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On Privacy of Quantized Sensor Measurements through Additive Noise

Carlos Murguia, Iman Shames, Farhad Farokhi, and Dragan Nešić

Abstract— We study the problem of maximizing privacy of
quantized sensor measurements by adding random variables. In
particular, we consider the setting where information about the
state of a process is obtained using noisy sensor measurements.
This information is quantized and sent to a remote station
through an unsecured communication network. It is desired
to keep the state of the process private; however, because the
network is not secure, adversaries might have access to sensor
information, which could be used to estimate the process state.
To avoid an accurate state estimation, we add random numbers
to the quantized sensor measurements and send the sum to
the remote station instead. The distribution of these random
variables is designed to minimize the mutual information
between the sum and the quantized sensor measurements for
a desired level of distortion – how different the sum and the
quantized sensor measurements are allowed to be. Simulations
are presented to illustrate our results.

I. INTRODUCTION

During the past half-century, scientific and technological

advances have greatly improved the performance of engi-

neering systems. However, these new technologies have also

led to vulnerabilities within critical infrastructure – e.g.,

power, water, transportation. Advances in communication

and computing power have given rise to adversaries with en-

hanced and adaptive capabilities. Depending on adversary’s

resources and system defenses, opponents may infer critical

information about the operation of systems or even dete-

riorate their functionality. Therefore, designing efficient de-

fence mechanisms is of importance for guaranteeing privacy,

safety, and proper operation of critical systems. All these new

challenges have attracted the attention of researchers from

different fields (e.g., computer science, information theory,

control theory) in the broad area of privacy and security of

Cyber-Physical Systems (CPS) [1]-[16].

In most engineering applications, information about the

state of systems is obtained through sensor measurements.

Once this information is collected, it is usually quantized,

encoded, and sent to a remote station for signal processing

and decision-making purposes through communication net-

works. Examples of such systems are numerous: water and

electricity consumption meters, traffic monitoring systems,

industrial control systems, and so on. If the communication

network is public or unsecured, adversaries might access and

estimate the state of the system. To avoid an accurate state
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estimation, we add random noise to the quantized sensor

measurements before transmission and send the sum to the

remote station instead. This noise is designed to increase

privacy of the transmitted data. Note, however, that it is

not desired to overly distort the original sensor data by

injecting noise. We might change the data excessively for

practical purposes. Hence, when designing the additive noise,

we need to take into account the trade-off between privacy

and distortion.

In this manuscript, we follow an information-theoretic

approach. We propose to use mutual information between

quantized-sensor-data and quantized-sensor-data plus privacy

noise as privacy metric, and the mean square error between

them as distortion metric. The design of the discrete additive

noise is posed as a convex optimization problem. In particu-

lar, the distribution of the noise is designed to minimize the

mutual information for a desired level of maximal distortion.

The use of additive noise to increase privacy is com-

mon practice. In the context of privacy of databases, a

popular approach is differential privacy [12]-[17], where

noise is added to the response of queries so that private

information stored in the database cannot be inferred. In

differential privacy, because it provides certain privacy guar-

antees, Laplace noise is usually used [18]. However, when

maximal privacy with minimal distortion is desired, Laplace

noise is generally not the optimal solution. This raises the

fundamental question: for a given allowable distortion level,

what is the noise distribution achieving maximal privacy?

This question has many possible answers depending on

the particular privacy and distortion metrics being con-

sidered and the system configuration [19]-[22]. There are

also results addressing this question from an information

theoretic perspective, where information metrics – e.g.,

mutual information, entropy, Kullback-Leibler divergence,

and Fisher information – are used to quantify privacy [1]-

[4],[23]-[25].

In general, if the data to be kept private follows con-

tinuous distributions, the problem of finding the optimal

additive noise to maximize privacy (even without considering

distortion) is hard to solve. If a close-form solution for

the distribution is desired, the problem amounts to solving

a set of nonlinear partial differential equations which, in

general, might not have a solution, and even if they do

have a solution, it is hard to find [1]. This problem has

been addressed by imposing some particular structure on

the considered distributions or assuming the data to be kept

private is deterministic [1],[20],[21].

The authors in [20],[21] consider deterministic input data

sets and treat optimal distributions as distributions that con-
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centrate probability around zero as much as possible while

ensuring differential privacy. Under this framework, they

obtain a family of piecewise constant density functions that

achieve minimal distortion for a given level of privacy. In [1],

the authors consider the problem of preserving the privacy

of deterministic databases using constrained additive noise.

They use the Fisher information and the Cramer-Rao bound

to construct a privacy metric between noise-free data and the

one with the additive noise and find the probability density

function that minimizes it. Moreover, they prove that, in the

unconstrained case, the optimal noise distribution minimizing

the Fisher information is Gaussian.

Most of the aforementioned papers propose optimal con-

tinuous distributions assuming deterministic data. However,

in a networked context, unavoidable sensor noise leads

to stochastic data and thus existing tools do not fit this

setting. Here, we identify two possibilities for addressing

our problem: 1) we might inject continuous noise to sensor

measurements, then quantize the sum, and send it over the

unsecured network; or 2), the one considered here, quantize

sensor measurements, add noise with discrete distribution,

and send the sum over the network. As motivated above, to

address the first option, even assuming deterministic sensor

data, we have to impose some particular structure on the

distributions of the additive noise; and, if sensor data is

stochastic, the problem becomes hard to solve (sometimes

even untractable). As we prove in this manuscript, if we

select the second alternative, under some mild assumptions

on the alphabet of the injected noise, we can cast the

problem of finding the optimal noise as a constrained convex

optimization. To the best of the authors knowledge, this

problem has not been considered before as it is posed it

here.

II. PRELIMINARIES

A. Entropy, Joint Entropy, and Conditional Entropy

Consider a discrete random variable X with alphabet X
and probability mass function p(x) = Pr[X = x], x ∈ X ,

where Pr[a] denotes probability of event a. We denote the

probability mass function by p(x) rather than pX(x) to

simplify notation. Thus, p(x) and p(y) refer to two different

random variables, and are in fact different probability mass

functions, pX(x) and pY (y), respectively.

Definition 1 The entropy of a discrete random variable X
with alphabet X and probability mass function p(x) is

defined as H [X ] := −
∑

x∈X p(x) log p(x).

The log is base 2 and thus the entropy is expressed in bits.

We use the convention that 0 log 0 = 0 [26].

Definition 2 The joint entropy of a pair of discrete random

variables (X,Y ) with alphabets X and Y , respectively,

and joint probability mass function p(x, y) is defined as

H [X,Y ] := −
∑

x∈X

∑

y∈Y p(x, y) log p(x, y).

Definition 3 Let (X,Y ) ∼ p(x, y), then the conditional

entropy of Y given X , H [Y |X ], is defined as

H [Y |X ] := −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x).

Lemma 1 [26] (Chain Rules for Entropy)

• H [X,Y ] = H [X ] +H [Y |X ].

• H [X,Y |Z] = H [X |Z] +H [Y |X,Z].

• H [Y1, . . . , Yn] =
∑n

i=1 H [Yi|Yi−1, . . . , Y1].

• Let Z = Z1, . . . , Zm, then:

H [Y1, . . . , Yn|Z] =
∑n

i=1 H [Yi|Yi−1, . . . , Y1, Z].

B. Mutual Information

Definition 4 Consider two random variables, X and Y ,

with joint probability mass function p(x, y) and marginal

probability mass functions, p(x) and p(y), respectively.

Their mutual information I[X ;Y ] is defined as the relative

entropy between the joint distribution and the product dis-

tribution p(x)p(y), i.e.,

I[X ;Y ] := −
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

Lemma 2 [26] (Mutual Information and Entropy)

• I[X ;Y ] = H [X ]−H [X |Y ] = H [Y ]−H [Y |X ].

• I[X ;Y |Z] = H [X |Z]−H [X |Y, Z].

• Let Z = Z1, . . . , Zm, then:

I[Y1, . . . , Yn;Z] = H [Y1, . . . , Yn]−H [Y1, . . . , Yn|Z].

The mutual information between two jointly distributed

random variables, X and Y , is a measure of the dependence

between X and Y . The following properties of mutual

information can be found in [26] and references therein.

Also, sketches of the proofs can be found in [27].

(P1) I[X ;Y ] = 0 if and only if X and Y are independent.

(P2) Let Y and Z be independent discrete random variables

and V = Y + Z; then, I[V ;Y ] = H [V ] − H [Z], i.e.,

H [Y + Z|Y ] = H [Z].

(P3) The mutual information does not increase for functions

of the random variables (data processing inequality):

I[f(X);Y ] ≤ I[X ;Y ].

Lemma 3 [26] (Chain Rule for Mutual Information)

• Let Y = Y1, . . . , Yn, and Z = Z1, . . . , Zm, then:

I[Y ;Z] =
∑n

i=1 I[Yi;Yi−1, . . . , Y1, Z].

Lemma 4 Let Y = Y1, . . . , Ym and Z = Z1, . . . , Zm be

2m independent discrete random variables and V = Y +Z ,

i.e, Vi = Yi + Zi, i = 1, . . . ,m; then:

I[V ;Y ] =

m∑

i=1

I[Vi;Yi] =

m∑

i=1

H [Vi]−H [Zi].

Proof : By Lemma 2, I[V ;Y ] = H [V ] − H [V |Y ], and, by

Lemma 1, H [V ] − H [V |Y ] =
∑n

i=1 H [Vi|Vi−1, . . . , V1] −
H [Vi|Vi−1, . . . , V1, Y ]. By assumption, the elements of
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{Z, Y } are all independent; then, the elements of V are also

independent. It follows that

H [V ]−H [V |Y ] =

n∑

i=1

H [Vi]−H [Vi|Y ]

=

n∑

i=1

H [Vi]−H [Yi + Zi|Y ]

=
n∑

i=1

H [Vi]−H [Zi]

=

n∑

i=1

I[Vi;Yi],

where the last equality follows from (P2) given above. �

III. PROBLEM SETUP

Let X ∈ R
n be the state of some deterministic process that

must be kept private. Information about the state is obtained

through m sensors of the form:

Y = CX +W, (1)

with sensor measurements Y ∈ R
m, matrix C ∈ R

m×n,

and sensor noise W ∈ R
m, E[W ] = 0, ΣW := E[WWT ],

ΣW > 0. The entries of the noise are uncorrelated, i.e.,

ΣW = diag[σ2
1 , . . . , σ

2
m]. Then, E[Y ] = CX , the covariance

ΣY := E[(Y −CX)(Y−CX)T ] = ΣW , and the entries of Y
are uncorrelated. We assume that the probability distribution

of Y is known. This is not an strong assumption since it

is often possible to obtain a number of realization of Y
to estimate its distribution. Let Y = (Y1, . . . , Ym)T . Each

sensor measurement Yi, i = 1, . . . ,m is quantized using a

uniform quantizer on a finite range Qi(Yi, y
1
i ,∆i, Ni):

Qi(Yi, y
1
i ,∆i, Ni) :=











































y1
i if Yi ∈ (−∞, y1

i + ∆i

2
],

y2
i if Yi ∈ (y1

i + ∆i

2
, y2

i + ∆i

2
],

y3
i if Yi ∈ (y2

i + ∆i

2
, y3

i + ∆i

2
],

...

y
Ni

i if Yi ∈ (yNi−1

i + ∆i

2
,∞),

(2)

where yji = y1i + (j − 1)∆i, j = 1, . . . , Ni. Thus, for each

sensor, the Ni quantization levels are given by

YQ
i := {y1i , y

1
i +∆i, . . . , y

1
i + (Ni − 1)∆i}.

It follows that the vector of quantized sensor measurements

Y Q := (Y Q
1 , . . . , Y Q

m )T , Y Q
i := Qi(Yi, y

1
i ,∆i, Ni) is

determined by the initial quantization level y1i ∈ R, the

quantization step ∆i ∈ R>0, and the number of intervals

Ni ∈ N, i = 1, . . . ,m. Note that, because we know the

distribution of Y and the quantizer, we can always obtain

the probability mass function p(yQ) of Y Q (and thus also

p(yQi ) of Y Q
i ). Moreover, the alphabet of the discrete random

variable Y Q
i is the set of quantization levels YQ

i .

After Y is quantized, a random vector Z is added to Y Q

to obtain V := Z+Y Q. The vector V is transmitted over an

unsecured communication network to a remote station, see

Fig. 1. Notice that, if we do not add Z to Y Q before trans-

mission, information about the state is directly accessible

through the unsecured network. To minimize this information

leakage, we send the sum V = Z+Y Q to the remote station

instead of directly sending Y Q. Note, however, that we do

not want to make Y Q and Y Q+Z overly different either. By

adding Z , we might distort Y Q excessively for any practical

purposes. Hence, when designing the distribution of Z , we

need to consider the trade-off between privacy and distortion.

In this manuscript, we propose to use the mutual information

between V = Z+Y Q and Y Q, I[V ;Y Q], as privacy metric,

and the mean square error, E[(V − Y Q)2], as distortion

metric. Thus, we aim at minimizing I[V ;Y Q] using the

probability mass function of Z , p(z), as optimization variable

subject to E[(V − Y Q)2] = E[Z2] ≤ ǫ, for a desired level

of distortion ǫ ∈ R>0. In what follows, we formally present

the optimization problem we seek to address.

Problem 1 For given Y Q with corresponding p(yQ) and

desired distortion level ǫ ∈ R≥0, find the probability mass

function p(z) of Z solution of the optimization problem:






min
p(z)

I[Y Q + Z;Y Q],

s.t. E[Z2] ≤ ǫ.
(3)

Remark 1 Note that if we had access to Z at the other

end of the network, and saturation to Y Q + Z does not

occur, we could recover Y Q exactly from Z , and thus cast the

optimization problem in (3) without the distortion constraint.

Remark 2 In Problem 1, we could consider individual con-

straints for the distortion, i.e., E[Z2
i ] ≤ ǫi, ǫi ∈ R≥0,

i = 1, . . . ,m, instead of the joint constraint E[Z2] ≤ ǫ.
Indeed, if E[Z2

i ] ≤ ǫi, then E[Z2] ≤
∑m

i=1 ǫi.

IV. RESULTS

To delimit the solution of Problem 1, we restrict the class

of probability mass functions of Z . First, we fix the alphabet

Zi of Zi – the i-th component of Z – to be equal to the



TABLE I

PROBABILITY MASS FUNCTION p(vi) OF Vi .

Vi v1i := 2y1i v2i := 2y1i +∆i · · · v
Ni

i := 2y1i + (Ni − 1)∆i v
Ni+1

i := 2y1i +Ni∆i · · · v
2Ni−1

i := 2y1i + 2(Ni − 1)∆i

p(vi) pVi,1 := pYi,1p
Z
i,1

pVi,2 := pYi,1p
Z
i,2+

pYi,2p
Z
i,1

· · ·

pV
i,Ni

:= pY
i,Ni

pZi,1+

pY
i,Ni−1

pZi,2+

pYi,Ni−2
pZi,3 + · · ·+

pYi,1p
Z
i,Ni

pV
i,Ni+1

:= pY
i,Ni

pZi,2+

pYi,Ni−1
pZi,3 + · · ·+

pYi,2p
Z
i,Ni

· · · pVi,2Ni−1
:= pYi,Ni

pZi,Ni

alphabet YQ
i of Y Q

i , i.e., equal to the quantization levels.

This imposes a tractable convex structure on the objective

and restrictions, and reduces the optimization variables to

the probabilities of each element of the alphabet. The case

with arbitrary alphabet leads to a combinatorial optimization

problem where the objective of (3) changes its structure for

different combinations. In this manuscript, we do not address

this case; it is left as a future work.

Next, note that, because X is deterministic and the covari-

ance matrix ΣW is diagonal, the elements of the vector Y Q

are mutually independent. Then, if we let Z to have inde-

pendent components, the objective function I[Y Q +Z;Y Q]
in (3) can be written as follows.

Proposition 1 Let the components of Z be mutually inde-

pendent; then, I[Y Q+Z;Y Q] =
∑m

i=1 I[Y
Q
i +Zi;Y

Q
i ] and

I[Y Q
i + Zi;Y

Q
i ] = H [Vi]−H [Zi], i = 1, . . . ,m.

Proof : Proposition 1 follows from Lemma 4.

To impose a decoupled structure in the optimization prob-

lem, as pointed out in Remark 2, we consider individual

constraints for the distortion, i.e., E[Z2
i ] ≤ ǫi, ǫi ∈ R≥0,

i = 1, . . . ,m. Then, we can replace (3) by the following m
decoupled optimization problems:

{
min
p(zi)

H [Vi]−H [Zi],

s.t. E[Z2
i ] ≤ ǫi, i = 1, . . . ,m,

(4)

where p(zi) denotes the probability mass function of Zi and

ǫi is the desired distortion level associated with the mean

square error E[(Vi − Y Q
i )2].

In what follows, we focus on the solution of (4) assuming

independence of Z and restricting the alphabet Zi of Zi to

be equal to YQ
i .

Assumption 1 The entries of Z are mutually independent

and the alphabet Zi of Zi is equal to the quantization levels

YQ
i , i.e., it equals the alphabet of Y Q

i .

Next, we write I[Y Q
i + Zi;Y

Q
i ] = H [Vi] −H [Zi] in (4) in

terms of p(yQi ) and p(zi). Denote the probabilities of Y Q
i

and Zi as follows:

pYi,j := Pr[Y Q
i = yji ], (5)

pZi,j := Pr[Zi = yji ], (6)

with j = 1, . . . , Ni. Then, the entropy H [Zi] is given by

H [Zi] = −
∑Ni

j=1 p
Z
i,j log p

Z
i,j and E[Z2

i ] =
∑Ni

j=1(y
j
i )

2pZi,j .

Moreover, since yji = y1i + (j − 1)∆i, then, in terms of the

quantizer parameters, E[Z2
i ] =

∑Ni

j=1(y
1
i + (j − 1)∆i)

2pZi,j .

To get an expression for H [Vi], we need the probability

mass function p(vi) of Vi. We compute all the possible

elements of the alphabet of Vi = Y Q
i + Zi and their

corresponding probabilities in terms of the elements of the

alphabet YQ
i , yji = y1i + (j − 1)∆i. Thus, the random

variable Vi has an alphabet with 2Ni − 1 elements and the

corresponding probabilities are the sums of the probabilities

of equal elements. The probability mass function p(vi) of Vi

is given in Table I.

Now, we can write an explicit expression for the objective

function in (4):

I[Y Q
i + Zi;Y

Q
i ] = H [Vi]−H [Zi], (7)

= −
2Ni−1∑

j=1

pVi,j log p
V
i,j +

Ni∑

j=1

pZi,j log p
Z
i,j ,

where

vji := 2y1i + (j − 1)∆i, j = 1, . . . , 2Ni − 1, (8)

pVi,j := Pr[Vi = vji ] (9)

=







j
∑

k=1

pYi,j+1−kp
Z
i,k, j = 1, . . . , Ni,

Ni
∑

k=j+1−Ni

pYi,j+1−kp
Z
i,k, j = Ni + 1, . . . , 2Ni − 1.

The expressions in (7)-(9) give a complete characterization

of the objective I[Y Q
i + Zi;Y

Q
i ] in terms of the known

probabilities of the quantized sensors pYi,j , j = 1, . . . , Ni, and

the optimization variables, the probabilities of the injected

noise pZi,j , j = 1, . . . , Ni. Moreover, the distortion constraint

E[Z2
i ] =

∑Ni

j=1(y
1
i + (j − 1)∆i)

2pZi,j ≤ ǫi is linear in

pZi,j . Therefore, if the objective is convex, we could, in

principle, efficiently solve (4) numerically. However, since

I[Y Q
i +Zi;Y

Q
i ] = H [Vi]−H [Zi], H [Vi] is concave in pVi,j ,

and H [Zi] is concave in pZi,j [26], it is not clear whether

H [Vi]−H [Zi] is convex in pZi,j or not.

Proposition 2 For given pYi,j , the function I[Y Q
i + Zi;Y

Q
i ]

is convex in the probabilities pZi,j , j = 1, . . . , Ni.

Proof : Define the sum:

fV
i : = −

2Ni−2∑

j=2

pVi,j log p
V
i,j .



The entropy of Vi can be written in terms of fV
i as

H [Vi] = fV
i − pVi,1 log p

V
i,1 − pVi,2Ni−1 log p

V
i,2Ni−1, (10)

= fV
i − pYi,1p

Z
i,1 log p

Y
i,1 − pYi,1p

Z
i,1 log p

Z
i,1

− pYi,Ni
pZi,Ni

log pYi,Ni
− pYi,Ni

pZi,Ni
log pZi,Ni

,

where the last equality follows from (9). Write the entropies

H [Zi] and H [Y Q
i ] as

H [Zi] = −
(
pYi,1 + . . .+ pYi,Ni

)

︸ ︷︷ ︸

=1

Ni∑

j=1

pZi,j log p
Z
i,j, (11)

=: fZ
i − pYi,1p

Z
i,1 log p

Z
i,1 − pYi,Ni

pZi,Ni
log pZi,Ni

,

H [Y Q
i ] = −

(
pZi,1 + . . .+ pZi,Ni

)

︸ ︷︷ ︸
=1

Ni∑

j=1

pYi,j log p
Y
i,j, (12)

=: fY
i − pYi,1p

Z
i,1 log p

Y
i,1 − pYi,Ni

pZi,Ni
log pYi,Ni

.

Combining (10)-(12), we can write

H [Zi] +H [Y Q
i ] = fZ

i + fY
i +H [Vi]− fV

i ,

which implies H [Vi] = H [Zi]+H [Y Q
i ]+fV

i −fZ
i −fY

i and

thus I[Y Q
i +Zi;Y

Q
i ] = H [Y Q

i ]+fV
i −fZ

i −fY
i . The entropy

H [Y Q
i ] is constant; then, I[Y Q

i + Zi;Y
Q
i ] is convex if and

only if fi(p
Z
i,1, . . . , p

Z
i,Ni

) := fV
i −fZ

i −fY
i is convex. Next,

collecting the pZi,j terms and using properties of logarithmic

functions, we can write fi(p
Z
i,1, . . . , p

Z
i,Ni

) as follows

fi =







j∑

k=1

pYi,kp
Z
i,j+1−k log

(

pYi,kp
Z
i,j+1−k

∑j

l=1 p
Y
i,lp

Z
i,j+1−l

)

,

for j = 2, . . . , Ni,

Ni∑

k=j−1−Ni

pYi,kp
Z
i,j+1−k log

(

pYi,kp
Z
i,j+1−k

∑j

l=1 p
Y
i,lp

Z
i,j+1−l

)

,

for j = Ni + 1, . . . , 2Ni − 2.

Note that every element of fi(p
Z
i,1, . . . , p

Z
i,Ni

) above is a

function of the form g(a, b, c, . . . , r) = a log
(

a
a+b+c+···+r

)
,

a, b, c . . . , r ∈ [0, 1]. The function g(a, b, c, . . . , r) can be

proved to be convex using Theorem 2.7.1 in [26] – the

log sum inequality. Hence, fi(p
Z
i,1, . . . , p

Z
i,Ni

) is the sum of

convex functions and thus convex as well. �

Note that the ultimate goal is to make it hard for adver-

saries to infer X from V = Y Q + Z . That is, if someone

estimates X using the available data at the public network

V , the estimation X̂(V ) should carry less information about

X than an estimate X̂(Y Q) obtained using Y Q directly. In

other words, we want to make I[X̂(V ); X̂(Y Q)] small.

Proposition 3 For some functions hV , hY : Rm → R
m, let

X̂(V ) := hV (V ) and X̂(Y Q) := hY (Y
Q) be estimates of

X using V = Y Q + Z and Y Q, respectively. Then, it is

satisfied that I[X̂(Y Q +Z); X̂(Y Q)] ≤ I[Y Q +Z;Y Q] for

any pair of functions hY (·) and hV (·).

Proof : The assertion follows from property (P3) in Section

II – the data processing inequality [26].

Remark 3 Proposition 3 has a nice interpretation: for any

pair of estimators (X̂(Y Q + Z), X̂(Y Q)) that can be con-

structed using Y Q + Z and Y Q, respectively; the mutual

information between them is always upper bounded by

I[Y Q+Z;Y Q] independently of the estimators. This implies

that by minimizing I[Y Q + Z;Y Q], we are decreasing the

information I[X̂(Y Q+Z); X̂(Y Q)]. Indeed, the tightness of

this bound depends on the particular choice of estimators.

A. Multiple Observations

In real-time applications, we often have consecutive ob-

servations of the variable X in (1), i.e., a system of the form:

Y (t) = CX +W (t), t ∈ N, (13)

with different realizations of sensor data Y (t) ∈ R
m and

sensor noise W (t) ∈ R
m at each time step t. If the noise

W (t) is an i.i.d. process (which is the case most of the

time) with ΣW := E[W (t)W (t)T ] = diag[σ2
1 , . . . , σ

2
m] and

E[W (t)] = 0 for all t, the time-dependent model (13)

can be written as a static one for a finite number of time-

steps M . That is, we can collect sensor data for a time

window of M steps, stack each set of sensor measurements

as ỸM := (Y (1)T , . . . , Y (M)T )T ∈ R
Mm, and use this

stacked vector to produce a stacked system:

ỸM = C̃MX + W̃M , (14)

with sensor noise W̃M := (W (1)T , . . . ,W (M)T )T ∈ R
Mm

and stacked matrix C̃M := (CT , . . . , CT )T ∈ R
Mm×n.

Because W (t) is an i.i.d. process and ΣW is diagonal, all

entries of W̃M and ỸM are mutually independent. Hence, we

can use the tools described above to design the distribution

of a noise vector Z̃M ∈ R
Mm that minimizes the mutual

information I[Ỹ Q
M + Z̃M ; Ỹ Q

M ], where Ỹ Q
M denotes the quan-

tized ỸM . Actually, if we let Z̃M := (Z(1)T , . . . , Z(M)T )T

and Z(t) be an i.i.d. process with independent entries, it can

be proved that I[Ỹ Q
M + Z̃M ; Ỹ Q

M ] = MI[Y Q+Z;Y ], where,

with abuse of notation, Y Q and Z denote two random vectors

thrown from the distributions of the i.i.d. processes Y Q(t)
and Z(t). That is, the mutual information I[Ỹ Q

M + Z̃M ; Ỹ Q
M ]

is simply M times I[Y Q + Z;Y ]. It follows that, the dis-

tribution of Z(t) = (Z1(t)
T , . . . , Zm(t)T )T that minimizes

I[Ỹ Q
M+Z̃M ; Ỹ Q

M ], for arbitrary large M , is the solution, p(zi),
i = 1, . . . ,m, of problem (4), i.e., Zi(t) ∼ p(zi), t ∈ N is

the optimal solution.

V. SIMULATIONS RESULTS

Consider system (1) with X = (π2, π2/4)T , C = I2, and

sensor noise W = (W1,W2)
T , W1 ∼ N (0, σ2

1), σ
2
1 = π,

W2 ∼ U(−a, a), a = π2/40, σ2
2 = (1/3)a2. Each sensor

measurement Yi, i = 1, 2, is quantized using the uniform

quantizer (2) with y11 = π2 − 3σ1, ∆1 = 6σ1/N1, N1 = 11,

and y12 = 9.09a, ∆2 = 2a/N2, N2 = 11. In Figure 2,

we show the optimal distribution p(z1) of Z1 solution of

(4), first without the distortion constraint, and then for the

distortion levels ǫ1 = 60, 40. The distortion level for the

unconstrained case is E[Z2
1 ] = 105.03. For comparison, we

also show the distributions p(yQ1 ) of Y Q
1 and the one of

the sum V1 = Y Q
1 + Z1, p(v1). In Figure 3, we show the

corresponding results for sensor 2: the optimal distributions



No distortion constraint

Fig. 2.

for the unconstrained case, which yields E[Z2
2 ] = 6.10, and

then for the distortion levels ǫ2 = 5.6, 5.1.

VI. CONCLUSION

We have provided results on privacy of quantized noisy

sensor measurements by adding optimal random variables.

To minimize the information leakage due to unsecured

communication networks, we have proposed to add random

variables to the quantized sensor measurements before trans-

mission. The distributions of these discrete random variables

have been designed to minimize the mutual information

between the sum and the quantized sensor measurements for

a desired level of distortion. In particular, we have posed

the design problem as a convex optimization where the opti-

mization variables are the probabilities of the injected noise.

We have provided simulation results to test the performance

of our tools.
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