
Persistent Coverage Control for Teams of Heterogeneous Agents*
– Extended Version –

Alberto Mellone1,2, Giovanni Franzini1,3, Lorenzo Pollini1 and Mario Innocenti1

Abstract— A distributed cooperative control law for persis-
tent coverage tasks is proposed, capable of coordinating a team
of heterogeneous agents in a structured environment. Team
heterogeneity is considered both at vehicles’ dynamics and
at coverage capabilities levels. More specifically, the general
dynamics of nonholonomic vehicles are considered. Agent
heterogeneous sensing capabilities are addressed by means of
the descriptor function framework, a set of analytical tools for
controlling agents involved in generic coverage tasks. By means
of formal arguments, we prove that the team performs the task
and no collision occurs between agents nor with obstacles. A
numerical simulation validates the proposed strategy.

I. INTRODUCTION

Distributed robotic systems are currently one of the most
extensively studied topics worldwide. Besides the theoretical
implications, the practical advantages they yield make them
particularly attractive. Indeed, a team of autonomous agents,
each one characterized by a reduced computational and
implementation complexity, can enforce local, basic actions
to pursue a global desired behavior in a cost-efficient way.
Coverage problems are one of the branches of multi-agent
systems study, featuring autonomous vehicles exploring the
environment to gather data through on-board sensors or
to provide resources to different regions. Applications are
extremely differentiated, from surveillance to geographical
surveys, lawn mowing, floor cleaning, and environmental
monitoring [1], [2], [3].

The coverage type considered in this paper is known
as persistent coverage and consists in agents recursively
exploring the environment, thus modeling scenarios in which
information that has been collected in the past should be up-
dated over time. Alternately, resources previously delivered
are supposed to undergo a degradation process and, in turn,
require the team to sweep again already visited spots.

*This paper is an extended version of: “A. Mellone, G. Franzini, L. Pollini
and M. Innocenti, Persistent coverage control for teams of heterogeneous
agents, to appear in Proc. 57th IEEE Conference on Decision and Control,
Miami Beach, FL, USA, Dec. 2018”.

*This work was partially supported by the University of Pisa PRA-2017-
15 and PRA-2017-41 research grants.

1University of Pisa, Department of Information Engineering, Largo L.
Lazzarino 1, 56122 Pisa, Italy.

2A. Mellone is currently with Imperial College London, Department
of Electrical and Electronic Engineering, SW7 2AZ, London, UK. The
work presented herein was carried out when he was Graduate Student at
University of Pisa.

3G. Franzini is currently with United Technologies Research Centre
Ireland, 4th Floor, Penrose Business Center, Penrose Wharf, T23 XN53,
Cork, Republic of Ireland. The work presented herein was carried out when
he was Ph.D. Candidate at University of Pisa.

E-mail addresses: a.mellone18@imperial.ac.uk (A. Mellone),
franzigi@utrc.utc.com (G. Franzini), lorenzo.pollini@unipi.it (L.
Pollini), mario.innocenti@unipi.it (M. Innocenti).

In the literature, different types of techniques have been
used to address this problem. Solutions based on way-
point guidance have been proposed for agents with single-
integrator [4], [5] and unicycle kinematics [6]. Path planning
techniques are proposed in [7], [8]. In the former reference,
the authors discuss the geometric design of paths aimed at
performing the task, that the agents must follow, whereas
in [8] the single-integrator kinematics of the agents is
explicitly taken into account in the planning. A gradient
based law is instead proposed in [9] for a team of single-
integrator agents. Event-driven strategies for single-integrator
agents are proposed in [10]. The majority of the proposed
solutions consider teams composed by agents with the same
kinematics, and with sensing capabilities characterized by the
same mathematical model, although the parameters may vary
from agent to agent. The control of a team of heterogeneous
agents seems to be still un-addressed in the literature, at the
best of the authors’ knowledge.

The main contribution of the paper is a distributed coop-
erative control law for persistent coverage tasks, designed
for coordinating the motion of a team composed by agents
with general sensing capabilities and different dynamics,
extending the results presented in [11].

More specifically, we consider agents with general non-
holonomic dynamics, thus providing a control law that better
complies with a rather wide class of vehicles. Sensing
heterogeneity is addressed by means of the analytical tools
offered by the descriptor function framework. Introduced
in [12], the framework addresses the need for a unified
method to approach different kinds of coverage tasks. It
provides a mathematical abstraction, the descriptor function,
which models both the task requirements and the agents’
contributions. This framework allows for an abstraction from
the actual coverage capabilities of each agent, as well as from
the actual scenario. A control law is then designed to make
the agents cooperatively carry out the assigned task by solely
resorting to information retrieved through local sensors or
inter-agent communication. In addition, a unified approach to
avoid collisions between the agents and with the obstacles is
provided, ensuring the safe execution of the task. The validity
and efficacy of the proposed technique is assessed by means
of formal arguments and is shown through a simulation.

Notation: The field of reals is denoted with R. The fol-
lowing subsets of R are introduced: R+

0 = {x ∈ R : x ≥ 0},
and R+ = R+

0 \{0}. The n × n identity matrix is denoted
with In. Given a positive semi-definite matrix A ∈ Rn×n,
the weighted Euclidean norm of v ∈ Rn is denoted with
‖v‖A =

√
vTAv. The support operator supp {·} of a real-
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or vector-valued function f(x) is defined as supp {f} =
{x : f(x) 6= 0}, i.e. it is the set of points of its domain where
f is not identically zero. The operators ver {·} and diag {·}
represent the vertical and block diagonal concatenations.

II. TEAM MODELING

A. Preliminaries

Consider a team T composed by N agents, allowed to
operate in a closed and bounded topological set Q ⊂ Rn,
with n ∈ {2, 3}. We denote with pi ∈ C(Q) the i-th agent
pose, i.e. its position and orientation in Q, where C(Q)
represents the agent configuration space on Q.

The operational area may be populated by obstacles.
Without loss of generality, obstacles will be considered
convex polygons (n = 2) or polyhedra (n = 3). The k-th
obstacle occupies the region Qkobs ⊆ Q. Given the obstacle
set O, we define Qobs =

⋃
k∈O Q

k
obs.

B. Descriptor Function Framework Overview

A brief overview of the descriptor function framework is
now provided, reviewing the elements essential for the paper.
The interested reader shall refer to [13] for further details.
The main idea behind the framework is the use of a common
abstraction, the descriptor function, for modeling both the
agent capabilities and the deployment requested to the team
in order to accomplish the task.

The agent descriptor function (ADF) di : C(Q)×Q→ R+
0

represents the agent i ∈ T capability of performing the
assigned task or, equivalently for a coverage task, the amount
of sensing that it instantly provides. The ADF is assumed to
be continuous and differentiable over Q, its support being
a connected set. For ADFs with unbounded support it is
reasonable to define:

suppε {di(pi, ·)} =
{
q ∈ Q : di(pi,q) > ε, ε ∈ R+

0

}
In the remainder, the distinction between spatially bounded
and unbounded ADFs will not be explicitly addressed, and,
with a slight abuse of notation, supp {·} will also denote
suppε {·} in the latter case.

Remark 1. Given the positive definiteness, continuity and
differentiability of the ADFs, the following result holds:

supp

{
∂di
∂pi

}
⊆ supp {di}

The sum of all the ADFs is called the current task
descriptor function (CTDF) and represents the cumulative
amount of sensing that the team is instantly achieving. It is
denoted with d : C(Q)N ×Q→ R+

0 , and is defined as:

d(p,q) =
∑
i∈T

di(pi,q), p = ver {pi} ∈ C(Rn)N

The desired task descriptor function (TDF) d∗ : R+
0 ×Q→

R+
0 describes how the agents should be distributed in the

operational area in order to maximize the goal achievement.
Therefore, d∗(t,q) defines how much of the available sens-
ing capability is needed at time t at point q. With the
definition of the CTDF and of the TDF, it is natural to

introduce an error between the amount of sensing that the
task requires and that is actually provided by the team at each
q ∈ Q. This error is quantified by the task error function
(TEF), defined as:

e(t,p,q) = d∗(t,q)− d(p,q) (1)

The TEF models the excess or the lack of sensing over time
at each point of the environment.

C. Agents Dynamics

We consider the following dynamics for the i-th agent:{
Bi(xi)ẍi + ci(xi, ẋi) = Di(xi)τ i + Ai(xi)λi

Ai(xi)
T ẋi = 0

(2a)

(2b)

where xi ∈ Rqi is the state vector, Bi : Rqi → Rqi×qi is the
inertia matrix, ci : Rqi × Rqi → Rqi is the vector gathering
the centripetal, Coriolis and potential terms, Di : Rqi →
Rqi×mi transforms the inputs τ i ∈ Rmi to generalized
forces, Ai : Rqi → Rqi×qi−mi is the matrix associated to the
Pfaffian representation of the qi −mi kinematic constraints
and λi ∈ Rqi−mi is the vector of Lagrange multipliers [14].

The agent’s pose vector is extracted from the state using
a continuous and differentiable map hi : Rqi → C(Rn):

pi = hi(xi) (3)

In the rest of the paper we will consider the following
equivalent representation of the dynamics in (2):

żi =

[
ẋi
v̇i

]
=

[
Gi(xi)vi

0

]
+

[
0
Im

]
ui (4)

where vi ∈ Rmi is known as pseudo-velocity vector, ui ∈
Rmi is the new system input, known as pseudo-acceleration
vector, and Gi : Rqi → Rqi×mi has columns that span the
null space of Ai, i.e. AT

i Gi = 0.

Proposition 1 ([14], Chap. 11.4). Assume that xi and vi
are measurable, and that Gi(xi)

TDi(xi) is invertible for
all xi. Then the dynamics (4) is equivalent to (2) under the
nonlinear state-feedback law:

τ i =
(
Gi(xi)

TDi(xi)
)−1(

B̃i(xi)ui + c̃i(xi,vi)
)

(5)

where

c̃i(xi,vi)=Gi(xi)
T
(
ci(xi,Gi(xi)vi)+Bi(xi)Ġi(xi)vi

)
B̃i(xi) = Gi(xi)

TBi(xi)Gi(xi)

Therefore, if the vector ui is obtained to control the system
with dynamics (4), relation (5) allows for the computation
of the input τ i for the system (2).

Note that the dynamics (4) along with (3) allow for the
description of a sufficiently wide variety of vehicle dynamic
models, thus enhancing team heterogeneity.

The following definitions will be used in the remainder of
the paper: x = ver {xi}, v = ver {vi}, z = [xT ,vT ]T .



III. PERSISTENT COVERAGE CONTROL

A. Problem Statement

The persistent coverage task deals with the recursive
exploration of the operational area: the information gathered
by the agents through their sensors becomes obsolete as time
passes, thus requiring the team to visit regions of Q where
the amount of actual information has faded.

To model this phenomenon, first we define the function
I : R+

0 × Q → R+
0 , that quantifies the amount of useful

information available at time t in q ∈ Q. The following
equation models the information decay process:

İ(t,q) = δI(t,q) + d(p,q), δ < 0 (6)

i.e. the agents through the CTDF give a positive contribution
to information gathering, while the information decay rate δ
yields its degradation. Denoting with C∗ > 0 the desired
level of information that should be maintained over Q, the
TDF describing the persistent coverage task is:

d∗(t,q) = max {0, C∗ − I(t,q)} (7)

while the TEF models the difference between regions insuf-
ficiently covered and the current coverage provided by the
team. Agents are expected to move towards its minimization.

To quantify how effectively the task is being fulfilled, the
error index ξ : R+

0 × C(Q)N → R+
0 is introduced:

ξ(t,p) =

∫
Q

f(e(t,p,q))σ(q)dq

where f : R → R+
0 is a penalty function defined as f(e) =

max{0, e}p with p = {2, 3, ...}, and σ : Q→ R+
0 is a weight

that specifies the point importance in the environment.
The task is properly accomplished if the error function is

kept as low as possible.

Remark 2. The penalty function f(·) is continuous in R and
strictly convex in R+, along with ∂nf/∂en for n < p.

Remark 3. Note that due to the definition of the TDF in (7),
the error index ξ(·) is always bounded:

0 ≤ ξ(t,p) ≤
∫
Q

f(C∗)σdq

for t ≥ t0.

B. Obstacles and Collision Avoidance

Besides covering, agents are expected to avoid collisions
with others, as well as with obstacles in the environment.
Hence, the control action must guarantee that the distance
between the agent and either another agent or an obstacle
does not drop below a safety threshold r > 0. We make the
following assumption on the agents detection capabilities:

Assumption 1. Each agent is able to detect other agents
or obstacles when the relative distance is under a detection
range R > r.

A team deployment is safe if p ∈ P(r), where:

P(x) =
{
p ∈ C(Rn)N : ρi,j > x ∧ ρoi,k > x

∀i, j ∈ T , i 6= j, ∀k ∈ O}

with ρi,j and ρoi,k denoting the distances of agent i from
agent j and from the k-th obstacle point closest to it, the
latter given by ck : C(Q)→ Qobs:

ρi,j = ‖S(pi − pj)‖ , ρoi,k = ‖Spi − ck(pi)‖
ck(pi) = arg min

q∈Qobs

‖Spi − q‖

The matrix S ∈ Rn×dim{C(Q)} extracts the position compo-
nents from the agent’s pose vector.

To guarantee the team safety, the following colli-
sion/obstacle avoidance function is defined:

v(p) = vc(p) + vo(p)

=
∑
i∈T

vci (p) +
∑
i∈T

voi (pi)

=
∑
i∈T

∑
j∈T \{i}

l(ρi,j) +
∑
i∈T

∑
k∈O

l(ρoi,k) (8)

where l : R→ R+
0 is adapted from [15]:

l(x) =

(
min

{
0,
x2 −R2

x2 − r2

})2

Remark 4. The function l(·) is such that if x ≥ R, then
l(x) = 0, while for x ∈ (r,R) the function is strictly
decreasing, and limx→r+ l(x) = +∞. Given the avoidance
function definition in (8), collisions do not occur and p(t) ∈
P(r) is always verified, as long as v(·) attains finite values.

C. Control Law Definition

The following control law is chosen for the agents:

ui(t,xi,p) = uξ,i(t,xi,p)+uv,i(xi,p)−µvi, µ > 0 (9)

where:

uξ,i(t,xi,p) = −βGi(xi)
T ∂hi(xi)

∂xi

T
∂ξ(t,p)

∂pi

T

, β > 0

uv,i(xi,p) = −γGi(xi)
T ∂hi(xi)

∂xi

T
∂v(p)

∂pi

T

, γ > 0

While uξ,i(·) accelerates agent i towards regions where I(·)
is lower, thus inducing a minimization of the error function,
uv,i(·) guarantees that it does not collide neither with other
agents nor with obstacles. Finally, the term −µvi acts as a
damping term for the control law.

Theorem 1. If the initial team deployment is safe, i.e.
p(t0) ∈ P(r), then, under the control law (9), the team per-
forms the persistent coverage task and no collision occurs,
i.e. p(t) ∈ P(r) for all t ≥ t0.

Proof. Consider the following function:

V (t, z) = ξ(t,p(x)) +
γ

β
v(p(x)) +

1

2β

∑
i∈T
‖vi‖2 (10)



If V (·) attains finite values, and the agents act in order to
decrease it, then the persistent coverage task is safely exe-
cuted. Note that if the agents starts from a safe deployment,
i.e. p(t0) ∈ P(r), then V (·) is finite at t0.

Differentiation of (10) with respect to time yields:

V̇ =
∂ξ

∂t
+
∑
i∈T

[(
∂ξ

∂pi
+
γ

β

∂v

∂pi

)
∂hi
∂xi

Gi +
1

β
v̇Ti

]
vi (11)

Since v̇i = ui (see (4)), substitution of (9) in (11) gives:

V̇ =
∂ξ

∂t
− µ

β

∑
i∈T
‖vi‖2

The term ∂ξ/∂t can be further expanded obtaining:

V̇ = −
∫
Q

∂f

∂e
İ σ dq− µ

β

∑
i∈T
‖vi‖2

= −
∫
Q

∂f

∂e
δI σ dq−

∫
Q

∂f

∂e
d σ dq− µ

β

∑
i∈T
‖vi‖2

= E0 + E1 + E2

Note that E0 ≥ 0, since δ < 0, whereas E1 ≤ 0 and E2 ≤
0. The sign of E0 is the consequence of the information
degradation that characterizes the persistent coverage task.
This produces an increment of V (·) with time. However,
note that the only term in (10) which is explicitly time-
dependent is the error index ξ(·). Since ξ(·) is bounded (see
Remark 3), then the sign of E0 cannot produce an unlimited
growth in V (·). The agents contribution is expressed by the
terms E1 and E2, which always give a negative contribution.
Hence, the persistent coverage task is properly executed by
the agents, and V (·) attains finite values, proving the safe
execution of the task.

IV. CONTROL LAW DECENTRALIZATION

Apart from the terms Gi(xi)
T (∂hi(xi)/∂xi)

T and −µvi,
which are fully known as long as the state zi is observable
and the vehicle model is known, agent i needs to compute the
gradients of the error ξ(·) and the avoidance functions terms
vc(·) and vo(·) in order to obtain ui(·). It will be shown that
such quantities can be obtained in a distributed way without
compromising the task fulfillment.

To this end, we introduce the proximity graph G(t), with
the agents as nodes. An edge between two agents exists if
they are neighbors, that is ρi,j ≤ Rcom, with Rcom denoting
agents communication range. The set of neighbors of agent
i at time t will be denoted with Ni(t) ⊆ T . In the following,
we will consider the next two assumptions holding:

Assumption 2. The graph G(t) is always connected.

Assumption 3. Let rcov
i = max{‖qi − q‖ : di(pi,q) > 0}

and rcov = maxi∈T {rcov
i }. We assume that Rcom > 2rcov .

As a result, agents with overlapping ADFs are neighbors.

A. Collision and Obstacle Avoidance

To enforce the collision and obstacle avoidance policy
agent i must compute the gradient of v(·), that is:

∂v(p)

∂pi
= 2

∑
j∈T /{i}

∂l(ρi,j)

∂ρi,j

∂ρi,j
∂pi

+
∑
k∈O

∂l(ρoi,k)

∂ρoi,k

∂ρoi,k
∂pi

where:

∂l(x)

∂x
=


0, x > R | x < r

4
(R2−r2)(x2−R2)

(x2−r2)3 x, R ≥ x > r

undefined, x = r

∂ρi,j
∂pi

=
(pi − pj)

T
STS

ρi,j
,

∂ρoi,k
∂pi

=
(Spi − ck(pi))

T
S

ρoi,k

Therefore, the collision and obstacle avoidance function
gradients must be computed only when another agent j
or an obstacle k are within the agent i detection radius,
that is ρi,j ≤ R and ρoi,k ≤ R, respectively. Thus, the
collision/obstacle avoidance is implicitly distributed.

B. Coverage Control and Information Level Estimation

To accomplish the coverage task, agents need to compute
the quantity ∂ξ/∂pi. Using the chain rule and observing that
the ADFs are dependent on the respective agent’s pose only,
the following holds:

∂ξ

∂pi
= −

∫
Q

∂f

∂e

∂d

∂pi
σdq = −

∫
Qi

∂f

∂e

∂di
∂pi

σdq

where Qi(pi) = supp {∂di(pi, ·)/∂pi}. The weight σ is
assumed known to each agent prior to the deployment. The
gradient ∂di/∂pi can be computed autonomously by each
agent. To obtain the term ∂f/∂e the knowledge of the
TEF e(t,p,q) on q ∈ Qi(pi) is needed. We recall that
e(t,p,q) = d∗(t,q)− d(p,q), see (1).

Because of Remark 1 and Assumption 3, if all agent i’s
neighbors share with it their poses and their ADF parameters,
agent i is able to compute the CTDF d(p,q) on q ∈ Q(pi).

The computation of d∗(t,q) requires the knowledge of
the attained level of information I(t,q). We now introduce
an algorithm for the decentralized estimation of I(t,q),
adapted from [16]. Whereas it was originally formulated in
a discrete time context, the algorithm is here rearranged to
fit in a continuous time scenario. The conventions of the
descriptor function framework will be employed. For the sake
of compactness, the quantities’ dependence on p and q will
be dropped when this will not compromise clarity.

Each agent autonomously computes a continuous time
estimation Îi(t), which is shared with the neighbors peri-
odically during the update instants tk = kT , with k =
{1, 2, . . . }. Given (6), it follows that for t ∈ [tk−1, tk):

I(t) = eδ(t−tk−1)I(tk−1) +
∑
i∈T

∫ t

tk−1

eδ(t−τ)di(τ)dτ

Since no communication occurs between update instants,
agent i estimates I(t) considering only its contribution to



the task:

Îi(t) = eδ(t−tk−1)Î(tk−1) +

∫ t

tk−1

eδ(t−τ)di(τ)dτ, (12)

Then, at each update instant tk the agent communicates to
the neighbors its present estimation Îi(tk):

Îi(tk) = eT Îi(tk−1)+d̃i(tk), d̃i(tk) =

∫ tk

tk−1

eδ(t−τ)di(τ)dτ

After the agents exchange their estimates, the first correction
is performed:

• for all q ∈ supp
{
d̃i(tk)

}
Î−i (tk) = Îi(tk)+

∑
j∈Ni(tk)

max
{

0, Îj(tk)− eT Îi(tk−1)
}

• whereas for all q /∈ supp
{
d̃i(tk)

}
Î−i (tk) = max

j∈Ni(tk)

{
Îj(tk), eT Îi(tk−1)

}
At this point, since for all q /∈ supp

{
d̃i(tk)

}
only

the highest contribution between agent i’s coverage (which,
by definition, results from the time degradation of the one
attained at time tk−1) and those of neighbors is considered,
agent i obtains a raw coverage underestimation. In fact,
potential overlappings between d̃j(tk) and d̃l(tk), with j, l ∈
Ni(tk), which yield a higher coverage level than the one
currently estimated for all q /∈ supp

{
d̃i(tk)

}
, would be

ignored. However, such information can be easily retrieved
through a second correction, which improves each agent’s
estimation. In fact, having received Îj(tk) from neighbors,
agent i is able to compute the portion of d̃i(tk) overlapped
with those of neighbors. Let

Oi(tk) =
⋃

j∈Ni(tk)

{
q ∈ Q : Îj(tk)− eT Îi(tk−1) > 0

}
be such overlapped area and define

d̃oi (tk) =

{
d̃i(tk), q ∈ Oi(tk)
0, q /∈ Oi(tk)

Neighbors then exchange their d̃oi (tk) and perform the last
correction:

• for all q ∈ supp
{
d̃i(tk)

}
Îi(tk) = Î−i (tk),

• whereas for all q /∈ supp
{
d̃i(tk)

}
Îi(tk) = Î−i (tk) +

∑
j∈Ni(tk)

d̃oj(tk)− max
j∈Ni(tk)

d̃oj(tk)

The following result ensures the existence of regions
where the estimation error is zero:

Theorem 2. Assume that Îi(0) = I(0) for all q ∈ Q, and
for all i ∈ T . In addition, assume that each agent can travel
for a maximum distance `max

T during a period T . Then, there

exists a region centered in the agent position at time tk,
Spi(tk), and with radius r∗ = Rcom − rcov − (N − 1)`max

T

denoted with:

Zi(tk) = {q ∈ Q : ‖Spi(tk)− q‖ ≤ r∗}

such that Îi(tk) = I(tk) for all q ∈ Zi(tk), and i ∈ T .

Proof. The proof consist in a transposition of Theorem IV.6
proof in [16], which is proved in a discrete time scenario,
to the continuous time case considered in this paper. Theo-
rem IV.6 in [16] states that each agent’s estimation is correct
within a distance Rcom− rcov− (N −1)umax at each discrete
time instant, with umax being the maximum allowable control
input norm for agents characterized by single-integrator kine-
matics (x(t+1) = x(t)+u(t)), assuming that Assumptions 2
and 3 hold and that Îi(0) = I(0) for all i ∈ T . In our
case, the maximum allowed travel distance `max

T during a
period T is the continuous time analogous of the discrete
time maximum control input norm umax in [16] for single
integrators.

C. Decentralized Control Law

The decentralized control law is then defined as follows:

ûi(t,xi,p) = ûξ,i(t,xi,pi) + uv,i(xi,p)− µvi, µ > 0

where the coverage term is computed as follows:

ûξ,i(t,xi,pi) = −βGi(xi)
T ∂hi(xi)

∂xi

T
∂ξ̂i(t,pi)

∂pi

T

, β > 0

The task error index is estimated by each agents using the
distributed estimation discussed in Section IV-B:

∂ξ̂i(t,pi)

∂pi
= −

∫
Qi(pi)

∂f(ê(t,q))

∂ê(t,q)

∂di(pi,q)

∂pi
σdq

where the TEF estimation is given by:

êi(t,q) = d̂∗,i(t,q)−
∑

j∈Ni(t)

dj(pj(t),q)− di(pi(t),q)

d̂∗,i(t,q) = max
{

0, C∗ − Îi(t,q)
}

Observe that in the definition of êi(·) we assumed that
agent i has the instantaneous knowledge of the ADFs of
its neighbors. This is possible as long as agents are able to
exchange their poses and ADFs parameters at a sufficiently
high rate. Therefore, it should be pointed out that two types
of communication protocols need to be enforced. The first
one, allowing estimation updates as described in Section
IV-B, must be guaranteed with period T and requires the
exchange of high amounts of data, since each agent should, at
least, send its own estimated coverage map and receive those
of neighbors. The second one requires communication of
quantities, such as positions, orientations, and ADF-related
parameters that are fast and easy to handle and to exchange.

D. Comments on the Information Level Estimation

With reference to Theorem 2, the expression of r∗ implies
that, if a guarantee on the quality of the coverage estimation



is to be sought, communication updates should happen more
frequently if vehicles are allowed to move faster (and thus
have larger `max

T ). Agents speed can be reduced by choosing
higher values of the damping µ in (9).

Moreover, in a team with a high number of agents, the
region around each agent where, at time tk, its estimation
is correct is sensibly reduced. The reason is twofold: first,
the cardinality N of the team directly affects the radius r∗;
furthermore, the estimator definition in (12), which considers
only the agent contribution between the update instants, does
not take into account the contributions of the other agents,
thus having higher chances of errors along with a higher
number of team members.

In fact, the level of information provided by (12) is an
underestimation of the real attained level:

Îi(t,q) ≤ I(t,q), t ≥ t0, ∀i ∈ T , ∀q ∈ Q (13)

for the aforementioned reasons.
Having shown that the centralized control law guarantees

the task fulfillment, it should be pointed out that the decen-
tralized scheme only induces a slight performance degrada-
tion, without compromising the mission. Indeed, since (13)
holds, agent i could be attracted by regions with an already
high level of information I , with a remarkable disparity
Îi ≤ I . This would be a reasonable trade-off due to the
employment of a distributed estimation. Conversely, agent
i would never be repulsed from regions with a very low
level of true attained coverage, since Îi would be low in
those regions as well. In addition, because of its definition,
ξ̂i(t,p) ≥ ξ(t,p) for all i ∈ T , and for t ≥ t0, thus
remarking that with only locally achievable information
agent i overestimates the error function, assuming that the
task is farther from being fulfilled than it truly is.

V. SIMULATION RESULTS

To validate the proposed distributed control law a persis-
tent coverage scenario in a 100 × 100 square environment
involving 6 agents was simulated. The information decay
rate was set to δ = −0.1 and C∗ = σ(q) = 1 for all
q ∈ Q. Seven obstacles were placed in the environment:
four of them are virtual walls surrounding the operational
area, preventing agents from exiting it. The remaining ones
are polygons placed within Q. Three of the agents have
double integrator dynamics while the other three are dynamic
unicycles with unitary mass and moment of inertia (for the
equations see [14, Chap. 11.4]). Having set r = 0.5 and
R = 3, the initial poses were chosen such that p(t0) ∈ P(r).
The double integrators carry isotropic Gaussian ADFs:

dG(pi,q)=A exp

(
−1

2

∥∥∥∥[ cos θ sin θ
− sin θ cos θ

]
(q− Spi)

∥∥∥∥2
Σ−1

)
with A = 3 and Σ = diag {3, 3}. The unicycles are
characterized by a Gaussian ADF with limited field of view:

dG,FOV(pi,q) = dG(pi,q)fFOV(pi,q)

Fig. 1: Agents trajectories.

with

fFOV(pi,q) = fFOV,r(pi,q)fFOV,l(pi,q)

fFOV,r(pi,q) =
(

1 + e−k(r1 cos(φ/2)+r2 sin(φ/2))
)−1

fFOV,l(pi,q) =
(

1 + e−k(−r1 cos(φ/2)+r2 sin(φ/2))
)−1

r1 = (qx − xi) cos (θi − π/2) + (qy − yi) sin (θi − π/2)

r2 = −(qx − xi) sin (θi − π/2) + (qy − yi) cos (θi − π/2)

The function fFOV : C(Q) × R2 → [0, 1] shapes the field of
view and is equal to 1 inside it, while smoothly decreasing to
0 as its boundaries are approached. The parameter k models
the slope and was set to 2, while φ is the field of view
angle and was set to π/2. As regards the control gains, the
following values were assigned: α = β = 30, µ = 20.
The communication range is Rcom = 150, thus ensuring the
connectivity of the graph G(t). The estimate update period
T has been set to 1.

Agents trajectories are shown in Figure 1. It can be seen
that the persistent task is efficiently performed and all the
area is continuously covered by the agents. The efficiency is
confirmed by the evolution of the error index ξ(·) shown in
Figure 2a. The agents estimation error is shown in Figure 2b.
Note that ξ̂(t) ≥ ξ(t) during the analyzed period, that is
agents overestimate the error index confirming what pointed
out in Section IV-D. The error grows between the updated
instants, and becomes approximately zero when updates
are exchanged, proving the effectiveness of the distributed
estimation algorithm. Figures 3a and 3b confirm that the task
is safely executed, and no collisions occur.

VI. CONCLUSIONS

We presented a distributed cooperative control strategy for
persistent coverage tasks execution. The proposed control
law is designed for coping with agents having different
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Fig. 2: Evolution of ξ(t) and agents estimation error.
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Fig. 3: Inter-agent and agent-obstacle distances evolution.

types of dynamics and heterogeneous sensing capabilities.
The latter was modeled and handled by means of the
tools provided by the descriptor function framework. Task
execution safety was guaranteed by means of obstacles and
inter-agent collision avoidance functions. An algorithm for
the estimation of the attained level of coverage was derived
in order to decentralize the control law. The effectiveness of
the control law and of the estimation algorithm was formally
proved and showed by means of a numerical simulation.
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A. Martinoli, “Optimal path planning and coverage control for multi-
robot persistent coverage in environments with obstacles,” in Proc.
2017 IEEE International Conference on Robotics and Automation,
Singapore, May 2017, pp. 1321–1327.

[9] Y. Wang and I. I. Hussein, “Awareness coverage control over large-
scale domains with intermittent communications,” IEEE Trans. Au-
tomat. Contr., vol. 55, no. 8, pp. 1850–1859, 2010.

[10] N. Zhou, X. Yu, S. B. Andersson, and C. G. Cassandras, “Optimal
event-driven multi-agent persistent monitoring of a finite set of tar-
gets,” in Proc. 55th IEEE Conference on Decision and Control, Las
Vegas, NV, USA, Dec. 2016, pp. 1814–1819.

[11] G. Franzini and M. Innocenti, “Effective coverage control for teams
of heterogeneous agents,” in Proc. 56th IEEE Conference on Decision
and Control, Melbourne, Australia, Dec. 2017, pp. 2836–2841.

[12] M. Niccolini, M. Innocenti, and L. Pollini, “Near optimal swarm
deployment using descriptor functions,” in Proc. 2010 IEEE Inter-
national Conference on Robotics and Automation, Anchorage, AK,
USA, 2010, pp. 4952–4957.

[13] M. Niccolini, “Swarm abstractions for distributed estimation and
control,” Ph.D. dissertation, Univ. of Pisa, Pisa, Italy, 2011.

[14] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics -
Modelling, Planning and Control. Springer-Verlag London, 2009.
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