
  

  

Abstract— A model predictive control (MPC) framework is 
developed in the present study, with the final objective to 
improve the energy flexibility of building thermal loads through 
demand-side management. Three different configurations are 
tested and tuned, with the following objective functions: 
minimizing the delivered energy to the building, the electrical 
energy used by the HVAC system (heat pump) or the cost of this 
electricity use. To validate these MPC configurations, a Matlab-
Trnsys co-simulator is also created, in order to run the MPC on 
a virtual plant composed of a detailed building model. The MPC 
strategy manages to run effectively on the chosen study case (a 
residential building with heat pump in Spain), and the 
differences between configurations are discussed. 

I. INTRODUCTION 

Demand-side management (DSM) is becoming a 
promising solution to solve the balancing issues created by the 
increasing penetration of non-dispatchable sources of energies 
(such as wind and solar) in the national grids. In particular, the 
thermal loads of buildings (heating, cooling and production of 
domestic hot water or DHW) are partly shiftable in time and 
thus represent good candidates for DSM schemes [1]. To 
unlock this flexibility potential of buildings, smart control 
strategies are however necessary. 

Indirect control strategies are generally preferred over 
direct control of the heating/cooling devices, for the 
satisfaction of the users. Among indirect controls, rule-based 
strategies reacting on penalty signals such as the time-variant 
electricity price have shown a satisfactory performance in 
terms of load-shifting while having a low complexity level. 
Model predictive control (MPC) outperforms such simpler 
strategies, but presents more difficulties in its implementation, 
in great part due to the need for accurate linear models [2]. 
MPC has been extensively studied for building climate control 
[3], [4], however not necessarily for unlocking flexibility. 

The majority of the reviewed literature on the topic 
resorted to economic MPC, e.g. a control strategy intending to 
minimize the energy costs. Few articles have considered other 
objective functions, for instance rewarding the completion of 
a flexibility request coming from an aggregator at an upper 
level [5]. No direct comparison between different MPC 
configurations for energy flexibility were carried out, to the 
knowledge of the authors, and the studies considering both 
heating and cooling on the same study case are rare [6]. 

The present work intends to develop an integrated MPC 
approach to harness the flexibility potential of the thermal 
loads provided to the building by a heat pump system. 
Different configurations of the MPC are presented, in 
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particular with different objective functions aiming to reduce 
the delivered thermal energy, the used electrical energy, or the 
associated economical costs. These configurations are tested 
through co-simulation with a dynamic building simulation 
tool, and evaluated with the same Key Performance Indicators 
(KPIs). 

II. MODELLING OF THE SUBSYSTEMS 

A. Presentation of the study case 
The MPC configuration is developed for a test building, 

typical of the Spanish and Mediterranean climate areas. It 
corresponds to a flat for a family of four members, within a 
multi-family building block. A refurbished version of the 
building is considered, with an additional 12 cm layer of 
insulation. A reversible air-to-water heat pump provides the 
heating or cooling needed to condition the space or the water 
tank used to store domestic hot water (DHW). The heated or 
cooled water is circulated through Fan Coil Units (FCU) 
installed in each room to ensure thermal comfort of the 
occupants. 

A detailed model was realized  in TRNSYS and validated 
through metered data [7]. This model was utilized to create 
training and validation datasets, to obtain the reduced order 
model described in the following sections. To this end, the 
building model was virtually excited with a heat input 
following a Pseudo-Random Binary Signal (PRBS) [8]. 

B. Building envelope 

 
Figure 1. Scheme of the RC simplified building model. 

The building envelope is represented through a simple RC 
(resistance-capacity) grey-box model, analog to electrical 
networks [8]. The scheme is presented in Figure 1. In the 
present case, two states are defined: 

- 𝑇"#$ ∈ ℝ	[℃] is the indoor operative temperature in 
the zone (average of the temperatures in the different 
rooms of the apartment). 𝑇"#$ represents the main 
output of the model and should be contained within 

T. Péan and R. Costa Castelló are with the Department of Automatic 
Control (ESAII), Universitat Politècnica de Catalunya, 08028 Barcelona, 
Spain (e-mail: ramon.costa@upc.edu). 

Configurations of model predictive control to exploit energy 
flexibility in building thermal loads 

Thibault Péan, Jaume Salom and Ramon Costa-Castelló, Member, IEEE 



  

the comfort boundaries defined by the occupants 
𝑇"#$; 	𝑇"#$  which differ in heating and cooling mode 

and according to the time of the day. 

- 𝑇, ∈ ℝ	[℃] is an intermediate temperature state 
within the wall envelope (non-observed state). 

Two states enable to represent both the dynamics of the 
internal air node (fast response) and of the building fabric itself 
(walls, furniture, indoor thermal mass with higher inertia). 
More complex models can be developed, but the second-order 
model has shown sufficient performance for the type of 
application described in this work [9]. The evolution of the 
temperature states within the building are governed by the 
following set of equations: 

𝐶"#$ ∙ 𝑇/#$ =
1
𝑅"#$

𝑇, − 𝑇"#$ + 𝑔𝐴 ∙ 𝐼8 + 𝑄: + 𝑄;<< (1) 

𝐶, ∙ 𝑇, =
1
𝑅"#$

𝑇"#$ − 𝑇, +
1
𝑅,

𝑇= − 𝑇,  (2) 

The exogenous input variables (or disturbances) to the 
building model are: 

- 𝑄: ∈ ℝ		[𝑘𝑊]: the thermal power delivered to the 
space. In space heating mode, 𝑄: > 0, and in space 
cooling mode, 𝑄: < 0. 𝑄: is a controllable input, 
which value will be chosen by the MPC controller. 

- 𝑇= ∈ ℝ [°C]: the ambient outdoor temperature; 

- 𝐼8 ∈ ℝC	[𝑘𝑊/𝑚F]: the ground horizontal solar 
irradiation.  

- 𝑄;<< ∈ ℝC	[𝑘𝑊]: the uncontrollable heat inputs 
within the building envelope, mostly due to the 
occupants and equipment. These heat inputs are 
represented through deterministic profiles. 

The parameters of the model are the following, their values 
obtained from the model identification process are presented 
in Table 1 : 

- 𝐶"#$, 𝐶, ∈ ℝC F	[kWh/K]: the thermal capacities 
associated with the two states, representing the 
thermal mass of the building; 

- 𝑅"#$, 𝑅, ∈ ℝC F	[𝐾/𝑘𝑊]: are respectively the 
thermal resistance between the two states, and the wall 
resistance between the wall node and the outside 
temperature; 

- 𝑔𝐴 ∈ ℝC	[𝑚F]: the coefficient (aperture area) 
defining the proportion of solar irradiation 𝐼8 entering 
the building through the windows (solar gains). 

C. Thermal Energy Storage (TES) 
To store the DHW, a water tank of 260 liters is integrated 

into the heat pump internal unit. Let us define the following 
state variable: 

- 𝑇MN: ∈ ℝ		[℃] is the water temperature in the TES and 
is the other output of the model. By law and to avoid 
spread of legionella disease [10], the TES water must 
be kept above a certain temperature 𝑇MN: > 𝑇MN:; 
however there is no upper boundary for this state. 

The evolution of the state temperature 𝑇MN: is governed by 
the following equation: 

𝐶MN: ∙ 𝑇MN: = 𝑄MN: +
1

𝑅MN:
𝑇"#$ − 𝑇MN: − 𝑄O8P (3) 

Where: 

- 𝑄MN: ∈ ℝC		[𝑘𝑊]: the thermal heating power 
delivered by the heat pump to the TES tank. 𝑄MN: is a 
controllable input (continuous variable). Similarly to 
𝑄:, 𝑄MN: is constrained within the operation 
boundaries 𝑄8Q;	𝑄8Q  of the heat pump system. 

- 𝑄O8P ∈ ℝC		[𝑘𝑊]: the DHW tapping from the 
occupants (deterministic standard tapping profile). 

- 𝑅MN: ∈ ℝC		[𝐾/𝑘𝑊]: the thermal resistance between 
the water in the tank and its surrounding environment 
(due to the tank insulation). 

- 𝐶MN: ∈ ℝC		[𝑘𝑊ℎ/𝐾]: the thermal capacity of the 
water tank, defined by 𝐶MN: = 𝑀, ∙ 𝑐U,,, with 𝑀, the 
mass of the water contained in the tank 𝑐U,, the 
specific heat of water. 

TABLE 1. PARAMETERS AND THEIR VALUES. 

Model parameters with their values and units 
𝐶"#$ = 0.26	𝑘𝑊ℎ/𝐾 𝑅"#$ = 0.42	𝐾/𝑘𝑊 
𝐶, = 19.1	𝑘𝑊ℎ/𝐾 𝑅, = 8.86	𝐾/𝑘𝑊 
𝐶MN: = 0.290	𝑘𝑊ℎ/𝐾 𝑅MN: = 601	𝐾/𝑘𝑊 
𝑔𝐴 = 1.92	𝑚F 𝛼] = 0.0259 
𝛾 = 0.222	𝑘𝑊/𝐾 𝛼` = 0.00838	℃b` 
𝛽 = 0.557	𝑘𝑊/𝐾 𝛼F = −0.00704℃b` 

D. Emitters 
𝑄: and 𝑄MN: (i.e. the thermal powers transmitted 

respectively to the indoor space and to the TES tank) have 
been chosen as the controllable variables to simplify the 
optimal control problem. However, a real heat pump system 
cannot be fed directly with a command of delivered thermal 
heating (or cooling) thermal power. In general, it is the supply 
temperature which is sent as an input to the system. In order 
to transform 𝑄: and 𝑄MN: into supply temperature signals, the 
following linear equations are used: 

𝑄: = 𝛾 𝑇efU,: − 𝑇"#$  (4) 

𝑄MN: = 𝛽 𝑇efU,MN: − 𝑇MN:  (5) 

With: 
- 𝑇efU,: ∈ ℝ	[℃]: the water supply temperature for 

space heating/cooling (i.e. the temperature of the 
water flow leaving the heat pump and entering the fan 
coil units); 

- 𝑇efU,MN: ∈ ℝ	[℃]: the water supply temperature for 
TES charging (i.e. temperature of the water leaving 
the heat pump and entering the TES heat exchanger). 

Given that the time step used 𝑡e = 12	𝑚𝑖𝑛 is higher than 
the dynamics of the heat pump, it is considered that the system 
can reach this set-point value within the allowed time step. 



  

The dynamics of the heat pump are thus not considered, the 
aim of the MPC consists mainly in determining the operation 
plan of the system over the time horizon. 

Equation (4) represents the final emitter to the building 
space. In the present case, FCU are used so that both heating 
and cooling operation are possible (radiators would have a 
slightly different behavior for instance). A linear regression 
from data generated with a detailed FCU model in TRNSYS, 
sized for the present building study case, gave the value of 𝛾 
presented in TABLE 1. 𝛾 depends on the water and air flow 
rates on both sides of the FCU, and the efficiency of the heat 
exchange between the two heat carriers. 

Equation (5) represents the heat exchange from the heat 
pump circuit to the TES tank. 𝛽 = 𝑚, ∙ 𝑐U,,, with 𝑚, the 
water mass flow rate on the heat pump side. 

E. Heat pump performance 
According to [11], the coefficient of performance (COP) 

of a heat pump can be approximated with a quadratic function. 
Since only the quantity 1 𝐶𝑂𝑃 is used in the objective 
function (to obtain the electrical power used by the heat pump 
system), a linear model of this quantity is derived: 

 
Figure 2. Comparison between the quadratic model of the COP (full lines 

and points), and the linear model of 1/COP (dashed lines). 

The COP is defined as the ratio between the thermal power 
𝑄: or 𝑄MN: and the electricity consumption of the heat pump 
𝑃8Q. Its value depends on both the supply temperature 𝑇efU 
and the outside temperature 𝑇=. A comparison between the 
quadratic model of the COP and the linear model of 1/COP is 
presented in Figure 2. A satisfactory fit is observed, except for 
few high values of 𝑇= and low values of 𝑇efU. 

III. OPTIMAL CONTROL PROBLEM 

A. Overall state-space model 
Equations (1) to (5) can be summarized into a generic state-

space model of the form: 

𝒙 = 𝑨𝒙 + 𝑩𝑪𝒖𝑪 + 𝑩𝑿𝒖𝑿
𝒚 = 𝑪𝒙																																	 

(7) 

It should be noted that the traditional formulation 𝒙 =
𝑨𝒙 + 𝑩𝒖 has been modified, so that the vector of the 
controllable input variables 𝒖𝑪 is separated from the vector of 
the exogenous input variables 𝒖𝑿. These vectors are as 
follows: 

𝒙 =
𝑇"#$
𝑇,
𝑇MN:

,  𝒖𝑪 =
𝑄:
𝑄MN:

, 𝒖𝑿 =

𝑇=
𝐼8
𝑄;<<
𝑄O8P

 and 𝒚 = 𝑇"#$
𝑇MN:

 

And the model matrices: 

𝑨 =

−
1

𝑅"#$𝐶"#$
1

𝑅"#$𝐶"#$
0

1
𝑅"#$𝐶,

−
1

𝑅,𝐶,
−

1
𝑅"#$𝐶,

0

1
𝑅MN:𝐶MN:

0 −
1

𝑅MN:𝐶MN:

 

𝑩𝑪 =

`
stuv

0

0 0
0 `

swxy

, 𝑩𝑿 =

0 z{
stuv

`
stuv

0
`

|}s}
0 0 0

0 0 0 − `
swxy

 ,   

𝑪 = 1 0 0
0 0 1  

The model is discretized with a discretization time step 𝑡e =
12	𝑚𝑖𝑛. 

B. Specifications 
Regarding the input constraints, the thermal power 

delivered by the heat pump (𝑄: or 𝑄MN:) is constrained within 
the operation boundaries 𝑄8Q;	𝑄8Q = [2; 4	𝑘𝑊] when the 
heat pump is turned on [12]. This modulation is made possible 
by the presence of an inverter controlling the compressor of 
the heat pump, however for operational reasons, the system 
cannot work at very low part-load ratios. 

TABLE 2. COMFORT BOUNDARIES ACCORDING TO OCCUPANCY AND SEASON. 

𝑻𝒊𝒏𝒕; 	𝑻𝒊𝒏𝒕  Winter Summer 

Occupied periods 20℃; 24℃  22℃; 25℃  
Unoccupied periods 18℃; 24℃  22℃; 30℃  

 

As for the output constraints, the indoor temperature 𝑇"#$ 
must stay within the comfort range 𝑇"#$; 	𝑇"#$ . The values of 
the comfort boundaries are presented in Table 2 and are 
derived from the European norm [13]; a setback of the 
temperature is generally introduced when the occupants are 
not present. The lower boundary for the TES water 
temperature is fixed to 𝑇MN: = 50℃ [10]. 

C. Optimal control problem formulation 
In the aforementioned model, the space heating/cooling 

operation (indexed 𝑆) and the TES charging operation 
(indexed 𝑇𝐸𝑆) have been separated. However, only one heat 
pump system covers these two different needs, and only one 
mode can be operated at a time (in practice, the output flow of 
the heat pump is directed through different circuits by means 

1
𝐶𝑂𝑃

=
𝑃8Q

𝑄: + 𝑄MN:
= 𝛼] + 𝛼`𝑇= + 𝛼F𝑇efU (6) 



  

of a divergent valve). To account for these constraints, two 
binary variables 𝛿: and 𝛿MN: 	 ∈ {0,1} are introduced, 
describing the operation of the heat pump in both modes. 

The optimal control problem (OCP) is described as 
follows: 

Problem 1: 

min
f�,�

𝐽 = 𝛼;�� ∙ 𝐽∆f + (1 − 𝛼;��) ∙ 𝐽;�� 

s.t. ∀	𝑘	 ∈ 1, 𝑁 : 

Model: 

𝒙(𝑘 + 1) = 𝑨 ∙ 𝒙(𝑘) + 𝑩𝑪 ∙ 𝒖𝑪(𝑘) + 𝑩𝑿 ∙ 𝒖𝑿(𝑘)
𝒚 𝑘 + 1 = 𝑪 ∙ 𝒙 𝑘 																																																			 

Input constraints: 

𝛿:(𝑘) ∙ 𝑄8Q ≤ 𝑄:(𝑘) ≤ 	 𝛿:(𝑘) ∙ 𝑄8Q 

𝛿MN:(𝑘) ∙ 𝑄8Q ≤ 𝑄MN:(𝑘) ≤ 	 𝛿MN:(𝑘) ∙ 𝑄8Q 
𝛿: 𝑘 + 𝛿MN: 𝑘 ≤ 1 
 
Output constraints: 
𝑇"#$(𝑘) ≤ 𝑇"#$(𝑘) ≤ 	𝑇"#$(𝑘) 
𝑇MN: ≤ 𝑇MN:(𝑘) 

D. Objective function 
The general objective function has the form 𝐽 = 𝛼;�� ∙

𝐽∆f + (1 − 𝛼;��) ∙ 𝐽;��, as shown in the OCP formulation. 𝐽∆f 
is  a smoothing term that is always included, in order to 
penalize the changes in control actions (and thus avoid power 
spikes), and to facilitate the OCP solving: 

𝐽;�� represents the real objective that the MPC controller 
intends to minimize. In the present study, three different 
objectives have been studied: minimization of the thermal 
energy delivered by the heat pump with 𝐽;�� = 𝐽�#, 
minimization of the electricity used by the heat pump with 
𝐽;�� = 𝐽��, and minimization of the cost of the electricity use 
with 𝐽;�� = 𝐽<;e$. These terms are explicitly described in (9) 
to (11). 𝐽�# considers directly the minimization of the control 
actions 𝑄: and 𝑄MN:, in a similar fashion than for instance [5]:  

𝐽�# = 𝒖𝒄(𝑘)
�

��`
= 𝑄:(𝑘) + 𝑄MN:(𝑘)

�

��`
 (9) 

However, this formulation does not take into account the 
performance of the heat pump, which changes significantly 
over time (see (6)). For this reason, the term 𝐽�� was 
introduced: it calculates the electricity needed by the heat 
pump to deliver its required thermal output: 

𝐽�� =
𝒖𝒄 𝑘
𝐶𝑂𝑃(𝑘)

�

��`
=

𝑄:(𝑘) + 𝑄MN:(𝑘)
𝐶𝑂𝑃(𝑘)

�

��`
 (10) 

 Further than the electricity used by the heat pump, the cost 
of this energy use is taken into account with 𝐽<;e$ (11). If a 
constant tariff for electricity is considered, 𝐽�� and 𝐽<;e$ are 
equivalent. However, the large rollout of smart meters in 

Europe enables the application of dynamic hourly tariffs for 
electricity. In fact, such tariffs already exist in Spain 
(denominated as “voluntary price for small consumers”) [14]. 
The variations of the electricity price create opportunities for 
economical savings if the heat pump is operated during low 
price periods instead of high price periods (load-shifting). 

𝐽<;e$ =
𝒖𝒄 𝑘
𝐶𝑂𝑃(𝑘)

�

��`
∙ 𝑃𝑟𝑖𝑐𝑒��(𝑘) (11) 

 The normalized electricity price 𝑃𝑟𝑖𝑐𝑒��(𝑘) is here 
considered as the penalty signal. In fact, other penalty signals 
such as the CO2 emissions of the electricity production at 
national scale could also be used with the same structure, 
hence the generalization potential of the present work. 

E. Pareto fronts 

 
Figure 3. Pareto fronts for the different objectives. 

 The objective term 𝐽;�� is balanced with the smoothing 
term 𝐽∆f by means of the weighting factor 𝛼;�� (which 
obviously depends on the chosen objective). To determine 
appropriate values of the weighting factors, the Pareto fronts 
are represented in the cases of the three different objectives 
aforementioned (see Figure 3). 

In all three cases, values between 0.2 and 0.5 seem a 
satisfactory compromise between the two objectives. Higher 
values of 𝛼;�� (i.e. giving more weight to the smoothing term) 
lead to a faster solution, but where the heat pump is turned on 
all the time to avoid changes in the control action, which is 
not desirable. The cases with lower values of 𝛼;�� require 
more computation time to encounter a solution and lead to 
more frequent switching of the heat pump (sometimes during 
as low as one time step), which is not desirable either. For the 
thermal energy minimization case, the value 𝛼�# = 0.01 is 
chosen since computation time is not an issue in this case, and 
𝛼�� = 𝛼<;e$ = 0.25 for the other two cases. 

F. Solving of the OCP 
The MILP OCP problem is formulated in MATLAB, with 

the help of the Yalmip tool [15], and solved with the Gurobi 
solver [16]. The discretization time step is chosen as 𝑡e =
12	𝑚𝑖𝑛, and the prediction horizon 𝑁 = 120	time steps (24 
hours), which enable to cover the daily patterns observed both 
in occupancy and weather. The control horizon is set to 1 hour 
(5 time steps of 12 minutes), meaning that the controller 
receives feedback and calculates a new optimal trajectory at 
this frequency. A shorter control horizon would ensure a 
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faster reaction in case of unexpected event within the 1 hour 
open loop, but would also increase the computational effort. 

IV. RESULTS OF THE MPC APPLIED TO THE TEST CASE 

A. Comparison on a one-day prediction 
The MPC controller previously described was applied by 

simulations to the building study case described in section 
II.A. The three different objectives are tested separately and 
compared in Figure 4 and TABLE 3. 

 

 

 
Figure 4. Time series of the inputs and outputs for the 3 studied cases. On 

the top graph, the inputs QS (in blue shades) and QTES (in orange shades) are 
shown. In the middle graph, the input Tint is shown with its lower constraint, 

and on the bottom graph, the output TTES with its lower constraint. 

TABLE 3. RESULTS OF THE OCP CALCULATION OVER THE TIME HORIZON 
FOR A TEST CASE OF ONE WINTER DAY (JANUARY 2016), FOR THE THREE 

DIFFERENT STUDIED OBJECTIVES. 

Case  Jen Jel Jcost 

Thermal 
energy Q 

[kWh] 40.32 41.65 43.38 
[%] - +3.3% +7.6% 

Electrical 
energy P 

[kWh] 13.22 12.62 12.70 
[%] - -4.5% -3.9% 

Cost 
[EUR] 1.59 1.53 1.53 
[%] - -3.9% -3.6% 

Computation 
time 

[s] 9.10 290.92 388.42 
[%] - +3096.9% +4168.4% 

 
All the cases perform satisfactorily and achieve their 

objective while complying with all the imposed constraints. 
The computation time is greatly increased by the introduction 
of the COP expression in the objective function, which makes 
it non-linear. Case 𝐽�# presents the lower thermal energy 
delivered, and case 𝐽�� presents the lower electricity use 
(which are their respective objectives). Unexpectedly, case 𝐽�� 
performs slightly better in terms of cost than 𝐽<;e$, probably 

due to the different balance between the smoothing term and 
the objective term. However these two cases present a very 
similar behavior. Given these observations, the 𝐽�� case was 
chosen for further evaluation with dynamic simulations. 

The load shifting can be observed in Figure 4: for instance, 
space heating operation is anticipated during the night in the 
𝐽�� and 𝐽<;e$ cases compared to the 𝐽�# case, so as to benefit 
from a better COP or a lower price at this moment. 

B. Dynamic co-simulation with a building simulation tool 
To evaluate the functioning of the MPC in a more realistic 

setup, a dynamic co-simulation is carried out. The MPC 
controller in MATLAB is coupled with the building 
simulation tool TRNSYS which serves as the controlled plant 
in this case, in a similar manner than [17]. This setup enables 
to test the control strategy without having to implement it in 
a real building. 

For the co-simulation, the MPC controller in MATLAB is 
called every hour and determines the optimal operation for the 
next day (𝑁 = 120 time steps of 12 minutes). Only the first 5 
control actions (supply temperature set-points and on-off 
signals) are then sent to TRNSYS, which simulates the 
dynamic behavior with a more accurate model and a higher 
time resolution (3 minutes time steps). One typical winter 
week is simulated, with the weather data of January 2015. 

To avoid infeasibility, additional conditions are set to the 
constraints. At every MPC computation, it can happen that the 
initial conditions of the outputs 𝒚 do not verify the imposed 
constraints. In such case, the constraints of the first 3 time 
steps are relaxed (i.e. set below the values of the outputs, so 
that the first time steps verify the constraints). Even with these 
additional settings, the hard constraints are met for 99.7% of 
the time for the 𝑇MN: constraint, and between 93.4% (𝐽�# case) 
and 99.1% of the time (𝐽�� case) for the  𝑇"#$ constraint, during 
the considered week. To deal with the unfeasibility issue, a 
more elaborated manner would consist in softening the 
constraints, i.e. to permit constraint violations but associated 
to a certain penalty, reflected in the objective function (this is 
the subject of further work). 

A sample of time series is presented in Figure 5 (two days). 
Overall, it is observed than in the 𝐽�� minimization case, the 
heat pump tends to be operated during longer periods, but at 
lower power (i.e. at lower supply temperature and hence 
higher COP). The TES charging presents more flexibility in 
its time of activation, since its constraint is constant, while the 
space heating has to operate most often at the time where the 
𝑇"#$ constraint is stricter. Compared to the 𝐽�# case, the 𝐽�� 
case increased the delivered thermal energy by +3.5% during 
the considered week, decreased the electricity use by -0.7% 
and increased the cost by +0.7% (because the constraints were 
met less often in the 𝐽�# case). 
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Figure 5. Time series of the co-simulation for the Jen and Jel cases. 

V. CONCLUSION 
In the present work, an MPC framework was developed 

and tested with the aim to enhance the energy flexibility of 
thermal loads in buildings equipped with heat pumps. In the 
proposed setup and among the three tested configurations, the 
minimization of the thermal energy delivered to the building 
presented the lowest computation effort. However, it does not 
take into account the efficiency of the heat pump, therefore 
the minimization of the electricity use and the associated costs 
were also tested. These two cases lead to similar results, and 
cost savings of up to 4% compared to the first MPC 
configuration. The high computation time of the two latter 
configurations could present some obstacles to their large-
scale implementation. However, with regards to the slow 
dynamics of building thermal loads, the solving time of the 
OCP is considered acceptable. 

The testing setup constitutes another valuable output of the 
present research. The connection between an optimization 
tool (controller in MATLAB) and a virtual plant (building 
detailed model in TRNSYS) enables to test a variety of 
predictive control strategies. In further research, the variation 
of the COP with the load could be included in the heat pump 
model, since its performance varies at part-load conditions 
[18]. Furthermore, the MPC configurations will be tested with 
a real heat pump placed in a semi-virtual environment setup 
(i.e. the heat pump will be connected to thermal benches 
which emulate the loads calculated by a dynamic building 
simulation tool).  
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