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Data-driven identification of a thermal network in multi-zone building

Harish Doddi1, Saurav Talukdar1, Deepjyoti Deka2 and Murti Salapaka3

Abstract— System identification of smart buildings is nec-
essary for their optimal control and application in demand
response. The thermal response of a building around an
operating point can be modeled using a network of inter-
connected resistors with capacitors at each node/zone called
RC network. The development of the RC network involves
two phases: obtaining the network topology, and estimating
thermal resistances and capacitance’s. In this article, we present
a provable method to reconstruct the interaction topology of
thermal zones of a building solely from temperature measure-
ments. We demonstrate that our learning algorithm accurately
reconstructs the interaction topology for a 5 zone office building
in EnergyPlus with real-world conditions. We show that our
learning algorithm is able to recover the network structure in
scenarios where prior research prove insufficient.

I. INTRODUCTION

As complex cyber-physical systems, commercial buildings

are one of the largest consumers of electricity in the United

States. According to [1], there are more than 4.7 million

commercial buildings and 114 million households that to-

gether consume nearly 40% of the total power produced.

Moreover they contribute to 40% of CO2 emissions accord-

ing to U.S Green Building Council [2]. Optimal control of

smart buildings is thus an important focus of smart grid

research and deployment. In a commercial building, Heating

Ventilation and Air Conditioning (HVAC) systems is the

largest consumer of power. Hence there is increased research

interest in designing zero-energy and smart buildings. Such

goals are targeted with the additional objective of ensuring

occupant’s comfort. Strategies leverage flexible operations

and integration of renewable resources using techniques such

as building pre-cooling and coordinated dynamic control

[3] based on load prediction. Advanced predictive HVAC

control schemes such as Model Predictive Control (MPC) are

reported to achieve 12-15% savings in energy consumption

without compromising on occupant thermal comfort [3].

The efficiency of MPC and other real-time control policies

depend on an accurate and tractable thermal model of the

concerned building. In particular, changing occupancy and

weather conditions over time (medium to long term) may

affect the necessary thermal models and hence modify the

optimal building controls. Developing an accurate thermal

model of smart buildings is thus a necessary step for their
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control. It needs to be mentioned that in typical commer-

cial buildings, the Building Management/Automation Sys-

tem monitors all the operations of the building such as

door access, thermostat set-points, HVAC operating points,

lighting schedules and interfacing to sensors and actuators.

Modeling of buildings can be categorized into several sub-

types. Effective simulation tools for buildings include En-

ergyPlus [4] and Trnsys [5]. These simulation engines are

called white box models as they consider extensive details

of the building physics and associated HVAC systems in

the thermal models. EnergyPlus, in particular, is a widely

accepted standard in industry for energy simulation, equip-

ment sizing and design of controllers. It can also be inte-

grated with other computational engines to test sophisticated

controllers using Building Controls Virtual Test Bed [6].

Although EnergyPlus simulates the thermal response of the

building accurately, it involves several (hundreds) physical

parameters and performing time-consuming Computational

Fluid Dynamics (CFD) simulations to determine heat transfer

coefficients is nearly impossible for real-time control. This

complexity of such high-fidelity engines makes real-time

model update and inference computationally prohibitive -

more so in multi-zone buildings.

In contrast to white box models, there are two other

types of modelling approaches, namely black box models

and grey box models. Black box models use techniques such

as linear regression, neural networks [7] to fit the available

input/output data. Indeed their performance depends greatly

on the quality of the input and output data. Grey box

models [8] uses a hybrid mix of white box and black box

modeling, and are used to obtain fast estimates of coarse-

grained system conditions. Grey box models consider some

prior information of system dynamics and augment them

with measurements for system identification. One of the

well-known grey-box models for thermal systems/buildings

is the Resistor-Capacitor (RC) model, where a thermal

circuit is used to represent the heat transfer dynamics in

the building. Prior work on grey box modeling of building

using RC networks assumed the structure of the RC network

(based on experience/ physical insight of the expert) [9] and

utilize time series measurements from the building zones to

estimate the resistance and capacitance parameters of the RC

network. However, in the case of open-plan office building,

the structure of the RC network is transient and unknown.

[10] uses a two step approach to obtain the RC network: in

the first step the authors identify the network structure using

approaches developed for structure learning of Gaussian

graphical models followed by determination of the resistance

and capacitance parameters from the input/output data. The

drawback of the first step is that, it performs poorly when
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samples are correlated, which is the case in real scenarios.

RC networks are an example of undirected networked

linear dynamical systems. Learning the structure of network

of linear dynamical systems from nodal time series mea-

surements is an active area of research [11], [12], [13], [14].

These works primarily focus on directed networks of linear

dynamical systems or assume uncorrelated inputs. Structure

learning in undirected linear systems has been explored

recently for radial networks [15] and loopy networks [16],

[17] in power systems and multi-agent distributed systems.

These articles utilize properties of multivariate Wiener filters

to provide consistent structure estimation. We employ a

similar approach in this article, and present an algorithm

for exact topology reconstruction of RC networks from

nodal temperature measurements. A distinguishing feature

of the approach presented is that heat generation or loss

term (exogenous disturbance) at each node is allowed to

be a colored input, unlike white time series in previous

work [14]. We also develop a regularized version of the

method to improve the accuracy of the learning algorithm

in low sample regime. We are restricting to sparsity based

regularization. The work presented in this article applies to

non-positive systems too. Note that, no additional knowledge

about the building structure or information (samples or

sufficient statistics) of system inputs are assumed in our

learning framework.

To demonstrate the efficacy of our algorithm, we consider

a five zone building model in EnergyPlus with an equivalent

RC-network (derived from physics) given in [18]. We show

that the topology obtained by using our algorithm on zonal

temperature data from its rooms with correlated input distur-

bances matches the true RC network topology. We show that

our method outperforms learning algorithms for uncorrelated

inputs [14] and static graphical models used in prior work

[10]. We also demonstrate performance improvements in our

learning algorithm with low samples due to regularization.

The remaining paper is organized as follows. Section II

describes the Resistor-Capacitor Model. In Section III, the

description of our EnergyPlus model is given. In Section IV,

framework of the topology learning algorithm is presented.

Results of our algortihm are discussed in Section V followed

by conclusion in Section VI.

II. RESISTOR-CAPACITOR (RC) MODEL

Consider a building with m thermal zones exchanging

energy with each other through conduction, convection and

radiation. The thermal dynamics around an operating point

can be modeled using a RC network, which is defined as a set

of zones and edges, where edges are resistors and nodes are

modelled as capacitors (see Fig. 1(b)). The topology of the

RC network is defined as an undirected graph G = (V , E)
where node set V = {1, 2, ...,m} represents zones and E
denotes the edge set with (j, i) ∈ E for i, j ∈ V if Rij 6= 0
(see Fig. 1(c)). In the undirected graph G, neighbors of

node j are defined as the elements of its neighborhood set,

Nj := {i ∈ V : (i, j) ∈ E}. The two hop neighbors of node

j are defined as the elements of the set, Nj,2 := {i ∈ V :
(j, k), (i, k) ∈ E , for some k ∈ V}.
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Fig. 1. (a) EnergyPlus model consisting of 5 zones, (b) Thermal resistor
(RC) network of the building with Capacitor at each node. Node 1
corresponds to core zone and rest of the nodes refer to perimeter zones
(c) True topology of the RC network (d) Wiener reconstructed graph

For thermal modeling, each edge (j, i) is associated with

a thermal resistance Rj,i = Ri,j > 0 and each node

i ∈ V is associated with a capacitor with capacitance

Ci . Let Tj denote the deviation of temperature from the

operating/equilibrium point of zone j. Then Tj satisfies heat

balance equation:

Cj

dTj

dt
=

∑

i∈Nj

Ti − Tj

Rji

+ qj , (1)

where, qj is the total internal heat generated in zone j.

Writing the evolution of temperature deviations at all nodes

in matrix form results in the following:

[C]
dT

dt
= [R]T + q (2)

where, T and q are the vectors associated with zonal tem-

peratures and internal heat; [C] is the diagonal matrix of

nodal capacitance and [R] denotes the inter-zone resistances

(Rij). Note that (2) has the form of a networked linear-time

invariant (LTI) system with matrix [R] encoding the network

information. Learning the topology of the RC-network entails

identifying the location of non-zero off-diagonal terms in

matrix R. Next we discuss the mathematical representation

of zonal temperature evolution in EnergyPlus software that

we use in subsequent discussion.

III. ENERGYPLUS MODEL

EnergyPlus is a building energy simulation

program developed by U.S. Department of

Energy. It is an open-source software available at

https://energyplus.net/downloads. EnergyPlus

accepts a text file for providing details on construction of

the building, its location, ambient conditions, occupancy,

electrical equipment, lighting loads on the building and

HVAC. It is a sophisticated forward simulation tool which

is useful in thermal analysis of a building.

EnergyPlus assumes each thermal zone as a single node

and solves the heat balance equations to arrive at the thermal

https://energyplus.net/downloads


zone temperatures developed in the building and its power

consumption. The heat balance equation for a zone [19] is

given by:

Cz

dTz

dt
=

Nsl∑

i=1

Q̇i +

Nsurf∑

i=1

hiAi(Tsi − Tz) (3)

+

Nzones∑

i=1

ṁiCp(Tzi − Tz) + ṁinfCp(T∞ − Tz) + Q̇sys

where Cz
dTz

dt
is the energy stored in zone air,

∑
Q̇i is inter-

nal convective load,
∑

hiAi(Tsi − Tz) is surface convective

heat transfer,
∑

ṁiCp(Tzi − Tz) is interzone heat transfer,

and ˙minfCp(T∞ − Tz) is heat transfer by air infiltration,
˙Qsys is air systems output.

In this article, we consider a representative building with a

building envelope created with Google SketchUp Make 2017

[20]. The RC network of the EnergyPlus model is obtained

from [18] and is shown in Fig. 1(b). In EnergyPlus, the ex-

ogenous inputs (unmeasured) to the building are internal heat

loads such as heat generation by lights, electrical equipment

and people in a building. The output of the model is the

zone air temperature, which is the instantaneous temperature

averaged over space for each zone. Note that the different

operating parameters and weather data may be temporally

correlated. In a real setting, an operational building with

Building Management System (BMS) may provide the data,

replacing EnergyPlus.

In the next section, we leverage the multivariate Wiener

filtering approach [11] to develop an exact learning algo-

rithm of RC networks under wide-sense stationary inputs. In

subsequent sections, we show that our learning algorithm is

able to recover the structure from the temperature data.

IV. LEARNING TOPOLOGY FROM TEMPERATURE TIME

SERIES

To develop our learning algorithm, we first discretize

it. The discretized form of continuous time zonal thermal

dynamics described by (1) is given by:

Tj(k + 1) = ajjTj(k) +
∑

i∈Nj

ajiTi(k) + pj(k) (4)

where, pj(k) := qj(k)δt/Cj is the total internal load in the

zone j per unit thermal capacitance at instant k, ajj = δt(1−∑
i∈Nj

1
RjiCj

),and aji =
δt

RjiCj
Here, δt is the measurement

sampling time and is taken as 1 min in this article. All aij ’s

are non-negative. The undirected nature of the interaction

topology (Rij = Rji) implies that, aji 6= 0 if and only if

aij 6= 0. In vector form the network dynamics can be written

as,

T (k + 1) = AT (k) + P (k), (5)

where, T (k) = [T1(k), T2(k), · · · , Tm(k)]T , P (k) =
[p1(k), p2(k), · · · , pm(k)]T and the matrix A ∈ R

m×m is

such that A(j, i) = aji. Each element of P (k) is assumed to

be zero mean wide sense stationary (WSS) process uncorre-

lated with any other component of P (k). Note that P (k) can

have non-zero temporal correlation. Using the z transform of

the correlation function of P (k), the power spectral density

matrix ΦP (z) is derived. From property of WSS signals and

spatial un-correlation, it follows that ΦP (z) is a diagonal

matrix and ΦP (e
ĵω) is real and even function of frequency

ω. Furthermore, we assume the noise spectrum at any node

j, Φpj
(z) > 0 almost surely (referred to as topological

detectability condition).

The discrete time dynamics of the deviation variable Tj

of the jth node in the z domain can be cast as,

Tj(z) =
∑

i∈Nj

Hji(z)Ti(z) + Ej(z), j = 1, 2, · · · ,m. (6)

where, Hji(z) =
aji

Sj(z)
, Ej(z) =

1
Sj(z)

pj(z) with Sj(z) :=

z−ajj . If i is not a neighbor of j, thenHji(z) = 0,Hij(z) =
0. In compact form the dynamics of (6) is written as,

T (z) = H(z)T (z) + E(z). (7)

The transfer function matrix H(z) defines the network

dynamics and also specifies the RC network topology. The

diagonal entries of H(z), Hjj(z) = 0. Based on the assump-

tions on P (k), E(z) := [E1(z), · · · , Em(z)]T is a collection

of the filtered version of z-transform of uncorrelated zero

mean WSS processes {p1(k), ..., pm(k)} respectively. The

power spectral density matrix, ΦE(z) is a diagonal matrix,

with ΦE(z)(j, j) = ΦEj
(z) = Φpj

(z)/|Sj(z)|
2. We assume

that I −H(z) is invertible almost surely (referred to as well

posedness condition).

Let Tj(k) be the temperature deviation from operating

point. Consider the following least square optimization prob-

lem on the Hilbert space of L2 random variables,

inf
{hji}i=1,...,m,i6=j

E(Tj(k)−
m∑

i=1,i6=j

∞∑

L=−∞

hL
jiTi(k − L))2, (8)

where, hji = [h−∞
ji , ..., h0

ji, ..., h
∞
ji ]. The solution to

the above infinite dimensional optimization problem [11]

is the multivariate non-causal Wiener filter), Wj(z) =
[Wj,1(z), ...,Wj,j−1(z),Wj,j+1(z), ...,Wj,m(z)], where,

Wji(z) =

∞∑

L=−∞

hL
jiz

−L. (9)

It is important to note that the multivariate Wiener filter, the

solution to optimization problem (8), can be determined from

the temperature time series measurements without knowl-

edge of the topology or the parameters of the dynamics.

The next result connects Wiener filters with the underlying

topology of RC networks.

Theorem 4.1: Consider the matrix of Wiener filters, W (z)
such that, W (j, i)(z) := Wji(z) which is the solution to (8)

and has the form (9). Then, W (j, i)(z) 6= 0 almost surely

implies i, j are neighbors or two hop neighbors of each other.

The proof follows from applying the main result of [11] to

undirected (bi-directed) graph with linear dynamics.

Remark 1: The above result does not guarantee that if

i ∈ Nj ∪ Nj,2, then Wji(z) 6= 0. However, such cases are

pathological (see [11]).

Using the non-zero entries in W (z), a graph GM (also



known as moral graph) can be constructed with the vertex

set V . The graph GM , has all the edges in the underlying

topology of the RC network with additional spurious edges

due to two hop neighbors. Pruning out the spurious two hop

neighbor edges will result in recovery of the underlying RC

network topology. Next we present results which will enable

us to prune out the spurious two hop neighbor links from

GM .

A. Pruning Out Spurious Two-hop Neighbors Links

Our pruning step is based on the phase response of

Wiener filters. We will use the following relationship be-

tween Wji(z) and ΦT (z)
−1(j, i) as derived in [11],

Wji(z) = −Φ
−1
T (z)(j, i)ΦEj

(z). (10)

It follows from (7) that,

Φ−1
T (z) = (I −H(z))∗Φ−1

E (z)(I −H(z)), (11)

where, I is a m×m identity matrix. Then,

Φ−1
T (z)(j, i) = −Hji(z)Φ

−1
Ej

(z)−H∗
ij(z)Φ

−1
Ei

(z)

+
∑

k∈Nj∩Ni

H∗
kj(z)Hki(z)Φ

−1
Ek

(z). (12)

Theorem 4.2: Let zones i and j in a RC network be

such that, i ∈ Nj,2 but i /∈ Nj ,i.e., i, j are strict two-hop

neighbors. Then, ∠Wji(e
ιω) = π, for all ω ∈ [0, 2π).

Proof: Since, i and j are not neighbors in the un-

derlying RC network, then Hji(z) = 0 and Hij(z) = 0.

Moreover, i and j are two hop neighbors, so Nj ∩ Ni is

non empty. Thus, using (12) and substituting z with eιω, it

follows from (10), that if i and j are two hop neighbors and

are not neighbors, then ∠Wji(e
ιω) = π, for all ω ∈ [0, 2π).

The above theorem can identify spurious edges between

nodes which are strict two hop neighbors if it does not hold

for nodes that are true neighbors. The next theorem lists

conditions under which ∠(Wji(e
ĵω)) = π for all ω ∈ [0, 2π)

for nodes i and j that are neighbors.

Theorem 4.3: Given a well-posed and topologically de-

tectable RC network the following holds:

1) Suppose nodes i and j are such that i ∈ Nj , i 6∈ Nj,2,

∠(Wji(e
ĵω)) = π for all ω ∈ [0, 2π). Then

Real(−ajiS
∗
j (e

ιω)Φ−1
pj

(eιω)− aijSi(e
ιω)Φ−1

pi
(eιω)) > 0,

Imag(−ajiS
∗
j (e

ιω)Φ−1
pj

(eιω)− aijSi(e
ιω)Φ−1

pi
(eιω)) = 0

for all ω ∈ [0, 2π).
2) Suppose i and j are such that i ∈ Nj and i ∈ Nj,2 (both

one and two hop neighbors), with ∠(Wji(e
ĵω)) = π for

all ω ∈ [0, 2π). Then

Imag(−aijSi(e
ĵω)Φ−1

pi
(eĵω)− ajiS

∗
j (e

ĵω)Φ−1
pj

(eĵω)) = 0,

and Real(−aijSi(e
ĵω)Φ−1

pi
(eĵω)− ajiS

∗
j (e

ĵω)Φ−1
pj

(eĵω))

+
∑

k∈Nj∩Ni

akjakiΦ
−1
pk

(eιω) > 0,

for all ω ∈ [0, 2π).

Proof:

Using (10), (12) and theorem 4.3, the result can be verified.

The proof is left to the reader.

Remark 2: The consequence of Theorem 4.3 is that for

nodes i and j that are neighbors but not two hop neighbors,

or, nodes i and j that are neighbors and two hop neighbors,

∠(Wji(e
ĵω)) = π for all ω ∈ [0, 2π) is possible when the

system parameters satisfy a restrictive and specific set of

conditions. In other words, aside for pathological cases, the

converse of Theorem 4.2 holds. We use the phase response

of the Wiener filters as a criteria to differentiate between true

edges and spurious edges in the moral graph GM (obtained

by Wiener filtering) to recover G.

B. Learning Algorithm

We now present Algorithm 1 that estimates the topology

of a RC network based on temperature deviation time series

measurements from the nodes (zones). The algorithm con-

sists of two parts. The first part (Steps 1 - 9) determines the

multivariate Wiener filter Wji(z) to estimate the moral graph

GM . Based on Theorem 4.1, the edge set ĒK is populated by

adding a link between each node pair i, j if the H∞ norm of

Wji(z) or Wij(z) is greater than a predefined threshold ρ.

Thus ĒK estimates one and two hop neighbors. Next (Steps

10 - 15), we consider a finite set of frequency points Ω in the

interval [0, 2π) and evaluate the phase angle of the Wiener

filters corresponding to edges in ĒK . Based on Theorem 4.2,

if the phase angle is within a pre-defined threshold τ of

π, the algorithm designates the edge between the concerned

nodes as spurious edges and prunes them from ĒK to produce

edge set Ē , which is an estimate of the edge set E of the

true topology. In the limit of infinite data samples from each

agent, Ē = E . From the implementation sake, we allow lags

upto an order F in (8). In order to account for finiteness

of measurements at each node, a regularized version of

multivariate Wiener filtering in (8) is used as shown below:

inf
hji∀i6=j

E(Tj(k)−
m∑

i=1,i6=j

F∑

L=−F

hL
jiTi(k − L))2 + γ

m∑

i=1,i6=j

‖hji‖1,

(13)

Here γ is the regularization parameter and hji =
[h−F

ji , ..., h0
ji, ..., h

F
ji] and the Wiener filter is

Wji(z) =

F∑

L=−F

hL
jiz

−L. (14)

V. RESULTS

In this section, we discuss performance of our learning

algorithm in estimating the RC network topology of a 5

zone building using zonal temperatures obtained through

EnergyPlus simulation. The building consists of a core zone

and four perimeter zones as shown in Fig. 1(a). Its RC

network is obtained from [18] and shown in Fig. 1(b). From

the true topology of the RC network (See 1(c)), it is clear

that every neighbor of a node is also its two hop neighbor.

Thus the number of spurious links detected in the moral

graph (See 1(d)) are substantial and phase based criteria of



Algorithm 1 RC network topology learning using multivari-

ate Wiener Filtering

Input: Time series of temperature deviation Ti(k) for

each zone i ∈ {1, 2, ...m} and time-step k in a building.

Thresholds ρ, τ . Frequency points Ω. Regularization

parameter γ.

Output: Reconstruct the true topology with an edge set Ē

1: for all l ∈ {1, 2, ...,m} do

2: Compute the Wiener filter Wlp(z) using the temper-

ature time-series ∀p ∈ {1, 2, ...m} \ l
3: end for

4: Edge set ĒK ← {}
5: for all l, p ∈ {1, 2, ...,m}, l 6= p do

6: if H∞(Wpl(z)) > ρ then

7: ĒK ← ĒK ∪ {(l, p)}
8: end if

9: end for

10: Edge set Ē ← ĒK
11: for all l, p ∈ {1, 2, ...,m}, l 6= p do

12: if π − τ ≤ |∠(Wpl(e
ĵω))| ≤ π, ∀ω ∈ Ω then

13: Ē ← Ē − {(l, p)}
14: end if

15: end for

16: Error =
Number of false edges

Number of true edges

Algorithm 1 become crucial for exact reconstruction. The

floor details of the zones in the building are Core: 149.66

sq. m., Perimeter I: 113.45 sq.m., Perimeter II: 67.3 sq.m.,

Perimeter III: 113.45 sq.m., Perimeter IV: 67.3 sq.m. and

the height of the building is 3.05 m. The building location is

Minneapolis, MN and the weather file used in EnergyPlus is

obtained from https://energyplus.net/weather.

The exogenous inputs to the system include lighting and

electrical load, and schedules of people in the building.

For our simulations, we consider two models of the elec-

trical loads and lighting: (a) white Gaussian, and (b) time-

correlated wide sense stationary processes. The correlated

input values are obtained by filtering white Gaussian noise

through 1D digital filter in MATLAB. The effect of solar

radiation is common to all the zones and can be filtered.

The EnergyPlus output comprises of zone air temperatures

which is the instantaneous temperature averaged over space

for each zone. This temperature data is obtained with one

minute granularity and used for topology reconstruction for

both white and correlated input distributions.

As detailed in Algorithm 1, we first obtain the neighbor

and two hop neighbor set by inspecting the H∞ norm of

the Wiener filters. Figs. 2(a) & (b) shows the H∞ norms of

the filters W2i’s and W3i’s between nodes 2, 3 and all other

nodes i for white Gaussian input. Observe that the magnitude

of H∞ norm of W24 is relatively large despite 2, 4 being two

hops away for both white and colored inputs. Hence it is clear

that magnitude itself cannot be used to distinguish between

true and two hop neighbors. Next we use the phase response

of the filters to remove spurious links. In Figs. 3(a) and (b),

we can clearly observe that the phase of W24 is close to π
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Fig. 2. H∞ norm for Wiener filters between nodes 2, 3 and all nodes
for different inputs distributions (sample size = 10

5) (a) Node 2, white
Gaussian inputs, (b) Node 3, white Gaussian inputs.
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Fig. 3. Absolute phase values for Wiener filters between node 2 and
all nodes for different inputs distributions (sample size = 10

5) (a) white
Gaussian inputs, (b) WSS inputs

for both white and colored inputs. This indicates that nodes

2 and 4 are two hop neighbors and the link between them

is pruned. We present the average errors produced by our

learning algorithm for different temperature samples sizes

in Fig 4(a) and (b) for white Gaussian and colored inputs

respectively. Further we demonstrate errors obtained by using

the regularized version of the Wiener filter reconstruction

(see (13)). Note that while the errors in either case goes

down to zero (exact recovery), the performance of the regu-

larized approach is better at low sample sizes owing to the

use of regularizers. The results are particularly noteworthy

given that EnergyPlus simulations need not satisfy all the

theoretical assumptions necessary for consistency outlined

in Theorem 4.3. We compare our learning method with that

of an one-step ahead regression framework [14] used for

estimation in LTI systems with white Gaussian inputs. The

problem formulation for regression is as follows:

inf
{hji},∀i

E(Tj(k)−
m∑

i=1

hjiTi(k − 1))2 + γ

m∑

i=1

‖hji‖2, (15)

where γ is the regularization parameter. Here, if the mag-

nitude of hij that solves (15) is greater than a specified

threshold then a link between i&j is assessed as being

present. In contrast to our learning algorithm, the topology

reconstruction using regression performs poorly for both

white Gaussian and colored inputs as shown in Fig. 4(a)

and (b). This is due to the fact that the estimated coefficients

in the regression problem are non-zero for non-neighbors.

Figs. 5(a) and (b) show the estimated coefficients (h2i and

h3i) between nodes 2, 3 respectively and all other nodes

for colored inputs. Note that 2, 4 are non-neighbors but

regression based estimation yields a non-zero value. It is

evident from Fig. 4 that no matter how large the data set

https://energyplus.net/weather
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Fig. 4. Error percentage variation with number of samples per node for
Algorithm 1 (with and without regularizers), Regression [14], and GLASSO
[9] when inputs are (a) White Gaussian (b) WSS input
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Fig. 5. Coefficients recovered by regression (15) problem with WSS inputs
for (a) Node 2 (b)Node 3

is, the reconstructed topology based on regression deviates

from true topology by at least 50%.

Finally, we also compare our learning algorithm with

Graphical Lasso ([21], [22]) meant for static Gaussian graph-

ical models that has been utilized for structure estimation

[10]. From Figs. 4(a) and (b), we observe that the per-

formance of our learning algorithm is better than that of

Graphical Lasso under both input regimes.

VI. CONCLUSION

In summary, we have provided analytic results with prov-

able guarantees on near exact reconstruction of topology of

the thermal dynamics of buildings. The resulting algorithm

is an effective data driven approach for system identification

of thermal dynamics of a building using RC network. The

learning algorithm recovers the exact interaction topology of

a group of zones and buildings. The error in reconstruction

decreases as more and more samples are used for learning

the interaction topology. In the limit of large number of sam-

ples, the presented algorithm recovers the exact interaction

topology of the building, which has potential applications in

HVAC control, demand response and building safety. The

data is generated using EnergyPlus and the topology recon-

struction is implemented in Python. Note that in situations

of temperature data breach, the building structure details can

be figured solely from the data and hence could pose a

threat. Parameter estimation of the identified RC network

after accounting for wall capacitance and applications in

data-driven control and cyber security of buildings will be

the focus of future work.
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