(θ) is linearly dependent on other rows
of Ťj(q,θ0). When Ťj(i,?) is linearly dependent on another
row Ťj(k,?), an equation equivalent to (24) can be created
where the element G j1 and row Ťj(i,?) are deleted, and where
(G jiF +G jk) replaces G jk, such that G ji can not uniquely be
distinguished.

Proof of situation (2): For all θ ∈Θ:
For every θ ∈Θ we can construct T (θ) with related Ťj(θ). If
condition (14) applies for every model as stated by condition
(15), then the reasoning as presented before fully applies to
every model. If for some θ ∈Θ the condition (14) is not met,
there exists a model in the model set which is not identifiable,
and hence the model set is not globally network identifiable
in M. �
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