
Bayesian nonparametrics and feedback-linearisation of discretised
control-affine systems

Jan-Peter Calliess1, Antonis Papachristodoulou1 and Stephen J. Roberts1

Abstract— We propose random field system identification and
inversion control (RF-SIIC) as a method for simultaneous prob-
abilistic identification and control of time-discretised control-
affine systems. Identification is achieved by conditioning ran-
dom field priors on observations of configurations and noisy
estimates of configuration derivatives. In contrast to previous
work that has utilised random fields for identification, we
leverage the structural knowledge afforded by Lagrangian
mechanics and learn both the drift and control input matrix
functions of a control-affine system. We employ feedback-
linearisation to reduce, in expectation, the uncertain nonlinear
control problem to one that is easy to regulate. Our method
combines the flexibility of nonparametric Bayesian learning
with epistemological guarantees on the expected closed-loop
trajectory. We illustrate the viability of our approach in the
context of a discretised, fully-actuated mechanical system. Our
simulations suggest that our approach can adapt rapidly to
a priori uncertain dynamics sufficiently well to succeed in
feedback-linearising and controlling the plant as desired.

I. INTRODUCTION

Control may be regarded as decision making in a dynamic
environment. Decisions have to be based on beliefs over the
consequences of actions encoded by a model. Dealing with
uncertain or changing dynamics is the realm of adaptive con-
trol. In classical adaptive control, parametric approaches are
used (e.g. [26]) and uncertainties are typically modelled by
Brownian motion (yielding stochastic adaptive control [13],
[8]) or via set-based considerations (an approach followed
by robust adaptive control [19]). In contrast, we adopt an
epistemological take on probabilistic control and bring to
bear Bayesian nonparametric learning methods, whose in-
trospective qualities [9] can address exploration-exploitation
trade-offs in a principled manner [1].

In contrast to classical adaptive control where inference
has to be restricted to finite-dimensional parameter space,
the nonparametric approach affords the learning algorithms
with greater flexibility to identify and control systems with
very few model assumptions. This is possible because these
methods grant the flexibility to perform Bayesian inference
over rich, infinite-dimensional function spaces that could
encode the dynamics. This property has led to a surge of
interest in Bayesian nonparametrics; particularly benefiting
their algorithmic advancement and application to a plethora
of learning problems. Due to their favourable analytic prop-
erties, Gaussian processes (GPs) [2], [20] have been the main
choice of method in recent years. Among other domains, GPs
have been applied to learning discrete-time dynamic systems
in the context of model-predictive control [11], [12], [14],

1 Department of Engineering Science, University of Oxford, UK.

[21], learning the error of inverse models [15], [17], dual
control [1] as well as reinforcement learning and dynamic
programming [6], [7], [22], [10]. For articles surveying the
field of learning for model learning and control, the reader
is referred to [16].

The extent of flexibility inherent in these models can,
however, lead to black-box use, disregarding important struc-
tural knowledge in the underlying dynamics [11], [12], [22],
[10], [14]. This can result in unnecessarily high-dimensional
learning problems, slow convergence rates and often neces-
sitates large training corpora, often collected offline. In the
extreme, the latter requirement can cause slow prediction and
conditioning times. Moreover, black-box GP models have
been utilised in combination with computationally intensive
planning methods such as dynamic programming [6], [7],
[22] rendering online learning and tracking difficult.

In contrast to this body of work, we incorporate structural
a priori knowledge of the dynamics, afforded by Lagrangian
mechanics (without sacrificing the flexibility of nonparamet-
rics). This requires, in some instances, a (partial) departure
from Gaussianity but improves the detail with which the
system is identified and can reduce the dimensionality of the
identification problem. Our method uses uncertainties inher-
ent in the models to achieve active data selection and decision
making. Our approach also employs feedback-linearisation
[23] in an outer-loop control law to reduce the complexity of
the control problem. The nominal problem is thus reduced to
controlling a (discrete-time) double-integrator via an inner-
loop control law which can be set to any desired reference
acceleration. If we combine the outer-loop controller with a
pseudo-controller that has desirable guarantees (e.g. stability)
for the double-integrator, these guarantees can extend to
the expected closed-loop dynamics inferred by the trained
posterior dynamics. The resulting approach enables rapid
decision making and can be deployed in online learning and
control.

Our approach can be seen as a generalisation of GP-
MRAC [4]. In that paper, the authors utilise a Gaussian
process on joint state-control space to learn the error of
an inversion controller in model-reference adaptive control.
The paper contains a convergence theorem based on several
restrictive assumptions, including the assumption that the
solution trajectory of the GP-driven model could be stated
as a Markov process with orthogonal increments represented
as an Ito-SDE in time. In addition, their method requires
knowledge of the invertibility of the adaptive element. For
control-affine systems this means that the control input vector
field has to be known and the uncertainty is only in the drift.

In contrast, we consider discrete-time systems where both
the drift and control input matrix can be unknown a priori.
Our method is capable of identifying the drift and control
input vector fields constituting the underlying control-affine
system individually, yielding a more fine-grained identifica-
tion result. Moreover, our method is not limited to Gaussian
processes. If the control-input vector fields are identified with
log-normal processes, our controller will automatically be
cautious in scarcely explored regions.

The remainder of this paper is structured as follows: In
Sec. II, we first describe the dynamic systems we consider.
We then move on to describe our system-identification and
inversion-control approach employing Bayesian nonparamet-
rics. Here, we assume that only the drift vector field of the
dynamics is uncertain a priori while the control input acts
upon the state in some known manner. In this setting, we
also prove closed-loop stability of the expected trajectory,
where the expectation is computed relative to the Bayesian
posterior beliefs.

In Sec. III we lift the assumption of knowing the control
input nonlinearity and propose an approach where all con-
stituent parts of a control affine dynamical system can be
identified based on repeated interactions with the system.

Sec. IV contains simulations that illustrate our approach
in the context of an undamped, torque-actuated double pen-
dulum. The simulations suggest that our method can rapidly
simultaneously learn and control such a system online.

Sec. V discusses limitations of the present approach as
well as open avenues for future investigations.

II. DISCRETE-TIME LEARNING AND INVERSION
CONTROL WITH AN UNCERTAIN DRIFT FIELD

In this section, we consider time-discretised versions of
second-order systems. We limit our attention to the case
where the control input b is known and can be inverted.
With notation as before, assume n = m, d = m+ n.

Let q ∈ Rm be a configuration and let x := [q, q̇] ∈
X = Rd, d = 2m be the full state as well as u ∈ U
denote the control decision that has to reside in control
space U ⊆ Rm. To keep the exposition concrete, we focus
on discretisations of second-order systems. So, consider the
continuous dynamics

q̈ = a(x) + b(x, u) (1)

where b : Rd × U → Rm is a known, deterministic function
that is control invertible, i.e. where we know there exists a
function b− : Rd × Rm → Rm such that b

(
x, b−(x, u′)

)
=

u′,∀x ∈ X , u′ ∈ Rm. Examples are fully-actuated, control-
affine systems with invertible control input matrices as
considered above. That is, where b(x, u) = B(x)u and
B(x) ∈ Rm×m is invertible. Let Im ∈ Rm×m be the identity
matrix, Om = 0Im a matrix of zeros and om ∈ Rm denote
the m-dimensional vector of zeros.

We can rewrite our dynamics as the first-order system:

ẋ =

(
Om Im
Om Om

)
x+ f(x) + g(x, u) (2)

where f(x) =
(
om, a(x)

)>
and g(x) =

(
om, b(x, u)

)>
.

An Euler-approximated, time-discrete version may be
written as:

xk+1 = E xk + ∆ f(xk) + ∆ g(xk, uk) (3)

where k denotes the time-index, ∆ ∈ R+ is a time-increment

and E =

(
Im ∆ Im
Om Im

)
. This is the system we desire to

stabilise. That is we will design a control law u : X → U
that drives the state towards goal state 0. This is without loss
of generality, since the case of tracking a reference is a trivial
extension of stabilisation at zero and therefore, the task of
stabilising 0 is the canonical case most often considered in
control (cf. e.g. [3]).

Since we will assume f to be uncertain, we can only do
so relative to our beliefs over f . Encoding our epistemic
beliefs in terms of probabilities, any convergence guarantee
on reaching the goal state will therefore have to be of a
probabilistic nature. Before deriving a controller with such
guarantees, we will next outline how to update one’s prior
beliefs in the light of data.

A. Bayesian nonparametric drift learning

We assume we know the dynamics are given by Eq. 3,
but are uncertain regarding drift vector field f = (om, a)>.
The first step in Bayesian nonparametric learning is to model
the uncertainty by assuming the drift is drawn from a prior
process, f ∼ Πf = (om,Π

a)>. The notation Πf = (om,Π
a)

indicates that:
∀x ∈ X , measurable sets S = S1 × . . .× S2m ⊂ R2m :

PrΠf [f(x) ∈ S] = 0 if ∃i ≤ m : Si 6= {0}, while
also PrΠf [f(x) ∈ S] = PrΠa [fm+1(x) × . . . × f2m(x)
∈ Sm+1 × . . .× S2m], if ∀i ≤ m : Si = {0}.

Observing a sequence of (state, control, successor-state)
triples (xi, ui, xi+1) allows one to compute a sequence D =
{(xi, fi)} where

fi := f(xi) =
1

∆
(xi+1 − E xi) + g(xi, ui). (4)

Bayesian learning consists of computing the posterior belief
process, Πf |D = (om,Π

a|D)>, on the basis of a collected
set D of training examples extracted from state observations.

B. Inversion control law

Assume we are at time step k ∈ N, having collected data
Dk. Based on our posterior belief, Πf |Dk = (om,Π

a|Dk)>,
we define an inversion-control law as follows:

u(k, xk;u′k) = b−(xk,−mk + u′k), (5)

where
mk = 〈a(xk)|Dk, xk〉 (6)

is the expected value of the drift computed with respect to the
posterior Πa|Dk, and, u′k is referred to as the pseudo-control.
Note, for Gaussian processes, the posterior expectation mk
can be computed in closed-form (see e.g. [20]).

The closed-loop dynamics degenerate to

xk+1 = E xk + ∆Fk + ∆ (Om, Im)>u′k (7)

where (Fk)k∈N, with Fk = f(xk)− (om,mk)> is a random
field.

Linear-feedback pseudo-control. Let K ∈ Rm×d be a
feedback gain matrix with positive definite sub-matrices
K1,K2 ∈ Rm×m, K = [K1,K2]. We assume the objective
is to drive the state to goal state ξ = 0. If we set the pseudo
control to a linear feedback, u′k := −Kxk, the control law
becomes

u(k, x;K) = b−(x,−mk −Kx) (8)

yielding the closed-loop dynamics

xk+1 = Mxk + ∆Fk (9)

where

M =

(
Im ∆ Im
−∆K1 Im −∆K2

)
. (10)

Here, we normally devise K such that |||M |||2 ≥ 1 but
ρ(M) < 1, in which case M is a stable or Hurwitz matrix.

C. Convergence guarantee for the expected trajectory

With this setup we can guarantee convergence of the
expected state trajectory to the goal state ξ = 0.

Theorem. Assume the closed-loop dynamics are given
by Eq. 9 with known matrix M and time increment ∆.
Moreover, assume the learner is capable of keeping the
training data Dk up to date, containing the entire history
of states up to time step k. That is, Dk = {x0, ..., xk}.
Then, 〈xk〉 = Mk〈x0〉. Stability of M (ρ(M) < 1)
implies convergence of the expected trajectory to the goal(
〈xk〉

)
k∈N0

. That is, limk→∞ ‖〈xk〉‖ = 0.

Proof: Let k ∈ N be an arbitrary time step. Since
xk+1 = Mxk + ∆Fk we have 〈xk+1〉 = M〈xk〉+ ∆〈Fk〉.

Showing 〈Fk〉 = 0 would imply 〈xk+1〉 = M〈xk〉 and
thus, 〈xk+1〉 = Mk〈x0〉. M being stable would then imply
that the recurrence converges to zero as desired.

So, it remains to be shown that we indeed have 〈Fk〉 = 0:
By definition of Fk, it suffices to show that 〈ak −mk〉 = 0.
Let Fk = {F0, . . . , Fk−1} denote the history of random
increments. By the law of iterated expectations, we have
〈ak − mk〉 = 〈〈ak − mk|Fk〉ak〉Fk

(here the subscripts
next to the expectation brackets indicate which variables
the expectations are taken over). We will show that the
inner expectation 〈ak−mk|Fk〉ak = 〈ak|Fk〉ak−〈mk|Fk〉ak
is zero. By knowing Fk, the state history x0, ..., xk is
deterministically determined via the recurrence of Eq. 9 (and
vice versa).

Hence, 〈·|Fk〉 = 〈·|{x0, ..., xk, F0, ..., Fk−1}〉 (11)
= 〈·|{x0, ..., xk, a0, ..., ak−1}〉 (12)
= 〈·|Dk〉 (13)

where the last step follows by our assumption of Dk =
{x0, ..., xk}, allowing the reconstruction of the a0, ..., ak−1.

Thus, 〈ak|Fk〉ak − 〈mk|Fk〉ak = 〈ak|Dk〉ak −mk
Eq.6
= mk −mk = 0.

The theorem tells us that, when we can keep our data always
up-to-date, the control actions as per Eq. 8 guarantee that
our subjective (i.e. Bayesian) expectation over the controlled
closed-loop trajectory succeeds in converging to the goal
state ξ = 0 as desired. Investigating stronger notions such
as mean-square stability will have to be deferred to future
work.

At a cursory glance, our result that the expected trajectory
is stable may not seem surprising since we always subtract
the mean. However, it should be emphasised that for estab-
lishing this result, the assumption that the data is always
kept up to date proved key (cf. Eq. 13). Of course, for fast
sampling rates this is unrealistic and the mean mk we subtract
will be conditional on a subset of the actual history. That
is, Dk (Fk. In this case, one might attempt to establish
the desired result by marginalising over the unobserved
elements of the increment history. In the standard theory
of Ito stochastic differential equations, the orthogonality of
the increments ai would make this approach successful in
establishing the desired result. Unfortunately though, in our
situation, the uncertainty arises from the draw a ∼ Πa where
Πa may introduce strong correlations. Developing a better
understanding of the impact of these correlations on the
expected closed-loop trajectory is something we consider an
open problem and is deferred to future work.

III. IDENTIFICATION AND CONTROL UNDER
COMPLETELY UNCERTAIN CONTROL-AFFINE DYNAMICS

Above we have considered the case where the drift vector
field f(·) was uncertain, but the control input vector field
was completely known. This allowed us to compute training
examples about the the drift value f(x) based on knowing
the control u and state observations (cf. Eq. 4). Next, we will
consider the more general case where also b (or equivalently
g, has to be learned. For simplicity, we assume fully-actuated
control-affine dynamics where b(x, u) = B(x)u and B(x) ∈
Rm×m is invertible for all inputs x ∈ X .

Consequently, our discrete dynamics of Eq. 3 can be
written in the form:

dk = f(xk) +G(xk)uk (14)

where we have defined G(x) :=

(
Om
B(x)

)
∈ Rd×m and

dk :=
1

∆
(xk+1 − E xk) (15)

To further simplify the exposition, we assume B(x) =
(b1(x)| . . . |bm(x)) for some vector-valued functions b1 :
Rd → Rm, . . . , bm : Rd → Rm bounded away from zero.
This is a realistic assumption for many dynamical systems,
including the rigid-body mechanical systems considered be-
low.

To learn about a and the bj simultaneously, we will set
up a cascade of learners, one for each of the vector fields.
In order to separate the contribution of B(x)u and a(x) to

an observed state transition, we can attempt to eliminate the
influence of the βj in order to learn about a. Fortunately, in a
control-affine system this can be done by setting the control
input signal to zero.1 Conversely, learning about each bj(x)
can be done in states x where a(x) is relatively certain. This
suggests an interleaved online learning approach which we
will describe next.

Epistemic uncertainty and learning. Both dynamics
functions a and b can be uncertain a priori. That is, a
priori our uncertainty is modelled by the assumption that
a ∼ Πa, b1 ∼ Πb1 , . . . , bm ∼ Πbm where Πa,Πb1 , . . . ,Πbm

are random fields. The processes reflect our epistemic un-
certainty about the true underlying (deterministic) dynamics
functions a and b. That is, all probabilities have to be
interpreted in a Bayesian manner.

If data becomes available over the course of the state
evolution, we can update our beliefs over the dynamics in a
Bayesian fashion. That is, at time k ∈ I ⊆ N we assume
a ∼ Πa|Dk, b1 ∼ Πb1 |Dk, . . . , bm ∼ Πbm |Dk where Dk is
the data recorded up to time step k.

Data collection. We assume our controller can be called
at an ordered set of time steps Iu ⊂ I . At each time
step k ∈ Iu, the controller is able to observe the state xk
(possible up to some stochastic noise) and to set the control
input uk = u(k, xk). The controller may choose to evoke
learning at an ordered subset Iλ ⊂ Iu of time steps. To
this end, at each time step τ ∈ Iλ, the controller evokes a
procedure explicated in Sec. III-.1 if it decides to incorporate
an additional data point (τ, xτ , uτ , xτ+1) into data set Dτ+1.
The decision on whether to update the data will be based on
the belief over the data point’s anticipated informativeness
as approximated by the variance (of the pertaining random
vector the data point would instantiate).2

For simplicity, we assume that learning can occur every
∆λ time steps and the controller is called every ∆u ≤ ∆λ

time steps. For simplicity, as before, we assume ∆u = 1. A
continuous control takes place in the limit of infinitesimal
time step duration ∆.

1) Learning procedure: As before, the data sets Dk are
found incrementally in an online learning fashion. Since it is
hard to use the data to infer a and b simultaneously, we will
have to actively decide which one we desire to learn about
(and set the control accordingly – which we will henceforth
refer to as a separating control). To this end, we distinguish
between the following learning components:

• Learning the uncertain drift component a(·): Assume
we are at time step k ∈ Iλ and that we decide to
learn about a. This decision is made, whenever our
uncertainty about ak := a

(
xk

)
, encoded by |||Var[ak]|||,

is above a certain, predefinable threshold θavar. To learn
about a(xk) we would like to observe its value. Re-
member a(xk) are the last n components of f(xk).

1An alternative approach is suggested in the future work section.
2Variance is known to approximate entropic measures of uncertainty (cf.

[1]) and often easier to compute than entropy.

Rearranging Eq. 14 we see

f(xk) = dk −G(xk)uk (16)

where dk is computed from xk and its successor state as
per Eq. 15. If G(xk) is known, we simply wait another
time step to also observe xk+1 and generate the desired
training example (xk, ak) as we did above. If G(xk) is
uncertain however, it is possible to disable its influence
by choosing a probing control action uk := 0. This
choice allows us to compute the training example by
storing the last n components of f(xk) = dk as a
sample of the value ak. That is, we compute

a(xk) = P dk (17)

where P is a matrix projecting a vector onto its last n
components.
For the most part, we assume the states to be directly
observable. However, to accommodate noisy observa-
tions, we might assume that instead of observing f(xk)
directly, above equation only allows us to compute a
noisy version f̃k = f(xk) + νk where νk is a zero-
mean random vector with variance-covariance matrix
Var[νk]. We will discuss the connection to noisy state
observations in an extended version of this paper. For
the time-being, it will suffice to note that for normally
distributed noise, incorporation of the noisy samples in
the posterior inference can be done with ease within the
Gaussian process learning framework [20].

• Learning bj(x): At time step k ∈ Iλ, we choose
to learn about function bj whenever our uncertainty
about ak is sufficiently small (i.e. |||Var[ak]||| ≤ θavar)
and our uncertainty about bj is sufficiently large
(|||Var[bj(xk)]||| > θbvar) and maximal, i.e. j ∈
argmaxi=1,...,m|||Var[bi(xk)]|||. Let ej ∈ Rm be the jth
unit vector. To learn about bj(xk) at state xk, we apply
a probing control action u := ujej where uj ∈ R\{0}.
Inspecting Eq. 16 it is clear that bj(xk) coincides with
the last n components of 1

uj

(
dk − f(xk)

)
. That is, to

generate the desired training example (xk, bj(xk)) we
observe the states xk and xk+1 and compute

bj(xk) =
1

uj
P
(
dk − f̃(xk)

)
. (18)

Under the observational noise assumption we might
again have to deal with noisy training examples com-
puted as per b̃j(xk) = bj(xk) + ηk,j where again
(ηk,j)k∈N is an i.i.d. noise process with zero mean and
variance-covariance matrix Var[ηk,j] defined to model
state-observation errors.
Consequently, at time k+ 1, b̃j(xk) is a random vector
with posterior mean

〈b̃j(xk)|Dk+1〉 =
−1

uj
P 〈f(x)|Dk+1〉 =

−1

uj
〈a(x)|Dk+1〉

(19)

and variance-covariance matrix

Var[b̃j(x)] = Var[ηk,j] + Var[bj(xk)] (20)

≤ Var[ηk,j] +
1

u2
j

Var[νk] +
1

u2
j

V ak+1 (21)

where V ak+1 denotes the posterior variance-covariance
matrix about a(·) given data Dk+1. By construction∣∣∣∣∣∣V ak+1

∣∣∣∣∣∣ ≤ θavar.

A. Special case- diagonal control matrix B(x)

In the general setup above, from any given state-transition,
our probing actions allowed us to maximally learn about
one of the columns bj of matrix B. Fortunately, in many
relevant mechanical systems, including the coupled pen-
dula considered below, B(x) is diagonal. That is, where
there exist β1(x), ..., βm(x) ∈ R\{0} such that B(x) =
diag(β1, . . . , βm).

This allows us to treat each output dimension in isolation.
Furthermore, one probing action uk, whose components
all are non-zero, suffices to learn simulatenous about all
diagonal entries as per: βj(xk) = 1

uj
P
(
dk − f̃(xk)

)
.

B. Control law

Unless the control actions are chosen to be probing actions
designed to aid system identification (as described above),
we will want to base our control on our probabilistic belief
model over the dynamics. Given such an uncertain model,
it remains to define a control policy u : N × X → U with
desirable properties. In this work, we attempt to feedback-
linearise on the basis of the posterior model gained during
learning. This translates to the linearising control law:

u(k, xk;u′) := 〈B†(xk)|Dk, xk〉[−〈a(xk)|Dk, xk〉+ u′]
(22)

where B†(xk) is the Moore-Penrose pseudo-inverse. In
fully-actuated systems, the true B is invertible and hence,
B−1(x) = B†(x) for all inputs x.

In case of perfect identification, i.e. when the posterior
expectations coincide with the ground truth dynamics (and if
the pseudo-inverse coincides with the inverse), this controller
yields the linearised, simple closed-loop dynamics

dk = (om, u
′
k)> (23)

as we can see when substituting our control into Eq. 14.
Here, omRm is an m-dimensional zero vector.

The free parameter u′ is the pseudo- or inner-loop control
and can be set at will to control the state evolution in some
desired manner. As discussed in Sec. II, if it is our objective
to have exponentially quickly vanishing state magnitude in
the limit of k → ∞ it would suffices to set the pseudo-
controller to the PD-law u′ = −[K1K2]xk where K1,K2

are positive definite m×m matrices.
More generally, if the objective is to track the state

trajectory (ξk)k∈N the pseudo-control can be set to

u′(k, xk) := [K1,K2](ξk − xk) (24)

to guarantee vanishing error.

IV. SIMULATIONS

In this section, we illustrate our method by applying it
to online identification of a simple simulated control-affine
system. We explored our controller’s performance applied to
the discrtised dynamics of a simulated frictionless, torque-
actuated double-pendulum as derived in [25]. In continuous-
time the configuration q consisted of the two joint angles
and the state x ∈ R4 consisted of two joint angle positions
and velocities. The uncontrolled system is known to exhibit
chaotic behaviour and is unstable for all states except zero.
Furthermore, the double pendulum has been used as model
for a simple two-link robotic manipulator [24].

The system could be controlled by applying a torque
to each joint. Given an initial state x0 = [0; 0;−1;−1]
(downward position, with negative initial velocity), the task
was to drive the double-pendulum upwards and stabilise
the state at xf = [π;π, 0, 0] (motionless upward position).
Hence, in our notation, m = n = 2 and d = 4.

Our simulations are based on a first-order Euler approx-
imation of the dynamics of this system, choosing a time
discretisation interval ∆ = 0.01 [sec]. Here, matrix B(x) =
diag(β1(x), . . . , βm(x)) has diagonal form as considered in
Sec. III-A and full feedback-linearisation is possible when B
is known. However, we assume both drift field a and control
input fields β1, ..., βm are uncertain a priori.

Before learning, we modelled our prior beliefs over the
drift and control input vector fields by assuming a ∼
GP(0,Ka) and each βj ∼ log GP(0,Kβj) (j = 1, ..., 2) had
been drawn from a normal and log-normal process, respec-
tively. The latter assumption encodes a priori knowledge that
control input function βj can only assume positive values
(but, to demonstrate the idea of cascading processes, we
had discarded the information that each βj was a constant).
During learning, the latter process was based on a standard
normal process conditioned on log-observations of β̃j . To
compute the control law, we need to convert the posterior
mean over log b into the expected value over the βj . The
required relationship is known to be as follows:

〈βj(x)|Dk, x〉 = exp
(
〈log bj(x)|Dk〉+

1

2
var[log b(x)|Dk]

)
.

(25)
If required, the posterior variance can be obtained as

var[βj(x)|Dk, x] =
(

exp(2〈log βj(x)|Dk〉)

+ var[log βj(x)|Dk]
)

exp
(

var[log βj(x)|Dk, x]− 1
)
.

Note, the posterior mean over each βj increases with the
variance of our normal process in log-space, and, the control
law as per Eq. 22 is inversely proportional to the magnitude
of this mean. Hence, the resulting controller is cautious, in
the sense that control output magnitude is damped in regions
of high uncertainty (variance). Depending on the situation,
this can either be a curse or a blessing. If the system is stable
under zero excitation the law has the advantage of gradually
exploring the state space before moving to new unexplored

parts. On the other hand, if zero excitation leads to instability,
this behaviour may of course be problematic or at least not
help (for instance think of a UAV falling from the sky under
zero control action). In this case, it might be recommended
to couple the controller with a stabilising feedback controller
in a hybrid control setup.

Our learning-based controller, which we will refer to as
RF-SIIC (which stands for random field system identification
and inversion control) was initialised with a the prior as
described above. Kernels Ka,Kβ1

and Kβ2
were chosen

to be from the class of rational quadratic kernels with
automated relevance detection (RQ-ARD). The observational
noise variance was set to 0.01. The log-normal process
over b(·) was implemented by placing a normal over each
log βj(·) with zero mean and RQ-ARD kernel with fixed
observational noise level 0.02. Note, the latter was set higher
to reflect the uncertainty due to Πa. In the future, we will
consider incorporating hetereoscedastic observational noise
based on Var[a(x)] and the sampling rate. Also, one could
incorporate knowledge about periodicity in the kernel.

To showcase the learning behaviour, we conducted the
experiment in three stages.

(I) As always, learning was done by conditioning on
the observed training examples. However, in this first run,
every third learning step, we allowed for full hyper-parameter
training by optimising the marginal log-likelihood (see [20]).
This hyper-parameter optimisation can make a significant
difference if the ground truth dynamics are unlikely under the
presupposed prior. Results are depicted in Fig. 1(a) and 1(b).
Our RF-SIIC method managed to stabilise the system at the
goal state after 14 seconds (corresponding to 1400 time steps)
of control and online learning. Note, the drops in control
signal (see Fig. 1(a)) are the probing actions performed to
extract training examples of the drift a(·).

(II) The previous experiment was restarted, but with the
learner pre-trained from Exp. 1 and without hyper-parameter
optimisation. That is, learning was based on conditioning
only. The results are depicted in Fig. 2(a) and 2(b). Observe,
the controller benefits from the learning experience from the
previous round evoking fewer learning steps yielding faster
convergence to the goal. Furthermore, the processing time
for controller calls is drastically reduced due to the absence
of hyper-parameter optimisation. Furthermore, the improved
posterior model and faster convergence results in a marked
reduction of expended control energy.

(III). Once again, the experiment was restarted. This
time, however, the learner was switched off so that the
controller had to rely on the posterior models trained during
the previous two rounds. The learner controller successfully
drove the system to the goal (see Fig. 3(a) and 3(b)).

(IV). The ultimate aim of our controller is to track the
reference trajectory (rk)k∈N given by (the discretised version
of) the perfectly linearised double-integrator dynamics. An
alternative approach previously considered in robotics (cf.
[18]) would be to employ a Gaussian process to learn an
inverse dynamics model ψ : (xk, xk+1) 7→ u and choose the
inverse model control policy u(xk) = ψ(xk, rk+1). We refer

0 5 10

0

1

2

3

Time

S
ta

te

State evolution

angle1
angle 2
angle1 velocity
angle2 velocity

0 5 10
−10

−5

0

5

10

Time

C
on

tr
ol

Control evolution

0 5 10
0

100

200

300

400

Time

Control energy

−2 −1 0 1 2

0

1

2

3

4

(a) Control evolution and state with untrained prior.

0 2 4 6 8 10 12 14
0

5
Distance to goal state

0 2 4 6 8 10 12 14
0

2

4
Computation time

0 2 4 6 8 10 12 14
0

1

2
Learning history

(b) Performance history as a function of time (sec).

Fig. 1. Exp. I. Fig. 1(a): Control and state history. Bottom left plot: Blue
curve: u1(x, t). Green curve: u2(x, t). Fig. 1(b): Evolution of distance to
goal (top), computation time t = ∆k [sec.] of the controller and record of
when learning took place (bottom). For the latter, values have the following
meaning: 0: no learning took place, 1: learning by conditioning only, 2: full
learning, including hyper-parameter optimisation.

to this method as Gaussian process inverse model learning
control (GP-IMLC).

In a final experiment, we compare our RF-SIIC approach
to the GP-IMLC method. To this end, we randomly choose
a sub-sample of 50 trajectory points (xk, xk+1, uk) recorded
in Exp. III and use it to train the random fields of RF-SIIC a
well as the Gaussian process of the GP-IMLC controller. The
reference trajectory mimics a double-integrator driving the
double-pendulum from the start state x0 = [0; 0; 0; 0] to the
goal state xf = [π;π, 0; 0]. The results are depicted in Fig. 4.
Note, the RF-SIIC is much more capable of taking advantage
of the small subsample to accurately track the reference than
GP-IMLC is. Perhaps this might be unsurprising as GP-
IMLC faces a higher-dimensional learning problem and due
the fact that the inverse mapping might not even be unique.

V. DISCUSSION AND FUTURE WORK

We have proposed a learning-based control approach, RF-
SIIC, that combines learning with random fields and adaptive
feedback linearisation to learn a control policy in a Bayesian
fashion. In contrast to most related methods, our approach
takes into account the structure of the dynamics equation and
can learn drift and control input vector fields separately. This

0 2 4 6 8
0

1

2

3

Time

S
ta

te

State evolution

angle1
angle 2
angle1 velocity
angle2 velocity

0 2 4 6 8

−2

0

2

4

6

8

Time

C
on

tr
ol

Control evolution

0 2 4 6 8
0

50

100

Time

Control energy

−2 −1 0 1 2

0

1

2

3

4

(a) Control and state evolution.

0 1 2 3 4 5 6 7 8 9 10
0

5
Distance to goal state

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04
Computation time

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
Learning history

(b) Performance history as a function of time (s).

Fig. 2. Exp. II. Repetition of Exp. I with pre-trained controller and without
hyper-parameter optimisation. Bottom left plot: Blue curve: u1(x, t). Green
curve: u2(x, t).

is interesting from a system identification point of view as
it allows for a more detailed understanding of the physics
of the underlying system. Furthermore, if the drift changes
(e.g. due to change in the plant’s environment) the identified
control input function remains valid and the system does not
have to be relearned from scratch. In addition the structural
knowledge allowed the learners to learn forward models
whose dimensionality equalled the dimensionality of state
space. This is in contrast to many competing methods that
require learning on the joint state-action space [5], [16].

For the control of discrete-time systems, we were able
to leverage the structural knowledge to provide a guarantee
of convergence of the expected closed-loop trajectory to
the desired goal state. Here, it is to be emphasized that
since all probabilities are degrees of subjective beliefs, the
convergence guarantee also is a guarantee about epistemic
beliefs over the (deterministic) dynamic system behaviour.

Our simulations have illustrated our controller’s behaviour
in the context of simple simulated rigid body systems and
served as first demonstration of the viability of the approach.
They show that our approach can be successful in simulta-
neous online learning and control and that it is fast enough
to be applied at high sample rates. Furthermore, utilising the
variance as a learning criterion the online learning process
was able to keep the training corpora small.

0 2 4 6 8
0

1

2

3

Time

S
ta

te

State evolution

angle1
angle 2
angle1 velocity
angle2 velocity

0 2 4 6 8

−2

0

2

4

6

8

Time

C
on

tr
ol

Control evolution

0 2 4 6 8
0

50

100

Time

Control energy

−2 −1 0 1 2

0

1

2

3

4

(a) Control evolution of RF-SIIC.

0 1 2 3 4 5 6 7 8 9 10
0

5
Distance to goal state

0 1 2 3 4 5 6 7 8 9 10
2

4

6
x 10

−3 Computation time

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
Learning history

(b) Performance history as a function of time (s).

Fig. 3. Exp. III. Repetition of Exp. I with pre-trained controller and without
any further learning.

0 2 4 6 8 10
time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Distances to reference

GP-IMLC
RF-SIIC

Fig. 4. Exp. IV. Comparison to the Gaussian process inverse model learning
control (GP-IMLC) approach [18] based on 50 randomly chosen training
examples from the history of Exp. III. The SIIC approach largely succeeds
in tracking the desired reference trajectory while the GP-IMLC method fails
to track the trajectory.

The efficiency of our learning and control methods comes
at a price. In particular, if both the drift and the input
mappings B are uncertain, the need to distinguish between
the two motivated us to set the control input to zero for brief
periods of time in order to learn about the drift. This can be
very disadvantageous in settings where such “zero-spikes”
can destabilise the system and future work will investigate
ways to circumvent this. Furthermore, to learn about input
mapping B, we need to be reasonably certain about the drift
at the state where b is to be learned. This can imply that data
about b will often be much sparser than the data available
for the model of a.

A. Future work.

So far, bounded control is not considered. While this
could be modelled by squashing the control output through
a bounded function (e.g. in lieu of [7]), the present absence
of a planning method precludes the controller from solving
tasks such as swing-ups under bounded control. The latter
would involve forecasting and planning. Future work could
address this and seek to combine our SIIC approach in
combination with MPC. One idea would be to replace the
pseudo-controller by a predictive controller that is capable
of avoiding obstacles in state space. We might then explore
how to add virtual obstacles to state space, preventing the
controller from choosing actions that steer the state into a
region of state space that is likely to cause the actuators
to saturate. A control sequence that connects a start state
with a desired goal state in free-space should then solve the
control problem of the closed-loop dynamic system under
constrained control.

Utilising random fields to learn the dynamics has the bene-
fit of providing uncertainty quantifications that can be utilised
for deciding when to learn and when not. In the present work,
we have used the variance as such a criterion. However, as we
have explored in the context of the pendulum experiments,
the variance is a subjective quantity that may be misleading if
reality does not match the beliefs of the learner. Therefore,
we will investigate alternative methods. As a simple first
step for instance, we could imagine evoking learning, if and
only if the observed state transitions do not match with the
predictions made on the basis of the current model. Apart
from possibly being a more effective criterion this would
impose “never changing a winning team” behaviour, keep
the data sets sparse and limit the number of aforementioned
zero control spikes. Indeed, we are currently investigating
a procedure that removes the necessity of injecting u = 0
as probing actions into the control signal and allows us to
generate observations about a and b simultaneously on the
basis of two distinct visitations of the same state.

REFERENCES

[1] T. Alpcan. Dual control with active learning using Gaussian process
regression. Arxiv preprint arXiv:1105.2211, pages 1–29, 2011.

[2] H. Bauer. Wahrscheinlichkeitstheorie. deGruyter, 2001.
[3] Jan-Peter Calliess. Conservative decision-making and inference in

uncertain dynamical systems. PhD thesis, University of Oxford, 2014.

[4] Girish Chowdhary, H.A. Kingravi, J.P. How, and P.A. Vela. Bayesian
nonparametric adaptive control using Gaussian processes. Technical
report, MIT, 2013.

[5] M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2013.

[6] MP Deisenroth, J. Peters, and C. E. Rasmussen. Approximate dynamic
programming with Gaussian processes. ACC, June 2008.

[7] M.P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process
dynamic programming. Neurocomputing, 2009.

[8] T.E. Duncan and B.Pasik-Duncan. Adaptive control of a scalar linear
stochastic system with a fractional brownian motion. In FAC World
Congress, 2008.

[9] H.Grimmett, R.Paul, R. Triebel, and I.Posner. Knowing when we don’t
know: Introspective classification for mission-critical decision making.
In ICRA, 2013.

[10] J. Ko, D. Klein, D. Fox, and D. Haehnel. Gaussian Processes
and Reinforcement Learning for Identification and Control of an
Autonomous Blimp. In ICRA, 2007.

[11] J. Kocijan and R. Murray-Smith. Nonlinear Predictive Control with a
Gaussian. Lecture Notes in Computer Science 3355, Springer, pages
185–200, 2005.

[12] J. Kocijan, R. Murray-Smith, C.E. Rasmussen, and B. Likar. Predictive
control with Gaussian process models. In The IEEE Region 8
EUROCON 2003. Computer as a Tool., volume 1, pages 352–356.
Ieee, 2003.

[13] P. R. Kumar. A survey of some results in stochastic adaptive control.
Siam J. Control and Optimization, 23, 1985.

[14] Roderick Murray-smith, Carl Edward Rasmussen, and Agathe Girard.
Gaussian Process Model Based Predictive Control. In IEEE Eurocon
2003: The International Conference on Computer as a Tool, 2003.

[15] D. Nguyen-Tuong and J. Peters. Using model knowledge for learning
inverse dynamics. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2010.

[16] D Nguyen-Tuong and J. Peters. Model learning for robot control: a
survey. Cognitive processing, 2011.

[17] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf. Learning
inverse dynamics: a comparison. In Europ. Symp. on Artif. Neural
Netw., 2008.

[18] Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, and Bernhard
Schölkopf. Learning inverse dynamics: a comparison. In European
Symposium on Artificial Neural Networks, number EPFL-CONF-
175477, 2008.

[19] Ioannou P. and J. Sun. Robust Adaptive Control. Prentice Hall, 1995.
[20] C.E. Rasmussen and C. K. I. Williams. Gaussian Processes for

Machine Learning. MIT Press, 2006.
[21] Alex Rogers, Sasan Maleki, Siddhartha Ghosh, and N.R. Jennings.

Adaptive Home Heating Control Through Gaussian Process Prediction
and Mathematical Programming. In 2nd Int. Workshop on Agent
Technology for Energy Systems (ATES 2011), 2011.

[22] A. Rottmann and W. Burgard. Adaptive Autonomous Control using
Online Value Iteration with Gaussian Processes. In ICRA, 2009.

[23] M. W. Spong. Partial feedback linearization of underactuated me-
chanical systems. In Proc. IEEE Int. Conf. on Intel. Robots and Sys.
(IROS), 1994.

[24] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Dynamics and
Control. Wiley and Sons, 2006.

[25] Russ Tedrake. Underactuated robotics: Learning, planning, and control
for efficient and agile machines. Course Notes for MIT 6.832, 2009.

[26] K.Y. Volyanskyy, M.M. Haddad, and A.J. Calise. A new neuroadap-
tive control architecture for nonlinear uncertain dynamical systems:
Beyond sigma- and e-modifications. In CDC, 2008.

