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Abstract— This paper proposes a discrete-time sliding mode
control (DSMC) strategy for linear (possibly multi-input) sys-
tems with additive bounded disturbances, which guarantees the
satisfaction of input and state constraints. The control law is
generated by solving a finite-horizon optimal control problem
at each sampling instant, aimed at obtaining a control variable
that is as close as possible to a reference DSMC law, but at the
same time enforces constraint satisfaction for all admissible
disturbance values. Contrary to previously-proposed control
approaches merging DSMC and model predictive control, our
proposal guarantees the satisfaction of all standard properties
of DSMC, and in particular the finite-time convergence of the
state into a pseudo sliding mode band.

I. INTRODUCTION

Sliding mode control (SMC) is a well-known approach for
controlling both linear and nonlinear systems, guaranteeing
complete rejection of the disturbance terms that enter the
systems dynamics through the same channel as the control
variables (i.e., the so-called matched disturbances), once the
system state belongs to the so-called sliding manifold [1]. The
discontinuous SMC action is therefore aimed at enforcing
convergence of the state onto the sliding manifold in finite
time, and then at guaranteeing that the sliding manifold be
an invariant set for the closed-loop system. If the sliding
manifold is well designed and only matched disturbances
are present, the whole state vector will converge to the
origin asymptotically. A sliding mode controller is usually
not designed to satisfy input and state constraints, for which
instead ad-hoc solutions have been proposed in [2], [3].

When implementing SMC laws in practice, an infinite-
frequency switching of the control variable cannot be obtained,
and the direct discretization of a discontinuous control law can
lead to a non-negligible amount of discretization chattering,
which is the high-frequency oscillation of the state around
the sliding manifold due to the discretization of the control
action [1, Chap. 9]. In order to solve this problem, different
approaches have been proposed to define SMC strategies
directly defined in discrete time, referred to as discrete-time
SMC, or DSMC [1], [4]-[9]. When applying a DSMC law,
the exact finite-time convergence of the state onto the sliding
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manifold cannot be achieved, as the disturbance terms exert
an a-priori unknown action on the system dynamics during
the sampling interval. Therefore, a DSMC law would only
guarantee the convergence to a pseudo-sliding mode band
(PSMB), which includes all the states within a finite, a-priori
determined, distance from the sliding manifold.

Different ideas have been proposed in the literature to
merge DSMC laws with model predictive control (MPC),
to improve performance or to provide constraint-satisfaction
properties that cannot be guaranteed by classical DSMC
implementations. Earlier works consider the possibility of
merging DSMC and generalized predictive control to obtain
explicit control laws for linear systems [10], [11]. In [12],
the reaching law defined in [6] is used to define a sliding
mode trajectory reference for an MPC controller. In [13],
an MPC law is formulated for linear systems, by defining
the MPC cost function as the distance of the state from the
sliding manifold, which leads to the guarantee of asymptotic
convergence of the sliding variable to a PSMB. In [14], an
MPC strategy is proposed for linear and nonlinear systems,
which uses the sliding manifold as terminal constraint. Other
control schemes, merging an SMC block and an MPC block
within an overall feedback scheme, have been proposed in
[15]-[18]. Among these, a particularly relevant solution is the
use of discrete-time integral SMC, for which analogous results
in continuous time are reported in [19], [20]. Applications
of these combined schemes to nano-positioning systems, to
microgrids, and to three-phase AC/DC converters, are reported
in [21]-[23], respectively.

In this paper, a DSMC law for linear systems with
additive disturbances is defined for (in general, multi-input)
systems with linear inequality constraints on both inputs and
states. Considering the fact that the perfect compensation of
matched disturbances cannot be obtained for a DSMC law,
the simultaneous presence of both matched and unmatched
disturbances is directly considered. The control law is not
based on the combination of a DSMC and an MPC block,
but rather on the solution of a finite-horizon optimal control
problem (OCP), which has the same structure of an MPC law
for linear systems with quadratic cost function and polyhedral
constraints, and is formulated as a quadratic programming
(QP) problem. The contribution of this work consists in
defining a receding-horizon control law that is indeed still a
DSMC law: contrary to the above-cited works, exact finite-
time convergence of the state onto the sliding manifold is
guaranteed in case no disturbance terms are present, and finite-
time convergence into an a-priori defined PSMB is guaranteed
when disturbance terms are present, while satisfying all



imposed constraints.

The paper is organized as follows: Section II introduces the
notation used throughout the paper. Section III introduces the
considered control problem, which is then solved in Section
IV. An illustrative simulation example is shown in Section
V, and conclusions are drawn in Section VI.

II. NOTATION

Let N> denote the set of non-negative integers. Given two
integers values a; < ay, let Njg, o 2 {aj,aip1 + 1, o ayrl,
while N, £ {0,1,...,as}. For a given set A C R", its
interior is indicated as int(.A). Given a vector v € R, ||v||
denotes its Euclidean norm. Given a constant matrix F' €
R™*" and a set A C R", we define FAZ {y e R™ : y =
Fz, x € A}. The Minkowski sum of two sets Aj, A2 € R™
is defined as A; @ Ay = {x +y: 2 € A,y € Ay}, while
their Pontryagin difference is A; © A 2 {z € R" 12 +y €
Aq, Yy € Asx}. A polyhedron in R™ is defined as the set
given by the intersection of a (in this paper, finite) number of
half-spaces in R”. It is assumed that a polyhedron includes its
boundaries, and is therefore always a closed set. A polytope
is instead defined as a bounded polyhedron. For a given
polytope P € R™, the set of its vertices v; € R™ is indicated
as vert(P). For simplicity of notation, we include the discrete-
time index ¢ in a variable of a dynamical system (e.g., the state
vector x;) when this dependence is relevant in the current
expression, and we omit the time index (e.g., ) when we
refer to the same variable without specific reference to time.

III. DSMC WITH POLYHEDRAL SETS

In this section, the classical formulation of the DSMC
regulation problem for linear time-invariant (LTI) systems
(see, e.g., [1, Chap. 9]) is revisited by introducing explicit
polytopic bounds on the control and disturbance terms, and,
after that, polyhedral state constraints.

A. Unconstrained system with bounded disturbances
Consider the discrete-time linear system
Tey1 = Axy + Buy + Ewy (1)

where ¢ is the discrete-time index, x € R" is the state vector,
u € R™ (with m < n) is the control vector, (4, B) is
a reachable pair, and w € RP is an a-priori unknown but
bounded disturbance term. The disturbance term satisfies

wy EW, t e NZO )

where W is a polytope. It is assumed that W includes the
origin, i.e., w; = 0 is a possible disturbance realization. The
sliding variable s € R™ is defined as

St = Cl’t (3)

with C' € R™*"™ being defined so that s, = 0 for all t > ¢
implies that limy_, ; o, 2 = 0. The set

S&2{zeR" : s=Cx =0}, 4)

which, assuming C has rank equal to m, is an (n — m)-
dimensional subspace of R", is referred to as sliding manifold.

The ideal sliding motion, which takes place when s becomes
and remains equal to zero, is referred to as discrete-time
sliding mode [7]. By following one of the classical approaches
to discrete-time sliding mode proposed in [1], [7], the control
action u, that solves the problem of regulation to the origin is
defined so that s; 1 = 0 in case wy = 0. One would therefore
impose

st+1 = Cayp1 = C(Axy + Bu) =0 (3)
leading to the DSMC law
u™ = Ky (©)

with K £ —(CB)~'CA, and in turn to the closed-loop
dynamics
i1 = Mz + Fwy (N

where M = A — B(CB)™1CA.

Remark 1: In order to achieve asymptotic stability of the
nominal closed-loop system (i.e., when w; = 0 for all ¢t €
N>¢), C must be defined such that C'B is invertible, and M
has all eigenvalues inside the unit circle. In particular, given
the fact that, for the nominal case, s;y1 = CMz; = 0 for
all z; € R", and C has rank equal to m, then the rows of C'
constitute a basis for the left null space of M, which implies
that M has m zero eigenvalues: the degrees of freedom of the
designer will only influence the position of the other n —m
eigenvalues. A borderline case is obtained when m = n,
for which s € R", leading to M being a zero matrix and
S = {0}. ]
When the control law in (6) is applied, thus leading to the
closed-loop dynamics (7), an ideal sliding motion cannot
be attained, however a pseudo-sliding motion is typically
achieved, i.e., ||s;]| < € for a finite £ € R>(. The set

B2 {zeR" : |Cx| <&} (8)

is the PSMB mentioned in Section I. A tight estimate of the
value of ¢ is important to determine the effectiveness of the
control law.

B. Input and state constraints

If constraints are introduced on the control input as
u €U, t € Nxo, 9

where U is a polytope containing the origin in its interior,
then (5) cannot be enforced for all z; € R™. We assume that
an additional requirement is present, i.e., that of satisfying
the set of state constraints

2, € X,t € N>y, (10)

X being a polyhedron (assumed to include the origin in its
interior).

Remark 2: In case U is defined as a set of box constraints,
i.e., a set of component-wise upper and lower bounds on
each component of u; as defined in (6), a simple solution to
satisfy (9) is to impose a component-wise saturation of the
control variable. Although this can guarantee, under suitable
assumptions, that finite-time convergence to the PSMB is



eventually achieved even if (5) is not always satisfied (see,
e.g., [7]) by enforcing (9) at the same time, nothing can be
said about the satisfaction of the state constraints (10). [

We might wonder if there exists a set of initial conditions
Xsm when it would be still possible to directly apply
the control law (6) guaranteeing that both input and state
constraints will never be violated during all subsequent time
instants. More precisely the set,

Xsm é{xo ERn DTt :Maft+EWt eX

N Kz, €U, Yw, € W, VtENzo} (11D

can be obtained via linear programming by applying [24, Alg.
6.1]. X, might be empty, for example if the state constraints
cannot be enforced due to a relatively large disturbance term
and a relatively small available control amplitude.

In order to be able to verify if an explicit expression X,
can be obtained, we begin by calculating the set of states
reachable in 7 time steps by system (7), assuming zero initial
state and any sequence of realizations of w; € W [25]. The
set is defined by the following Minkowski sum:

n

R, = @M’EW. (12)

i=0
The set Roo = lim, 00 Ry is the so-called minimal RPI
(robust positively invariant) set for system (7). It can be
shown that, for system (7), R is a polytope [25, Prop.
6.9]. Its exact computation is not always possible, however
very efficient methods are available to obtain a very tight
over-approximation [26], referred to in the following as
7@00. Relying on the results of [24, Thm 6.2 and 6.3], and
assuming that the origin belongs both to int(X © R, ) and to
int(UOKR ), then Xy, can be obtained exactly with a finite
number of iterations of [24, Alg. 6.1]. The over-approximation
Roo can be used in case R cannot be computed exactly.

Of course, when state constraints are present, one could
obtain a domain of attraction larger than Xy, by devising a
classical strategy for computing u;, as mentioned in Remark
2, also when x; ¢ X,,. However, as already mentioned in
Remark 2, the direct application of such methods cannot
guarantee that the state constraints will not be violated.

The objective of this work is to modify the original SMC
law (6) so as to impose the satisfaction of input and state
constraints for all feasible realizations of the disturbance term,
at the same time maintaining the properties of DSMC control
laws, i.e.,:

o There exists a finite time index ¢; € N> after which
the control law defined in the remainder of the paper
coincides with «§™: this is typical of most DSMC
approaches, in which however only input saturation
constraints are usually taken into account.

o Pseudo-sliding is achieved, and an explicit formula will
be provided to obtain the exact value of . The state
then converges asymptotically to R .

e In case w; = 0 starting from an arbitrary time instant
to € N>, then an ideal sliding motion is achieved, and
the state converges asymptotically to the origin.

IV. CONSTRAINED CONTROL LAW
A. OCP formulation

In order to satisfy the imposed state constraints while
enlarging the domain of attraction of the origin of the closed-
loop system beyond Xy, the idea is to predict the system
trajectory within a fixed time horizon, and devise a control
strategy aimed at imitating the original discrete-time sliding
mode strategy (6), attempting at the same time to avoid the
violation of the state constraints. This result can be obtained
by formulating a discrete-time OCP, which is solved at each
sampling instant, in a receding-horizon fashion. At each
time instant ¢, a sequence of N future values of the term
c¢* € R™ (which represents the difference between the actual
control law and u{™), namely c* £ [¢f ¢} 1)
is obtained as solution of the above-mentioned OCP, and then
only the first element is used to define the control law. The
OCP is then solved again at time ¢ + 1, after obtaining the
new state measurement ;1. In order to formulate the OCP,
first notice that a generic control sequence ¢ (not necessarily
coinciding with the optimal one c*), the element of which
are indicated as cg, k € Ny y_1), would imply a time
evolution of the state along the prediction horizon given
by xx+1 = Maxy + Beg. A collection of “tightened” sets
X 2 XORy and Uy, 2 U & KRy, is defined, with the aim
of accounting for the presence of the disturbance term w;
without explicitly considering its possible realizations along
the prediction horizon. The OCP is defined as follows:

N-1
¢* = argmin Z cFwe, (13a)
k=0
subj. to xx11 = Mz, + Beg, k € N[O,Nfl] (13b)
Kz, + ¢, € Uy, kEN[O,N—l] (13¢)
rp € Xy, k € N[07N_1] (13d)
TN € Xsm S RN (136)

where ¥ € R™ in (13a) is a symmetric positive-definite
matrix. This term imposes the imitation of the DSMC law
(6): its global (unconstrained) minimum is achieved if one
can set all ¢, = 0, which is equivalent to applying (6). The
OCP (13) will lead to using (6) whenever this does not imply
a constraint violation; when this is not possible, it will lead
to a control law as close as possible to (6) (according to the
parameters set in W), which will ensure constraint satisfaction.
The set of inequality constraints (13b) imposes the nominal
system dynamics during the prediction. The set of inequality
constraints (13c) and (13d) ensures the satisfaction of input
and state constraints for any feasible realization of w; along
the prediction horizon. Finally, (13e) enforces the state at
the end of the prediction horizon to be inside Xy, for any
feasible realization of w;.

Once the optimal sequence c* is determined, the control

law applied to the system at time ¢ is
up = uy™ + ¢ (t) = Koy + ¢j(t) (14)

where the ¢ in brackets is used to stress the fact that, to the
original sliding mode control law u3™, a term is added equal



to the first element of the sequence c* calculated at time t¢.

B. Theoretical results

Theorem 1: Consider system (1) with (A, B) reachable
pair and the disturbance term satisfying (2), with WV including
the origin. A stabilizing DSMC law is defined as in (6), and
input and state constraints are defined as in (9) and (10),
respectively, both including the origin in their interior. The
set Xym, defined as in (11), can be calculated as it is assumed
that the origin belongs both to the interior of X SR, and of
US KR . If the control law is defined as in (14), there exists
an RPI set of initial conditions X, with X, C Xy C X,
such that, for all feasible realizations of the disturbance term,
both input and state constraints are satisfied, and the state
converges asymptotically to R.

Proof: The proof of this theorem is based on the results
in [27]. To give a sketch of the proof, first notice that, if Xy C
X is the set of states where the OCP (13) is feasible, then
surely Xy C A, as Ay, contains all values of x for which
(13) is feasible with all ¢; = 0, k = Njg y_1). By definition
of all tightened sets, one can verify that, for any sequence
of inputs and states given by a feasible solution of (13), any
corresponding evolution of inputs and states of system (1)
satisfies the actual constraints (9) and (10). Furthermore, the
increasing of the tightening along the prediction horizon,
together with the definition of X, guarantees that, if a
solution of (13) exists at time ¢, and we apply u; as defined
in (14), then a solution of (13) will still exist at time ¢ + 1,
for any feasible realization of w,. This property is usually
referred to as recursive feasibility, and is proven for a general
case including the one here considered, in [27, Lemma 7].
Finally, one has to prove that the state converges to R,
which is obtained as a particular case of [27, Theorem 8],
by verifying that all the required assumptions are satisfied in
our formulation. [ ]

Corollary 1: 1f, in addition to the assumptions of Theorem
1, there exists t2 € R>¢ such that w; = 0 for all £ > 5, then
the state converges asymptotically to the origin.

Proof: This result is proven by noticing that x(t3) €
Xy, and R, coincides (by definition) with the origin when
w = {0}. [ |
The result in [27] refers to a generic receding-horizon control
law aimed at “imitating” a given linear control law u; = Kuxy,
and is applicable to the formulation of our results, as it turns
out that the DSMC law in this setting is actually linear.
However, this does not provide anything about the properties
of the control law as a DSMC law. To this aim, additional
results specific for our case can be formulated, as follows.

Theorem 2: Assume that all hypoteses required in Theo-
rem 1 hold, and, in addition, assume that 7@00 is included in
int(Xsm). Then, the following holds:

i. For all initial conditions xy € Xj, there exists a finite

time ¢; € R>¢ such that u, = u3™, for all ¢ > ¢;.

ii. A pseudo-sliding motion (as defined in Section III, i.e.,

|Is¢]] <€), implying the finite-time convergence to a
PSMB, is achieved for all ¢t > ¢;, with

e = max {||vert(CEW)|| }. (15)

iii. An ideal sliding motion is achieved if there exists to €

R> such that wy = 0 for all ¢ > t,.
Proof:

i. The fact that 7@00 C Xy is guaranteed by definition
of X,,. The strict inclusion of 7@00 into Xy, together
with the fact that z; asymptotically converges to Roo
for all x9 € Ay (from Theorem 1), imply that there
exists a finite time ¢; € R>q such that uy, = u3™". But
Xsm 1s an RPI set for the closed-loop system (7), which
implies that u; = u3™, for all ¢ > ¢;.

ii. Considering that ui™ is defined such that Cxy4q =
CMz; = 0, the dynamics of s; for the closed-loop
system for ¢ > t1 is sg41 = Caypr = CMay +
CFEw; = C' Ew,, which does not depend on the past
values of s;, as expected. Considering all possible
realizations of w; € W, one can conclude that s; €
CEW for all t > t;. Since the pseudo-sliding condition
is defined using the 2-norm, one can see immediately
that the maximum value achievable by ||s;|| for ¢t > ¢;
is € = max {||vert(CEW)||}.

iii. Up to time t2, when the disturbance term is still present,
Theorem 1 guarantees that z; € Xy for all £ € Nig 4,1,
and in particular z;, € Xy. The convergence of z: to
Xsm in finite time is still guaranteed by [i], which
implies that [ii] also holds, with W = {0}. As a
consequence, £ = 0, and therefore s; = 0 for all
t > max(t1,t2).

|
Theorem 2 proves that, in spite of the unconventional
formulation of the DSMC law in a receding-horizon fashion,
the required properties of DSMC laws, as listed at the end
in Section III, are preserved.

V. SIMULATION EXAMPLE

This section reports a numerical example related to the
benchmark dynamical system in [6]. Consider a second-order
system in form (1), with

1.2 0.1 0 1 0
A= {0 0.6} » B= [1} y B = {0 1] ’
The state, control and disturbance constraint sets are defined
as

(16)

X244 [-11], a7
us-1,1], (18)
e [—0.01,0.01] X [70.0270.02], (19)
while the time evolution of the disturbance term is
_ [0.01cos (%)
We = [0.02 sin (jtﬂ)] ’ (20)

The sliding variable is chosen as in (3) with C = [5 1
such that the DSMC gain results being K = [—6 —1.1]],
with matrix M in (7) having all eigenvalues inside the unit
circle (in particular, at O and 0.7). The initial conditions are
xg = [—0.25 0], while the sampling time is assumed to be
equal to 0.1s.



1.5

0.5 L1, 4 14
Llinax
Llinin 0-5

1
o
x2
(==}

-0.5 —
e
05 -1 T2 ||
-1.5
0 2 4 0 2 4
time (s) time (s)
1.5 1.5
1 — St 1
—€
0.5 —e 0.5
w O 3 0
|
0.5 -0.5 —u"
— Umax
-1 -1 Upnin | |
1.5 -1.5
0 2 4 0 2 4
time (s) time (s)
Fig. 1. DSMC with saturated input, from top left, clockwise. Time evolution

of the state =1, (solid black line) and bounds z1 ; = —0.5 and z1,,,, =
0.5 (solid red line). Time evolution of the state z2, (solid black line) and
bounds x2 ;,, = —1 and x2, ., = 1 (solid red line). Time evolution of the
input uz = u3™ (solid black line) and bounds umin = —1 and Umax = 1
(solid red line). Time evolution of the sliding variable s; (solid black line)
and bound € = 0.107 (solid red line)

1t {|—2X
— X
— R
0.5¢ =1z, T2, }(6)

g o |
-0.5+ .
1t i
-0.5 0 0.5
L1
Fig. 2. DSMC with saturated input, state-space portrait. Box constraint

set X (solid red line), set Xsm (solid dark-red line), minimal RPI set 7%00
(solid blue line), state trajectory when the DSMC law (6) with saturated
input is used (black line)

1.5

0.5 — T, H 1
T Tl

T Tl 0-5

T
o
x2
(==}

0.5 —y,
T
05 ! T
15
0 2 4 0 2 4
time (s) time (s)
15 15
1 — s 1
—¢
0.5 . 0.5
w O = 3 0
-0.5 ! 0.5 — " + (1)
— Umax
-1 - — Unin
-15 -1.5
0 2 4 0 2 4
time (s) time (s)

Fig. 3. Constrained DSMC, from top left, clockwise. Time evolution of the
state w1, (solid black line) and bounds x1,;, = —0.5 and z1,,, = 0.5
(solid red line). Time evolution of the state 1172t (sohd black line) and bounds
x2 . = —land z2_ , =1 (solid red line). Time evolution of the input
ug = uz™ +¢(t) (solid black line) and bounds umin = —1 and Umax = 1
(solid red line). Time evolution of the sliding variable s; (solid black line)
and bound € = 0.107 (solid red line)

1t H—x
_Xsm
— R
0.5¢ B Xsm <) RN
Xo
—{$1,7 $2t}(14)
[\l 0 L |
8
-0.5+ .
1k — ]
-0.5 0 0.5
T

Fig. 4. Constrained DSMC, state-space portrait. Box constraint set X’ (solid
red line), RPI set Xy (solid light-red line), set Xsm (solid dark-red line),
terminal set Xsm © Ry (dotted gray line), minimal RPI set R (solid
blue line), state trajectory with the constrained DSMC law (14) (black line)



The sets R;, t € N[LN], and 7@00 are computed as
described in Section III-B using the Multi-Parametric Toolbox
3.0 (MPT3) for MATLAB, presented in [28]. Furthermore,
MPTS3 also allows to generate the tightened constraints of the
OCP (13) setup via YALMIP [29]. In order to solve the OCP,
the prediction horizon is set equal to N = 5, while the input
weight is U = 1. The sets Xy, and X} are also numerically
computed with MATLAB, according to their definitions.

In order to verify the effectiveness of the proposed
approach, the DSMC law with saturated input is considered
as a term of comparison. The initial conditions are the same
for both strategies and such that xy € &), which implies that
the control variable can be obtained in both cases. Figure 1
shows the behavior of the system controlled via the DSMC
law (6) with saturated input. One can note that, while the first
state x1, is always inside the constraints, the state x5, violates
the upper bound in correspondence of the saturation of the
control input u. As for the sliding variable, it converges to
the PSMB B (defined as in (8) with width ¢ = 0.107 and
computed according to (15)) and remains confined therein for
all subsequent time instants (pseudo-sliding mode). Figure 2
shows the state-space portrait. The state trajectory violates
the box constraint set X, before reaching the invariant set
Xsm, and then converges to the minimal RPI set 7@00.

On the other hand, Figure 3 illustrates how the system
evolves when it is controlled via the proposed constrained
DSMC law (14). Differently from the DSMC law with
saturated input, one can note that both states 1, and xa,
always satisfy the constraints: this is obtained by generating
a control variable u; that is significantly different from the
saturated case when the states do not belong to the set Xgy,.
As for the sliding variable, it always converges to the PSMB
and then remains confined therein. Figure 4 instead shows
the corresponding state-space portrait. The state trajectory in
this case never violates the box constraint set X. The initial
conditions are inside the OCP feasible set Xj, then the states
enter Xy, eventually converging to the minimal RPI set Roo.

VI. CONCLUSIONS

A DSMC control law guaranteeing the satisfaction of input
and state constraints has been formulated, and its theoretical
properties proven, also by relying on general results on robust
MPC for linear systems. The simulation results show the
advantages of the proposed strategy as compared to classical
DSMC laws, when state constraints are present.
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