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On the Simulation of Polynomial NARMAX Models

Dhruv Khandelwal, Maarten Schoukens, and Roland Tóth

Abstract— In this paper, we show that the common approach
for simulation non-linear stochastic models, commonly used
in system identification, via setting the noise contributions
to zero results in a biased response. We also demonstrate
that to achieve unbiased simulation of finite order NARMAX
models, in general, we require infinite order simulation models.
The main contributions of the paper are two-fold. Firstly, an
alternate representation of polynomial NARMAX models, based
on Hermite polynomials, is proposed. The proposed represen-
tation provides a convenient way to translate a polynomial
NARMAX model to a corresponding simulation model by
simply setting certain terms to zero. This translation is exact
when the simulation model can be written as an NFIR model.
Secondly, a parameterized approximation method is proposed
to curtail infinite order simulation models to a finite order. The
proposed approximation can be viewed as a trade-off between
the conventional approach of setting noise contributions to
zero and the approach of incorporating the bias introduced
by higher-order moments of the noise distribution. Simulation
studies are provided to illustrate the utility of the proposed
representation and approximation method.

I. INTRODUCTION

In the field of data-driven modelling, prediction error

has been the primary choice of identification criterion for

many decades. This choice is well-justified due to its ease

of use and the maximum-likelihood interpretation of the

one-step ahead predictor with respect to the sum-of-squared

error identification criterion [1]. This interpretation holds

true under the assumption that the underlying noise process

is zero-mean and that the true data-generating system can

indeed be represented by the chosen model class. It has been

observed (for example, in [2], [3]) that the presence of an

auto-regressive component in the prediction model can allow

a relatively simpler model to achieve optimistic prediction

results for an otherwise complex dynamical system. This

observation leads to the following question - given a set of

data measured from the unknown dynamical system and an

identified model, how can one ensure that the model not only

predicts the measured data, but also captures the dynamical

structure of the true system. This question has been long

recognized in literature (c.f. [4]). A key challenge that is

inherent to this question is that one should be able to assess

the quality of the identified model across multiple model

classes, for example, to compare the quality of a linear model

with that of a non-linear model.
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Model validation is an important ingredient of the system

identification framework. A common approach in model

validation is to order models based on a pre-defined measure

of complexity, and then add levels of complexity in a model

until the data can no longer invalidate the model [5]. This

approach is in line with the Occam’s Razor principle that

suggests that one should choose the simplest model that

explains the data. However, the approach becomes quite cum-

bersome and computationally infeasible when identification

is done in a black-box setting that spans across multiple

model classes. Another common approach to model invali-

dation is to estimate the generalization error of an identified

model (i.e. the performance of an identified model on an

independent data-set). When a sufficiently large amount of

data is available, the user can set aside a part of the data that

is not used during model estimation. The independent data-

set can then be used to estimate the generalization error of

all models identified based on the data used for estimation.

This method is called cross-validation [6]. When the amount

of data is insufficient, information criterion such as AIC

(Akaike Information Criterion) or BIC (Bayesian Informa-

tion Criterion) can be used to estimate the generalization

error.

An alternative approach that deals with this challenge is

the control of complexity by using regularization. In these

methods, the cost function is modified to include a penalty

term that controls the complexity of the identified models as

part of the optimization problem. However, in a black box

setting that spans multiple model classes, finding a suitable

regularization penalty is challenging.

A third alternative, and one that is of interest in this

contribution, is to make use of simulation error to judge the

quality of an identified model. Simulation models do not

make use of the past output measurements, as opposed to

prediction models. As a result, simulation error is typically

more sensitive to mismatch between the model and the sys-

tem structure than prediction error (see [2], [7]). Moreover,

simulation models can be defined for models belonging to

different model classes. Simulation error has been used in the

past for non-linear structure selection, for example in [2].

The notion of a simulation model can be understood in

multiple ways. A simulation model can be viewed as an

infinite horizon prediction model. This effectively negates

the auto-regressive components of a prediction model. A

simulation model can also be interpreted as the “deterministic

response” of the system. As a result of this interpretation,

simulation models are often reported in the literature as

prediction models with noise terms set to 0 [8, ch. 5]. In

the case of linear systems, it is always possible to lump
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the noise sources as an additive term on the output of the

deterministic response of the system. Hence, the approach of

setting noise contributions to 0 can be intuitively linked to the

idea of obtaining the “deterministic response” of the system.

However, in the non-linear setting, neglecting the process

noise terms leads to a biased response (see [9], [10]).

In this paper, two contributions are made with respect

to the computation of simulation models for polynomial

NARMAX models. In Section IV-A, a Hermite polynomial-

based representation is proposed. The proposed representa-

tion provides a convenient way to link prediction models

and simulation models, under the assumption that the noise

is distributed normally. In Section IV-B, it is shown that

computing a simulation model for a finite order NARMAX

model may lead to an infinite order NIIR model. For such

cases, an approximation method is proposed. Numerical

illustrations are provided in V.

II. PROBLEM DESCRIPTION

Consider the discrete-time single-input single-output

(SISO) polynomial NARMAX model form:

yk = f
(

yk−1, . . . , yk−ny , uk−1, . . . , uk−nu ,

ξk−1, . . . , ξk−nξ

)

+ ξk, (1)

where, f(.) is a polynomial non-linear function, uk, yk ∈ R

are the input and the output of the system at time instant

k, ξ is a zero-mean white noise process assumed to be

independent of u, and nu, ny and nξ are the maximum time

lags for the respective signals. In the sequel it is assumed that

f in (1) is Bounded Input Bounded Output (BIBO) stable

with respect to the deterministic input u and that the initial

conditions {uk, yk, ξk} for k ≤ 0 are 0. Note that (1) is

not the most general representation of non-linear systems,

nonetheless, a large family of systems can be modelled

within this class.

Given a model of form (1), one possible approach to

compute the corresponding simulation model is to set the

noise contributions to 0. This approach works well when the

function f is linear because it is always possible to separate

the noise contributions in the function f to form an additive

noise model of the form

yk = g(yk−1, . . . , yk−ny , uk, . . . , uk−nu)+

h(ξk−1, . . . , ξk−nξ
) + ξk, (2)

where g and h are linear functions. If a simulation model is

described as the deterministic response of the system, then it

can be expressed as the conditional expectation of the output

E[yk] taken with respect to the distribution of the noise.

Since it is assumed that the noise process is zero-mean, the

simulation response ys can be written as

ys,k := E[yk] = g(ys,k−1, . . . , ys,k−ny , uk, . . . , uk−nu).
(3)

Notice that this is the same as setting all noise contributions

in (1) to 0. However, when f is a non-linear function, it is not

trivial to separate the noise contributions into a separate noise

process that appears additively in the output of the system.

Furthermore, in order to compute the conditional expectation

of (1), one must take the expectation over terms that include

polynomial factors of the past outputs y and noise ξ. In order

to compute such a conditional expectation, one must take in

to account the higher order moments of the noise process

and the non-linear dependencies of the output terms y on

the noise terms ξ. As a result, the simple approach of setting

the noise terms to 0 results in a biased simulation response.

Continuing the line of reasoning from the linear case, one

can represent the simulation response ys of (1) as:

ys,k := E[yk] = E[f(yk−1, . . . , yk−ny , uk−1, . . . uk−nu ,

ξk−1, . . . , ξk−nξ
)] (4)

where the conditional expectation is taken with respect to the

probability density pξ of ξ and the input sequence {uk; k ∈
[1, N ]}. The problem can be stated as follows. Given an

input-output sequence {uk; k ∈ [1, N ]}, and a model of form

(1), compute the simulation model, as given in (4).

It is important to note that in order to compute simulation

models as in (4), higher order moments of the noise distri-

bution must be known. Hence, in the sequel, we assume that

the noise process ξk is i.i.d and is distributed as N (0, 1).
Note that a noise process vk ∼ N (µ, σ), can be equivalently

expressed as

vk = σξk + µ, (5)

and hence, can be included in the model formulation in (1).

III. MATHEMATICAL BACKGROUND

Under the given assumptions that the noise process is

distributed normally, the noise process terms ξk that appear

in model (1) may be transformed to Hermite polynomials

[11, Ch. 18] in ξk . For completeness, a brief overview of the

relevant properties of Hermite polynomials is presented.

Let (R,BR, px) be a probability space on the real line

R, where BR is the Borel σ-algebra on R, and px is the

probability measure of the Gaussian distribution. Consider

the Hilbert space L2(R,BR, px) of random functions f that

satisfy,

E [f ] = 0 and E
[

f2
]

< ∞. (6)

where E is associated with the inner product

〈f, g〉 = E [fg] =
1√
2π

∫

∞

−∞

f(x)g(x)e−
x2

2 dx, (7)

for any f, g ∈ L2(R,BR, px).
Definition 1: Hermite polynomials Hen(x) of degree n

are defined as

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 . (8)

Hermite polynomials form a closed and complete orthogonal

basis in the L2 space with the inner product defined in (7)

(see [11]), i.e.,

〈Hen, Hem〉 = 1√
2π

∫

∞

−∞

Hen(x)Hem(x)e−
x2

2 dx

= n!δn,m, (9)



where δn,m = 1 when n = m and 0 otherwise. Hermite

polynomials possess a number of properties that will be used

in order to derive simulation models automatically from a

given stochastic model of form (1).

Since Hermite polynomials form a complete orthogonal

basis in L2(R,BR, px) with inner product defined in (7), any

function f ∈ L2(R,BR, px) can be expressed as a convergent

linear combination of basis functions

f =

∞
∑

n=0

1

n!
〈f,Hen〉Hen. (10)

Given a monomial in x ∈ R, one can compute an

equivalent representation in terms of Hermite polynomials

He(x) using the following inverse relationship

x
n = n!

⌊n
2
⌋

∑

m=0

1

2mm!(n− 2m)!
Hen−2m(x), (11)

where ⌊.⌋ is defined as the floor operator, i.e., ⌊n⌋ = q,

where q ∈ Z is the largest integer such that q ≤ n. Hermite

polynomials of normally distributed random variables have

useful properties. Let X be a random variable distributed as

N (0, 1). It can be shown that

E[Hen(X)] =

{

1 for n = 0,

0 for n 6= 0.
(12)

The following result can be obtained by using (9)

E[Hen(X),Hem(X)] =

∫ ∞

−∞

Hen(x)Hem(x)
1√
2π

e
−x2

2 dx,

= 〈Hen, Hem〉,
= n!δn,m. (13)

It has been shown in [12] that for X1, X2 ∼ N (0, 1),

E[Hen(X1), Hem(X2)] = n!δn,m(E[X1X2])
n. (14)

In particular, if X1, X2 are independent, we get

E[Hen(X1),Hem(X2)] =

{

1 if n = 0,m = 0,

0 otherwise.
(15)

IV. SOLUTION APPROACH

A. Polynomial NARMAX - simplified case

We first consider the simpler problem of computing a

simulation model for a sub-class of NARMAX models.

Consider models of the form

yk = f
(

uk−1, . . . , uk−nu , ξk−1, . . . , ξk−nξ

)

+

g(yk−1, . . . , yk−ny ) + ξk, (16)

where the function f is polynomial function of the regressor

variables and g is a linear function of the past outputs.

This is a specific class of models that can be represented

as (1). Recall that ξk ∼ N (0, 1). Using (11), (16) can be

reformulated by expressing all noise polynomial terms in

the model in terms of Hermite polynomials, i.e.,

yk = f
(

uk−1, . . . , uk−nu , ξk−1, . . . , ξk−nξ

)

+

g(yk−1, . . . , yk−ny ) + ξk,

= f̃
(

uk−1, . . . , uk−nu ,He0(ξk−1), . . . ,Hed̄1(ξk−1), . . . ,

He0(ξk−nξ
), . . . , Hed̄nξ

(ξk−nξ
)
)

+ g(yk−1, . . . , yk−ny )

+ ξk, (17)

where d̄i is the maximum exponent of the ξk−i term, and

the function f̃ is multi-linear in terms of the Hermite

polynomials Hen(·). The function f̃ will be later derived

in Lemma 1. This results in an equivalent model that can be

easily transformed to a simulation model by using (12), (13)

and (15). This yields a simulation model represented as

ys,k = E
[

f
(

uk−1, . . . , uk−nu , ξk−1, . . . , ξk−nξ

)

+

g(yk−1, . . . , yk−ny ) + ξk
]

,

= E
[

f̃
(

uk−1, . . . , uk−nu ,He0(ξk−1), . . . ,Hed̄1(ξk−1),

. . . , He0(ξk−nξ
), . . . , Hed̄nξ

(ξk−nξ
)
)

+

g(yk−1, . . . , yk−ny )
]

,

= fs(uk−1, . . . , uk−nu , ys,k−1, . . . , ys,k−ny ). (18)

It should be noted that an equation of form (16) can be

easily transformed to the equivalent simulation model as

in (18) without the use of Hermite polynomials, since the

moments of a Gaussian distribution are known. However, the

use of Hermite polynomials yields an equivalent prediction

model, as in (17), that offers a convenient representation. It

turns out that, in order to obtain a simulation model like (18),

one must only “switch off” a number of Hermite polynomial

terms in (17), as per Equations (12), (13) and (15)). An

example will be used to illustrate the method to compute

the transformation, followed by a general result.

Example 1: Consider a system described by the following

equation

yk = f(u, ξ) = uk + ξ2k−1 + ξk, (19)

where {uk} and {ξk} are i.i.d sequences distibuted as

N (0, 1). The given equation can be re-written as follows

yk = uk + 2!

1
∑

m=0

1

2mm!(2− 2m)!
He2−2m(ξk−1) + ξk,

(using (11))

= uk + 2

(

He2(ξk−1)

2
+

He0(ξk−1)

2

)

+ ξk,

= uk +He0(ξk−1) +He2(ξk−1) + ξk,

= f̃ (uk,He0(ξk−1),He2(ξk−1)) + ξk. (20)

Now, the simulation model can be computed by taking the

expectation of (20) with respect to the noise process ξ,

ys,k = E[yk] = uk + E[He0(ξk−1) +He2(ξk−1)] + E[ξk],

= uk + 1. (using (12))

= fs(uk) (21)

Observe that if the simulation model was computed by

setting the contributions of the noise terms to 0, one would

obtain the following simulation model

y′s,k = uk. (22)

The two simulation models are offset by a scalar factor 1.

In representation (17) (and (20)), one must only set all non-

zero order Hermite polynomials of the noise term to 0 in

order to obtain a simulation model as in (18) and (21).

For a general result, the following equivalent representa-

tion of (16) will be used



yk =

p
∑

i=1

(

ci

nu
∏

j=1

u
bi,j
k−j

nξ
∏

q=1

ξ
di,q
k−q

)

+

ny
∑

r=1

gryk−r + ξk, (23)

where p ∈ Z+ is the number of monomial terms of u and

ξ in the model, ci ∈ R are the co-efficients, bi,j and di,q
are the exponents of the uk−j and ξk−q factors in the ith

monomial term respectively and gr is the linear co-efficient

of the rth output term yk−r.

Lemma 1: For a model of form (23), and under the

assumption that ξk ∼ N (0, 1) is independent of the input

ul for all l ∈ [1, N ], the simulation model, computed in the

sense of (4), is given by

ys,k =
∑

i∈Pe

ci

nu
∏

j=1

u
bi,j
k−j

nξ
∏

q=1

(di,q − 1)!! +

ny
∑

r=1

grysk−r , (24)

where Pe := {i ∈ [1, p] | di,q is even ∀q ∈ [1, nξ]} and (n−
1)!! := n!

n
2
!2

n/2
.

Proof: The proof relies on the use of the pro-

posed Hermite polynomial based representation. Let γi :=

ci
∏nu

j=1 u
bi,j
k−j . Using (11), Equation (23) can be written as

yk =

p
∑

i=1

(

γi

nξ
∏

q=1

(

di,q!

⌊
di,q
2

⌋
∑

m=0

Hedi,q−2m(ξk−q)

2mm!(di,q − 2m)!

))

+

ny
∑

r=1

gryk−r. (25)

Note that (25) is of the form (17). Define partitions

Pe := {i ∈ [1, p] | di,q is even ∀q ∈ [1, nξ]} and Po :=
{i ∈ [1, p] | i /∈ Pe}. This yields

yk =
∑

i∈Pe

γi

nξ
∏

q=1






di,q !

⌊
di,q
2

⌋
∑

m=0

Hedi,q−2m(ξk−q)

2mm!(di,q − 2m)!






+

∑

i∈Po

γi

nξ
∏

q=1






di,q!

⌊
di,q
2

⌋
∑

m=0

Hedi,q−2m(ξk−q)

2mm!(di,q − 2m)!






+

ny
∑

r=1

gryk−r. (26)

Taking the expectation with respect to the noise process ξ,

and recognizing that the second term on the right hand side

drops out (due to (12)), we get the following

ys,k =
∑

i∈Pe

γi

nξ
∏

q=1

E

(

di,q!

(

He0(ξk−q)

2
di,q
2

di,q
2

!
+

⌊
di,q
2

−1⌋
∑

m=0

Hedi,q−2m(ξk−q)

2mm!(di,q − 2m)!)

)

)

+ E

[

ny
∑

r=1

gryk−r

]

,

=
∑

i∈P e

γi

nξ
∏

q=1

(di,q − 1)!! +

ny
∑

r=1

grysk−r , (27)

which is the desired result.

Notice that in the derivation of (24), no approximations were

made, and hence the result is exact, as per the definition of

the simulation model in (4). However, this will not be the

case for the general polynomial NARMAX model, as will

be shown in the next Section.

B. General polynomial NARMAX models

We now consider the full polynomial NARMAX model

as shown in (1). The procedure to compute a simulation

response of a stochastic model proposed in Section IV-A

allows us to compute the expectation of the noise terms in

(1) systematically. However, the proposed method does not

deal with the non-linear dependence of the output signal y
on the noise process ξ. Although {uk} is a known sequence

and ξk is distributed normally, the random variable yk is typi-

cally not distributed normally. Hence, model terms involving

random variables yk cannot be equivalently represented in

terms of Hermite polynomials of yk (the inner-product in

(9) no longer corresponds to the expectation with respect to

the distribution of yk). Consequently, in order to compute the

conditional expectation of (1), one must recursively eliminate

all yk terms, which yields a non-linear infinite impulse

response (NIIR) in terms of the input. Computing an NIIR is

intractable because next to infinite time lags, it also contains

infinite order polynomial exponents. As a result, just like in

the LTI case, an approximation must be made in order to

keep the simulation model tractable. Several approximation

concepts are proposed in the following example.

Example 2: Consider a system governed by the following

equation

yk = uk − 0.1y2k−1 + ξk, (28)

where, uk ∼ N (µu, σu) and ξk ∼ N (0, 1). By taking the
expectation and recursively replacing the yk−1 term in the
model, we get the following set of equations

E[yk] = E
[

uk − 0.1y2
k−1 + ξk

]

= uk − 0.1E[y2
k−1],

= uk − 0.1E
[

(uk−1 − 0.1y2
k−2 + ξk−1)

2
]

,

= uk − 0.1u2
k−1 − 0.1σ2

ξ − 0.001E[y4
k−2]+

0.02uk−1E[y2
k−2],

= uk − 0.1u2
k−1 − 0.1− 0.001E[y4

k−2]+
0.02uk−1E[(uk−2 − 0.1y2

k−3 + ξk−2)
2],

= uk − 0.1u2
k−1 − 0.1− 0.001E[y4

k−2]
+ 0.02uk−1u

2
k−2 + 0.0002uk−1E[y4

k−3]+

0.02uk−1σ
2
ξ − 0.004uk−2E[y2

k−3],

= . . .

From these equations, it can be seen that realization of

the simulation model results in an NIIR. We explore three

approximation concepts, the first two are commonly used in

the literature, while the third is our proposed approximation.

(i) Ignore the noise terms in (1). This yields

y
(1)
s,k = uk − 0.1y2sk−1

, (29)

(ii) Truncate the NIIR after a certain number of recursive

substitutions of the yk terms. We get the simulation

responses

y
(2)
s,k = uk − 0.1u2

k−1 − 0.1, (30)

y
(3)
s,k = uk−0.1u2

k−1−0.1+0.02uk−1(u
2
k−2+1) (31)



for one and two recursive substitutions, respectively,

followed by truncation of the NIIR.

(iii) After a certain number of recursive substitutions, ap-

proximate the tail of the truncated NIIR by the past

sample of the simulation response. Applying this con-

cept after one recursive replacement yields

y
(4)
s,k = uk − 0.1u2

k−1 − 0.1− 0.001(y(4)sk−2
)4+

0.02uk−1(y
(4)
sk−2

)2.
(32)

In Section V it will be shown that the simulation model

(32) approximates E[yk] better than the other models, in

terms of the RMS error.

The purpose of approximation concept (iii) is to achieve

a compromise between the approximation concept (i) and

the NIIR realiztion of the simulation response. Introduce

a parameter l ∈ Z to denote the number of successive

recursions of the past output terms before the remaining NIIR

is approximated with the past simulation response. Denote

the resulting simulation approximation as ys,k,l. Observe that

the simulation model in (32) would be labelled as ys,k,1 as

per the new notation. The parameter l achieves a trade-off

between the NIIR realization and the approximation in (29).

As l approaches ∞, the approximation ys,k,l approaches the

conditional expectation E[yk]. Furthermore, for l = 0, the

approximation ys,k,0 reduces to (29).

We now formalize the proposed approximation method

for the polynomial NARMAX model class. Let U b
a(k) :=

{uk−a, . . . uk−b} be the sequence of delayed inputs with

the delays ranging from a to b with a, b ∈ N0 and

a < b. Similarly, define Y b
a (k) := {yk−a, . . . yk−b} and

Ξb
a(k) := {ξk−a, . . . ξk−b}. Additionally, define a set-valued

discrete-time shift operator U b
a(k) ⋄ 1 := U b+1

a+1(k) =
{uk−a−1, . . . uk−b−1}. With a slight abuse of notation, the

model in (1) will be re-written as

yk = f
(

Unu
0 , Y

ny

1 ,Ξ
nξ

1

)

+ ξk. (33)

The l recursive substitutions can be represented in the

following steps

yk = f
(

Unu
0 , {yk−1, . . . yk−ny},Ξ

nξ

1

)

+ ξk,

= f
(

Unu
0 , {f(Unu

0 ⋄ 1, Y ny

1 ⋄ 1, ξnξ

1 ⋄ 1), . . . ,
f(Unu

0 ⋄ ny, Y
ny

1 ⋄ ny, ξ
nξ

1 ⋄ ny)},Ξnξ

1

)

+ ξk,

= f1

(

Unu+1
0 , Y

ny+1
2 ,Ξ

nξ+1
1

)

+ ξk,

...

= fl

(

Unu+l
0 , Y

ny+l

l+1 ,Ξ
nξ+l

1

)

+ ξk. (34)

It should be noted that the functions f, f1, . . . fl are not

identical. However, they are equivalent, in the sense that

for given sequences {uk; k ∈ [0, N ]} and {ξk; k ∈ [0, N ]},

these functions produce the same output sequence {yk; k ∈
[n̄, N ]}, where n̄ = max(nu + l, ny + l, nξ + l). Moreover,

since f is a polynomial function, so are f1, . . . , fl. The

parameterized approximation can now be defined as follows.

Definition 2: For the polynomial NARMAX model in

(33), the l−approximate simulation model is defined as

ys,k,l := E
[

fl

(

Unu+l
0 (k), Y ny+l

sl+1
(k),Ξ

nξ+l

1 (k)
)

+ ξk

]

,

(35)

where the expectation is taken with respect to the distribution

of ξ and input sequence {uk; k ∈ [1, N ]}, and Ys
b
a(k) =

{ys,k−a, . . . ys,k−b}.

To compute the l−approximate simulation model, the fol-

lowing alternate representaiton of (34) is used

yk =

p
∑

i=1



ci

nu+l
∏

j=0

u
bi,j
k−j

ny
∏

r=1

y
ai,r

k−l−r

nξ+l
∏

q=1

ξ
di,q

k−q



+ ξk, (36)

where ai,r is the exponent of yk−r in the ith term.

Theorem 1: The l−approximate simulation model for the

polynomial NARMAX model in (1), under the assumption

that ξ is independent of u and that ξk ∼ N (0, 1), is given

by

ys,k,l =
∑

i∈Pe

ci

nu+l
∏

j=0

u
bi,j
k−j

ny
∏

r=1

y
ai,m

s,k−l−r

nξ+l
∏

q=1

(di,q−1)!!. (37)

Proof: The proof makes use of the representation in

(36), the definition of l−approximate simulation, and the use

of Hermite polynomials of the noise process as in Section

IV-A. The proof follows the same line of reasoning as in the

proof of Lemma 1. and is thus omitted here.

Remark 1: It should be noted that the proof of Lemma

1 critically rests on the assumption that the noise terms in

(1) are polynomial, and that ξk ∼ N (0, 1). While Lemma 1

and Theorem 1 are derived for models of the form (23) and

(36) respectively, the input terms u and output terms y were

not explicitly required to be in a polynomial form. Hence,

the derived results can easily be extrapolated to compute

simulation models from prediction models with arbitrary

non-linear functions on the input and output terms, as long

as the noise terms appear in a polynomial form.

Remark 2: While we assumed that ξk ∼ N (0, 1), the

results can be extended to a non-standard Gaussian distribu-

tion (see (5)). Furthermore, the results can also be exteded

to any exponential family distribution by suitably changing

the probability measure and the Hilbert space of random

functions in Section III.

V. NUMERICAL ILLUSTRATION

A simulation study was carried out to verify the simulation

models derived in Examples 1 and 2. The system in (19)

was simulated with a periodic input u ∼ 3 + N (0, 1) with

p = 1024 periods of N = 3000 samples, and with noise dis-

turbance ξ ∼ N (0, 1). Data from the first 5 experiments was

discarded to remove any errors due to transients. Assuming

ergodicity, the ideal simulation response can be computed

empirically as the ensemble average

ȳs =
1

p− 5

p
∑

i=6

y
(i)
, (38)
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-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

(b) Distribution of ȳs − ys

Fig. 1: Example 1 - simulation results.

TABLE I: RMS errors of simulation results - Example 1

rms(ȳs −E[y]) avgi(rms(y(i) − E[y]))
E[y] = ys 0.0544 1.7305

E[y] ≈ y′s 1.0001 1.9976

TABLE II: RMS errors of simulation results - Example 2

rms(ȳs −E[y]) avgi(rms(y(i) − E[y]))

E[y] ≈ y
(1)
s 0.1165 1.0407

E[y] ≈ y
(2)
s 0.0618 1.036

E[y] ≈ y
(3)
s 0.0360 1.0348

E[y] ≈ y
(4)
s 0.0348 1.0348

where y(i) is the output corresponding to the ith period

of the input. The theoretical simulation of the model is

computed using (21). The empirical and the theoretical

simulation response is plotted in Fig. 1a. Several realizations

of the noisy output are plotted in yellow. The unscaled

histogram of ȳs − ys is depicted in Fig. 1b. The difference

ȳs − ys appears to be centered at 0. This clearly implies

that the simulation model computed by neglecting the noise

contributions (see (22)) would be biased by a scalar factor

of 1. The difference between the two simulation models is

also quantified in terms of the RMS error in Table I. The

first column of numbers indicate the RMS error between

the empirical mean and the proposed simulation models.

The second column indicates ensemble average of the RMS

errors between the noisy response of the system and the

simulation model approximations. It can be observed that

the proposed simulation model performs significantly better

in approximating the noisy output than the conventional

simulation model that sets the noise contributions to 0.

A similar simulation study is carried out for the model in

Example 2 (see Equation (28)). The model was simulated

with periodic input uk ∼ N (0, 1) with p periods of N
samples each, and noise ξk ∼ N (0, 1). Again, the simulation

response was computed empirically using p − 5 periods of

excitation. The histograms of the differences between the

four simulation models (29-32) and the empirical simulation

ȳs are depicted in Fig. 2. Additionally, the RMS errors are

presented in Table II. It can be verified, both visually and

numerically, that y
(4)
s approximates the simulation of the

system better than the other approximations.

VI. CONCLUSIONS

When computing a simulation model from a prediction

model that belongs to the NARMAX class, care must be

taken to avoid bias. To that extent, we proposed an alter-
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(1)
s

-0.2 -0.1 0 0.1 0.2
0

100

200

300
y

s
(2) error hist

(b) Distribution of ȳs − y
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Fig. 2: Example 2 - simulation results.

native representation that allows to compute a simulation

model from a polynomial NARMAX model conveniently.

In order to curtail infinite order simulation models, we also

proposed a parameterized method to approximate the simula-

tion model. The proposed approximation method yields the

true, infinite-order simulation model as the approximation

parameter goes to ∞. Simulation examples were used to

demonstrate that the approximation method yields a sim-

ulation model with a smaller bias compared to the other

common approaches used for computing simulation models.

REFERENCES
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