arXiv:1803.06549v1 [math.OC] 17 Mar 2018

Low-Order Control Design using a
Reduced-Order Model with a Stability
Constraint on the Full-Order Model

Peter Benner* Tim Mitchell* Michael L. Overton'

Feb. 28, 2018

Abstract

We consider low-order controller design for large-scale linear time-invariant dynamical
systems with inputs and outputs. Model order reduction is a popular technique, but con-
trollers designed for reduced-order models may result in unstable closed-loop plants when
applied to the full-order system. We introduce a new method to design a fixed-order con-
troller by minimizing the Lo, norm of a reduced-order closed-loop transfer matrix function
subject to stability constraints on the closed-loop systems for both the reduced-order and the
full-order models. Since the optimization objective and the constraints are all nonsmooth
and nonconvex we use a sequential quadratic programming method based on quasi-Newton
updating that is intended for this problem class, available in the open-source software pack-
age GRANSO. Using a publicly available test set, the controllers obtained by the new method
are compared with those computed by the HIFOO (H-Infinity Fixed-Order Optimization)
toolbox applied to a reduced-order model alone, which frequently fail to stabilize the closed-
loop system for the associated full-order model.

1 Introduction

As the size of dynamical systems continues to grow rapidly, reduced-order modeling [Ant05]
[BBF14, BMS05, BCOWT7] has become essential. However, straightforward control design using
reduced-order models may result in unstable closed-loop plants for the full-order model. Though
there exist methods guaranteeing closed-loop stability for the latter, in particular frequency-
weighted balancing techniques that perform a combined plant-and-controller reduction [OA0T],
these techniques are often challenging from a computational perspective. In this paper we con-
sider designing low-order controllers via H,, optimization applied to the closed-loop system for
a reduced-order model (ROM), subject to a stability constraint on the closed-loop system for the
associated full-order model (FOM).
Consider the open-loop linear time invariant dynamical system [ZDG96]

i' A1 | Bl 32 X
z | =1 Ci1| D11 D w (1)
Y Cy | Da1 Do u

This work was supported in part by the Research Training Group RTG 2297/1, “Mathematical Complexity
Reduction - MathCoRe” in Magdeburg, funded by Deutsche Forschungsgemeinschaft, and in part by the U.S.
National Science Foundation under grant DMS-1620083

*Peter Benner and Tim Mitchell are with the Max Planck Institute for Dynamics of Complex Technical
Systems, 39106 Magdeburg, Germany benner@mpi-magdeburg.mpg.de, mitchell@mpi-magdeburg.mpg.de

TMichael L. Overton is with the Courant Institute of Mathematical Sciences, New York University, New York,
NY 10012, USA overton@cims.nyu.edu

http://arxiv.org/abs/1803.06549v1

where z € R™ contains the states, u € R™ is the physical (control) input, w € R™ is the
performance input, y € R™ is the physical (measured) output, z € R”"= is the performance
output, and the matrices are real with compatible dimensions. We wish to design a controller K

defining
S N Ak Bk TK

where xx € R"X is the controller state and nx is the order of the controller, resulting in the

closed-loop system:
; [A4|B :C:c
K |=|7¢1D K
z w

with, assuming Dss = 0 for convenience:

A= A1+ ByDgCy ByCi
n BrCh Ak

B— [By + ByDg Doy]

By Doy
C = [C1+D1sDgCy D15Ck }
D= [D1+ D12DgDoy |.

When Dyy is nonzero, the formulas for A, B,C, D are not affine, as they involve (I — Dy Dag)~?
[ZDGY6, p. 446]; the condition ||DgDas|l2 < 1 ensures that this last matrix is well defined.
However, since Day is zero in all problems in our test set described below, this constraint will
not play a role in this paper.

The closed-loop transfer matrix function

G(s)=C(sI — A7 'B+D (3)

maps the performance input w to the performance output z.

2 Low-Order Controller Design
Let o : R™*™ — R denote the spectral abscissa, defined for a matrix M by
a(M) = max{Re : det(\] — M) = 0}.

A key requirement of a controller K is that the closed-loop system is stable, i.e., a(A) < 0. The
Lo and H,, norms of the transfer matrix function are defined by

Gl = sup [|G(iw)]2 (4)
w>0

and
G, = {l|GllL. if a(A) <0; oo otherwise} .

Note that the Lo, norm is finite as long as A has no eigenvalues on the imaginary axis while the
H . norm is finite provided that the eigenvalues of A are all in the open left half-plane. The stan-
dard method for computing |G|, is the Boyd-Balakrishnan-Bruinsma-Steinbuch (BBBS) algo-
rithm [BBO0, [BS90], implemented in the MATLAB function getPeakGain. The BBBS method
converges quadratically to a global maximizer of (@) but it involves computing the eigenval-
ues of a sequence of Hamiltonian matrices of order 2(n, + ng); the algorithm thus requires
O((nz + nk)?) operations per iteration. Computing the eigenvalues of A then determines a(.A)
and hence whether |G| .. equals ||G||L., or oo; checking stability via the MATLAB function

eig is generally at least an order of magnitude faster than using the BBBS method to compute
IGls..

If ng = n,, methods to compute a controller that minimizes |G|y, are well known. However,
it is often desirable to design a low-order controller with nx < n,; note that low-order here
refers to the size of the controller K, not to whether n,, the dimension of the state space, has
been reduced. The open-source toolbox HIFOO [Ove(6, [BHLOOGa], dating from 2006 and based in
part on [BHLOO6D], addresses this problem by employing nonsmooth unconstrained optimization
techniques to minimize |G| ., over the controller variable K. Similarly, the MATLAB code
hinfstruct |[hin] introduced in release R2010b and based in part on [ANQGa, [ANOGD], also
optimizes |G| g, over the controller variable K. As the hinfstruct code is proprietary, we focus
here on HIFOO, whose code can be readily modified. HIFOO employs a two-phase algorithm, first
reducing «(A) by varying the controller K until a(A) < 0. Then, having obtained a stabilizing
controller for which |G|z, is finite, HIFOO proceeds to the second phase, locally minimizing
|G|z, using that stabilizing controller as a starting point. HIFOO relies on the nonsmooth
unconstrained optimization code HANSO [Ove] in both phases. During the second phase, if a
trial value of the controller K results in «(A) being nonnegative, the value of |G|z is oo by
definition, so the line search in HANSO rejects this point and decreases the step length. This
strategy guarantees that all iterates accepted by the line search result in finite H,, norm values.
From its inception, the motivation for HIFOO was ease of use, so that an engineer could easily
call it to design low-order controllers without any need to understand details of the optimization
method on which it relies. References to many applications where HIFOO has been used appear
in [MO15].

However, neither HIFOO nor hinfstruct is practical for large-scale systems because of the
high cost of computing ||G| .. and hence |G| i, . For this reason, Mitchell and Overton [MOT15]
introduced a new experimental code HIFOOS that optimizes an approzimation to ||G| ., for
a large sparse system, using a recently proposed, scalable algorithm called hybrid-expansion-
contraction (HEC) [MO16]. The HEC algorithm is guaranteed to find a lower bound for ||G|| g,
and, under reasonable assumptions, converges to a stationary point (usually at least a local
maximizer) of). In [MOT15, Table 2], this new approach consistently led to stable closed-loop
systems for the large-scale system, contrasting with the ROM-only-based HIFOO approach, which
resulted in 5 of 12 controllers that failed to stabilize the original full-order models. However,
approximating |G| g, for the large-scale system sometimes led to inconsistencies from one con-
troller K to another, effectively implying that the function being optimized was discontinuous
in K. The result was that optimization would not infrequently halt prematurely due to failure
in the line search, which assumes the function is continuous.

3 The New Formulation

To eliminate this difficulty, we take a different course in this paper, designing a low-order con-
troller by optimizing |G|y, for a ROM while ensuring the stability of the closed-loop system
for the FOM. More specifically, we consider the optimization problem

aegtn |IG:||L.. subject to (5a)
a(A;) <0, (5b)
a(Af) <0, (5¢)

where G, is the transfer function (@) for matrix quadruple (A, By, C;, D;) defined by the matrices
of @) built using the ROM matrices of (), and A is the matrix A also given in ([2]) but built
using the FOM matrices of ().

The key idea of the new formulation is that while the optimization objective in (Bal) is the
ROM transfer function norm ||G,||.., stability of the FOM closed-loop system, specified by

)

inequality constraint (Bd), is a requirement for the design of the controller. As we discuss below,
assessing the stability of the FOM closed-loop system via computing the spectral abscissa of A
can be done much more efficiently than the computation of the FOM transfer function norm
|Gt .. - Furthermore, by also specifying stability of the ROM closed-loop system as an explicit
inequality constraint, given by (BH)), the optimization objective may now be chosen as the L
norm of G, instead of the H,, norm. Note that solving (B is mathematically equivalent to
minimizing

G|l L if max{a(A,),a(A)} <0

00 otherwise.

P = { (6)
Although we use the formulation (@) in the algorithmic development below, it is the final com-
puted values of F(K) that we will report in our evaluation of the algorithms.

The constrained optimization problem given by (B) has objective and constraint functions that
are all continuous, though none are convex or smooth. The L., norm function in (Bal) is locally
Lipschitz, but the spectral abscissa function in (BhH)—(Gd) is not locally Lipschitz at a matrix
M with an eigenvalue A with Re A = (M) that has multiplicity two or more. Since standard
constrained optimization software packages are not intended for cases where the optimization
objective or any of its constraints is nonsmooth, we use a recently introduced sequential quadratic
programming method based on quasi-Newton (BFGS) updating [CMOT7] that is intended for
this problem class. This method is implemented in the open-source software package GRANSO
(GRadient-based Algorithm for Non-Smooth Optimization) [Mif]. Extensive experimental results
on a suite of challenging static output feedback control design problems involving multiple plants
were reported in [CMOT7], exhibiting very good results compared with three other methods. In
almost all cases, the objective and constraint functions were nonsmooth, and in many cases
even non-locally-Lipschitz, at the approximate solutions computed by GRANSO. Compared to
approximations found by the other methods, those obtained by GRANSO were often better both
in terms of reduction in the optimization objective and constraint satisfaction, and also in terms
of running time.

As its name suggests, in order for GRANSO to be applied to an optimization problem it
needs access to the gradients of the relevant objective and constraint functions. The philosophy
underlying the use of BFGS for nonsmooth optimization [CMOI7, [LOT3| is that, since locally
Lipschitz functions such as the L., norm and semi-algebraic functions such as the spectral
abscissa are differentiable almost everywhere, it makes sense to compute gradients at optimization
iterates. Although the objective and constraints are often not differentiable at stationary points,
these points are not normally encountered by the optimization method except in the limit. A
remarkable observation concerning the use of BFGS on nonsmooth problems is that the method
rarely if ever converges to non-stationary points, as discussed at length in [LO13]. Naturally, two
gradients evaluated at two nearby points may be very different, but it is precisely this property
that is exploited by the BFGS updating. The L., norm is differentiable with gradient coinciding
with the gradient of the largest singular value v of the transfer function at the frequency @
maximizing ||G(iw)||2, provided the maximizer is unique and the largest singular value 7 is
simple. The formulas for its gradient are well known and involve the corresponding right and
left singular vectors for . Likewise the spectral abscissa « is differentiable at a matrix M
provided its eigenvalue A with largest real part is unique or part of a unique complex conjugate
pair of eigenvalues and that A is simple. The formula for the gradient of the spectral abscissa
is also well known and involves the corresponding right and left eigenvectors for the eigenvalue
A. HIrooO’s gradient calculations are done via forming the matrix derivatives of (2)) but for
large-scale systems, this is expensive in terms of storage and computation. To overcome such
inefficient scaling properties, HIFOOS instead obtained the gradients of «(.Af) with respect to the
controller variable K via differentiating inner products defined for the matrices of ([2) [MOTH,
Section 3]; we adopt the same approach here.

The method used by the optimization code GRANSO allows the use of infeasible points, i.e.,
values of the controller K for which either or both of the stability constraints (Bh]) and (Gd) on the

ROM and the FOM respectively are violated. However, we found that this worked poorly, because
once an infeasible point was generated, moving towards the feasible region typically resulted in
substantial increase in the optimization objective ||Gy| .., often preventing the algorithm, which
weighs information from the objective and constraints together using a penalty function, from
finding another feasible point. So, instead we used two alternative methods.

Algorithm 1. Use GRANSO in unconstrained mode to first:

Stabilize: by minimizing max{a(A;),a(At)} until a feasible point for the constraints in
(ER) and (Bd) is found, and then

Optimize: by switching to a second unconstrained phase that directly minimizes the
function F(K) given in (@) using GRANSO.

Termination takes place if a maximum iteration limit is exceeded in either phase, or if, using its
default options, GRANSO determines that an approximate stationarity condition is satisfied in
the optimization phase.

Algorithm 2. Repeat the following in a loop:

(A) use GRANSO in unconstrained mode to minimize max{a(A,), a(Af)}, quitting when a fea-
sible point for the constraints (BH]) and (Bd) is found, and continuing to:

(B) use GRANSO in constrained mode to solve (Bl), quitting when an iterate is generated for
which either (BL) or (Bd) is violated, and returning to step (A).

Termination takes place if a cumulative iteration limit is exceeded in either (A) or (B), or, using
its default options, GRANSO determines that an approximate stationarity condition is satisfied
in (B). Since the restabilizations done in (A) may increase |Gy ||1.., Alg. 2 simply keeps track of
the best controller encountered for returning to the user when the computation is finished.

Remark 1 The stabilize-then-optimize approach of Alg. 1 is effectively identical to that used
in current versions of HIFOO except that (a) the new algorithm uses the GRANSO optimization
code instead of the older code HANSO, and (b) existing versions of HIFOO do not use the stability
constraint (Bd) for the FOM. As in HIFOO, the line search in the second “optimize” phase of
Alg. 1 ensures stability is maintained by rejecting any points where the minimization objective
F(K) is infinite due to a stability constraint being violated.

Remark 2 Note that Alg. 2 is not just Alg. 1 done in a loop. The “optimize” phase of Alg. 1
simply rejects controllers K that destabilize either the ROM or FOM (since F(K) is infinite
for such K) while the (B) phase of Alg. 2 takes advantage of the explicit stability constraints
in attempt to produce better search directions, i.e., ones which simultaneously minimize the Lo
norm and maintain stability.

4 Evaluation

In order to assess the ability of our new methods to find controllers that minimize the H., norm
of the ROMs as much as possible while also stabilizing the FOMs, we applied it to a selection
of large-scale 2D heat flow problems from version 1.1 of COM Pl ib [Lei04]. We chose the
same twelve HF2Dx FOM examples used in the evaluation of HIFoOs [MOT15] because COM Pl.ib
already provides corresponding medium-scale ROMs for these examples. See Table [l for the list
of problems chosen and their full and reduced orders. For all problems, we elected to compute
order 10 controllers.

We used getPeakGain to compute ||G,||L.., setting its tolerance to dpigh = 107! because
we have observed that its default tolerance of 10~2 often returns insufficiently accurate results,
and that even dioy = 1077, the tolerance used by HIFOO for its H., norm calculations, can

Table 1: Test Set Summary

Problem | ne (FOM) n, (ROM) | N N N, Ny
HF2D1 3796 316 3798 2 3796 3
HF2D2 3796 316 3798 2 3796 3
HF2D5 4489 289 4491 2 4489 4
HF2D6 2025 289 2027 2 2025 4
HF2D9 3481 484 3483 2 3481 2
HF2D_CD1 3600 256 3602 2 3600 2
HF2D_CD2 3600 256 3602 2 3600 2
HF2D_CD3 4096 324 4098 2 4096 2
HF2D_IS1 4489 361 4491 2 4489 4
HF2D_IS2 4489 361 4491 2 4489 4
HF2D_IS3 3600 256 3602 2 3600 2
HF2D_IS4 3600 256 3602 2 3600 2

also sometimes lead to numerical problems. This issue of numerical accuracy is important since
gradients play a key role in the optimization procedure, and a given tolerance sometimes results
in a computed gradient of ||G,||r., that is significantly more inaccurate than the tolerance might
suggest, even when the gradient is well defined at the point.

The spectral abscissa of A, is computed by a call to eig, while the spectral abscissa of Ay is
computed using eigs which accesses the matrix Af only via matrix-vector products. Assuming
the original full-order version of A; is sparse, as is generally the case, Af can be cheaply applied
as a matrix-vector operator. Thus, by using eigs, it is relatively efficient to assess the stability
of fairly large systems for which computing the Lo, norm is out of reach. Although eigs is not
absolutely guaranteed to return the eigenvalues of Ay with largest real part, it is generally quite
reliable in practice. Indeed, it was fully sufficient, with appropriate parameter choices, for the
aforementioned experiments validating HIFOOS; see [MOT5] for details. It is necessary to call
eigs twice, once for A and once for its transpose, to obtain both the right and left eigenvectors
corresponding to the eigenvalue with largest real part, as these are needed to compute the gradient
of the spectral abscissa, as noted above.

In Tables 2] and Bl below, the columns labeled “Alg. 1”7 with subheading “R+F” and those
labeled “Alg. 2”7 with subheading “R+F” refer to Algorithms 1 and 2 specified above. For com-
parative purposes, we also ran versions of these algorithms that omitted the stability constraint
Bd) on the FOM; the columns labeled “Alg. 1”7 with subheading “R only” and those labeled
“Alg. 27 with subheading “R only” refer to these experiments. Alg. 1 without the FOM sta-
bility constraint is effectively the same as the algorithm used in existing versions of HIFOO but,
to account for differences in implementations, we also ran version 3.5 of HIFOO (using version
2.2 of HANSO) to produce controllers using only the ROM data. For consistency with GRANSO,
we disabled HANSO’s (expensive) “gradient sampling” phase and set parameters opts.normtol
and opts.evaldist both to 107%. We ran HIFOO twice, once with its default 1o, = 1077 tol-
erance for the BBBS method and again with the tighter dnigh = 10~ tolerance we used for
getPeakGain in our new code.

For each problem, we randomly generated an initial controller so that all methods/variants
in our comparison would be initialized at the same point. Since by default, HIFOO also attempts
optimization from three automatically randomly-generated controllers (determined by the pos-
itive integer parameter opts.nrand), we disabled these additional starting points via a slight
modification to the HIFOO code so that it would allow opts.nrand := 0.

All numerical experiments were implemented and run using MATLAB R2017a on a worksta-
tion with an Intel Core i7-6700 (4 Cores @ 3.4 GHz) and 16 GB memory.

The top half of TableBlreports the total wall-clock running time (in seconds) for each problem-
method pair. The bottom half reports the ratio of the running times relative to the running times

Table 2: Final Values of F(K).

Final values of F(K) in eq. (@)
HIFOO v3.5 Alg. 1 Alg. 2
Problem Olow Onigh R only R+F R only R+F

HF2D1 6511.1 6512.8| 6519.4 6519.4| 22928.5 9718.7
HF2D2 5609.6 5598.8 | 5597.0 6292.7 5600.6 9635.9
HF2D5 17716.1 17403.3 |17317.2 39890.5| 17292.6 16847.2
HF2D6 7400.4 7406.0 | 7397.7 7383.0| 7370.0 7392.6

HF2D9 60.3 60.3 60.3 60.3 60.3 60.3
HF2D_CD1 o) o) o) 47.4 o) 4.6
HF2D_CD2 o) o) o) 48.9 o) 48.9
HF2D_CD3 00 00 00 37.5 00 4.9

HF2D_IS1 | 46428.8 44777.5|44247.1 1734082.9 | 42779.3 42771.5
HF2D_IS2 | 10342.4 10336.5 | 10309.6 10327.5|10206.7 10462.9
HF2D_IS3 00 00 00 259.3 00 8.5
HF2D_IS4 o) o) o) 23.9 o) 6.9

Relative differences from the best F'(K) values (in bold above)

HF2D1 — 0.000 0.001 0.001 2.521 0.493
HF2D2 0.002 0.000 — 0.124 0.001 0.722
HF2D5 0.052 0.033 0.028 1.368 0.026 —
HF2D6 0.004 0.005 0.004 0.002 — 0.003
HF2D9 0.000 0.000 — 0.000 0.000 0.000
HF2D_CD1 00 00 00 9.297 00 —
HF2D_CD2 00 00 00 0.000 00 —
HF2D_CD3 o) o) o) 6.694 o) —
HF2D_IS1 0.086 0.047 0.034 39.543 0.000 —
HF2D_IS2 0.013 0.013 0.010 0.012 — 0.025
HF2D_IS3 o) o) o) 29.524 o) —
HF2D_IS4 00 00 00 2.453 00 —

of HIFOO v3.5 (10w), with values higher than one indicating how many times slower a method was
compared to HIFOO while values less than one indicate the opposite. We see that even though the
FOM orders were typically about 10 times the corresponding ROM orders, the running times for
Alg. 2 (“R4F”) ranged from as little as 0.05 to at most 6.76 times the running times of HIFOO
(which uses only the ROM data), and less compared to the version of HIFOO using the more
demanding tolerance dpign to compute |G, .

Table 2] reports the best (lowest) values of F(K) (see (0l)) obtained by each method, with,
for each problem, the best value obtained over all the methods shown in bold text. Recall
that the value of F(K) is oo if the controller K fails to stabilize both the ROM and the FOM,
regardless of whether or not the controller K was obtained using any FOM information. For
every ROM-only method in the comparision (HIFOO and the “R only” variants of Alg. 1 and
Alg. 2), we see that oo is reported in the corresponding columns of Table [for 5 out of the
twelve problems. In each case, the respective method’s computed controller failed to stabilize
the FOM closed-loop systems, indeed confirming that designing controllers for FOMs, using only
ROM information, can often result in complete failure. In contrast, both methods that explicitly
impose the FOM stability constraint (the “R+F” methods) always succeeded in simultaneously
stabilizing the ROMs and the FOMs, and hence in Table[2 these two ROM-FOM hybrid methods
have finite values of F'(K) reported for all twelve test problems. Furthermore, in addition to
ensuring stability of the closed-loop systems for the ROMs and FOMs, Alg. 2 (“R+F”) even

Table 3: Wall-Clock Running Times.

Wall-clock running times (seconds)
HIFOO v3.5 Alg. 1 Alg. 2
Problem fiow 6nien R only R+F Ronly R+F

HF2D1 5866 7065| 7167 10556 | 10264 11409
HF2D2 2373 5931| 5546 463 | 6205 16034
HF2D5 3675 6579 | 6468 737 | 3045 10896
HF2D6 4781 5755| 5547 6175| 6458 6075
HF2D9 451 431 738 523 989 763
HF2D_CD1 | 2708 3368 | 3387 73| 1130 7872
HF2D_CD2 | 2741 3184| 3519 92| 4977 137
HF2D_CD3 | 6040 6684 | 7337 295| 7990 11752
HF2D_IS1|7915 10838 | 11988 164 | 15056 14458
HF2D_IS2 | 8068 10286 | 10203 14450 | 17930 22717
HF2D_IS3|1071 2151| 1295 114 108 2023
HF2D_IS4 | 1178 1653 | 1485 185| 1359 5101

Running times relative to HIFOO v3.5 (diow)

HF2D1 1 1.20 1.22 1.80 1.75 194
HF2D2 1 250 2.34 0.19 2.61 6.76
HF2D5 1 1.79 1.76 0.20 0.83 2.96
HF2D6 1 1.20 1.16 1.29 1.35 1.27
HF2D9 1 0.96 1.64 1.16 2.19 1.69
HF2D_CD1 1 1.24 1.25 0.03 0.42 291
HF2D_CD2 1 1.16 1.28 0.03 1.82 0.05
HF2D_CD3 1 111 1.21 0.05 132 1.95
HF2D_IS1 1 1.37 1.51 0.02 1.90 1.83
HF2D_IS2 1 1.27 1.26 1.79 222 282
HF2D_IS3 1 201 1.21 0.11 0.10 1.89
HF2D_IS4 1 1.40 1.26 0.16 1.15 4.33

succeeded in finding the best value of F(K') on seven of the 12 problems, while on another three,
the values it found were only slightly higher than those obtained by the best methods for those
three problems. This observation is made easier by viewing the bottom half of the table, which
shows the relative differences of the F'(K) values from the best value for each problem, with
dashes indicating that the relevant method was in fact the best. A value of 0.000 means that
the relative difference was below our reporting limit of 0.001.

Figs. [[l and 21 show representative examples of the evolution of the ||G,| 1., values computed
by Alg. 2 (“R+F”) as a function of the iteration count, for problems HF2D_CD1 and HF2D_IS3
respectively. Only the (B) iterations in Alg. 2 are shown as the stabilization iterations in (A) are
relatively less costly. The quantity ||G,||r.. is steadily reduced in (B) until an infeasible point
is reached, at which point the stabilization phase in (A) typically increases ||G:||L ., sometimes
significantly. The usual trend, however, is for |G, ||z, to be consistently reduced over a sequence
of (A) and (B) iterations, until either:

e a cumulative maximum number of 1000 iterations in phase (B) is reached, as with problem
HF2D_CD1, or, occasionally,

e GRANSO determines that an approximate stationarity condition has been satisfied (see
[CMOT7] for details), as with problem HF2D_IS3.

It is also worth noting that the results for Alg. 1 (“R only”) are quite similar to the results

10 T 10
° o4
]
Q 4 ®
10° d 2] 9
[° @ 10249
< ° - ?e °
2 2 °
g 9] g
SR 2 9 $ s ° e
£ ® 9 e 19
s %900 [-] 5 Q ° [
(-]
7 Bele & hid ot o Q o T g |
9 % o 9% ? %
10" % ° ° 8
<
©
nor
il
10° | | I I I I I I I 100 | I I I I
0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300
Cumulative iterations of optimizing (5) in Alg. #2 Cumulative iterations of optimizing (5) in Alg. #2
Figure 1: Problem HF2D_CD1 Figure 2: Problem HF2D_IS3

for HIFOO, as expected, since these methods differ only in implementation details. Finally, in
contrast to the fairly comparable results of Alg. 1 and Alg. 2 in the “R only” setting, it is clear
that Alg. 2 is superior to Alg. 1 in the “R+F” setting, giving overall very satisfactory results.
Indeed, the controllers found by Alg. 2 (“R+F”) yielded values of F(K) that were on average
8.35 times smaller than those obtained by Alg. 1 (“R+F”).

5 Conclusions

We have presented a new formulation for minimizing the L., norm of the closed-loop transfer
function for a reduced-order model (ROM) subject to stability constraints on the closed-loop
systems for both the ROM and the full-order model (FOM). Algorithm 2 (“R+F”) was clearly
effective in accomplishing this goal on the test problems that we considered, with running times
that were not much slower, and sometimes faster, than the same algorithm without the FOM

stability constraint, which, in consequence, often failed to stabilize the closed-loop system for
the FOM.

References

[ANOGa] P. Apkarian and D. Noll. Controller design via nonsmooth multidirectional search.
SIAM J. Control Optim., 44(6):1923-1949, 2006.

[ANO6b] P. Apkarian and D. Noll. Nonsmooth H, synthesis. IEEE Trans. Automat. Control,
51(1):71-86, 2006.

[Ant05] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, volume 6 of Adwv.
Des. Control. STAM Publications, Philadelphia, PA, 2005.

[BBI0] S. Boyd and V. Balakrishnan. A regularity result for the singular values of a transfer
matrix and a quadratically convergent algorithm for computing its Lo,-norm. Syst.
Cont. Lett., 15:1-7, 1990.

[BBF14] U. Baur, P. Benner, and L. Feng. Model order reduction for linear and nonlinear
systems: A system-theoretic perspective. Arch. Comput. Methods Eng., 21(4):331—
358, 2014.

[BCOW17]

[BHLOOGa]

[BHLOOGD)

[BMS05]

[BS90]

[CMO17]

[hin]

[Lei04]

[LO13]

[Mit]

[MO15]

[MO16)]

[0A01]

[Ove]

[Ove06]

[ZDGI6]

P. Benner, A. Cohen, M. Ohlberger, and K. Willcox. Model Reduction and Approzi-
mation: Theory and Algorithms. SIAM Publications, Philadelphia, PA, 2017. ISBN:
978-1-611974-81-2.

J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. HIFOO - A MATLAB
package for fixed-order controller design and H,, optimization. IFAC Proceedings
Volumes, 39(9):339-344, 2006. 5th IFAC Symposium on Robust Control Design
ROCOND 2006.

J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. Stabilization via nons-
mooth, nonconvex optimization. IEEE Trans. Automat. Control, 51(11):1760-1769,
Nov 2006.

P. Benner, V. Mehrmann, and D. C. Sorensen. Dimension Reduction of Large-
Scale Systems, volume 45 of Lect. Notes Comput. Sci. Eng. Springer-Verlag,
Berlin/Heidelberg, Germany, 2005.

N. A. Bruinsma and M. Steinbuch. A fast algorithm to compute the H..-norm of a
transfer function matrix. Syst. Cont. Lett., 14(4):287-293, 1990.

F. E. Curtis, T. Mitchell, and M. L. Overton. A BFGS-SQP method for nonsmooth,
nonconvex, constrained optimization and its evaluation using relative minimization

profiles. Optim. Methods Softw., 32(1):148-181, 2017.

Fixed-Structure H-infinity Synthesis with HINFSTRUCT.
https://www.mathworks.com/help/robust/examples/
fixed-structure-h-infinity-synthesis-with-hinfstruct.html.

F. Leibfritz. COM Pl.ib: COnstrained M atrix-optimization Problem library. Tech-
nical report, Universitdt Trier, 2004.

A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-Newton methods.
Math. Program., 141(1-2, Ser. A):135-163, 2013.

T. Mitchell. GRANSO: GRadient-based Algorithm for Non-Smooth Optimization.
http://timmitchell.com/software/GRANSO. See also [CMOI7].

T. Mitchell and M. L. Overton. Fixed low-order controller design and H., optimiza-
tion for large-scale dynamical systems. IFAC-PapersOnLine, 48(14):25-30, 2015.
8th IFAC Symposium on Robust Control Design ROCOND 2015.

T. Mitchell and M. L. Overton. Hybrid expansion-contraction: a robust scaleable
method for approximating the Ho, norm. IMA J. Numer. Anal., 36(3):985-1014,
2016.

G. Obinata and B. D. O. Anderson. Model Reduction for Control System De-
sign. Communications and Control Engineering Series. Springer-Verlag, London,
UK, 2001.

M. L. Overton. HANSO (Hybrid Algorithm for Non-Smooth Optimization). https://
cs.nyu.edu/~overton/software/hanso/.

M. L. Overton. HIFOO (H-Infinity Fixed-Order Optimization). https://www.cs.
nyu.edu/~overton/software/hifoo/, 2006. See also [BHLO0Ga].

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,
Upper Saddle River, NJ, 1996.

10

https://www.mathworks.com/help/robust/examples/fixed-structure-h-infinity-synthesis-with-hinfstruct.html
https://www.mathworks.com/help/robust/examples/fixed-structure-h-infinity-synthesis-with-hinfstruct.html
http://timmitchell.com/software/GRANSO
https://cs.nyu.edu/~overton/software/hanso/
https://cs.nyu.edu/~overton/software/hanso/
https://www.cs.nyu.edu/~overton/software/hifoo/
https://www.cs.nyu.edu/~overton/software/hifoo/

	1 Introduction
	2 Low-Order Controller Design
	3 The New Formulation
	4 Evaluation
	5 Conclusions

