
Resilient Distributed Energy Management for Systems of
Interconnected Microgrids
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Abstract— In this paper, distributed energy management
of interconnected microgrids, which is stated as a dynamic
economic dispatch problem, is studied. Since the distributed
approach requires cooperation of all local controllers, when
some of them do not comply with the distributed algorithm that
is applied to the system, the performance of the system might
be compromised. Specifically, it is considered that adversarial
agents (microgrids with their controllers) might implement
control inputs that are different than the ones obtained from
the distributed algorithm. By performing such behavior, these
agents might have better performance at the expense of de-
teriorating the performance of the regular agents. This paper
proposes a methodology to deal with this type of adversarial
agents such that we can still guarantee that the regular agents
can still obtain feasible, though suboptimal, control inputs in the
presence of adversarial behaviors. The methodology consists of
two steps: (i) the robustification of the underlying optimization
problem and (ii) the identification of adversarial agents, which
uses hypothesis testing with Bayesian inference and requires to
solve a local mixed-integer optimization problem. Furthermore,
the proposed methodology also prevents the regular agents
to be affected by the adversaries once the adversarial agents
are identified. In addition, we also provide a sub-optimality
certificate of the proposed methodology.

Index Terms— Economic dispatch, distributed MPC, dis-
tributed optimization, resilient algorithm

I. INTRODUCTION

In order to face the increasing penetration of distributed
generation units, either dispatchable or non-dispatchable
ones, and energy storages, such as batteries, supercapacitors,
and fuel cells, in electrical networks, distributed approaches
for energy management system currently gain a lot of
attention, e.g., as discussed in [1]–[4]. The advantages of
employing a distributed approach for this task include avoid-
ing significant increase of information, communication, and
modeling resources used for a centralized dispatch as well
as distributing high computational burden [1].
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In a distributed scheme, a distribution electrical network
can be viewed as a system of interconnected microgrids [1],
[5], each of which is a controllable entity that has its own
local controller. Therefore, the economic dispatch problem
of the network must be decomposed and assigned to the
local controllers. A distributed optimization approach can
then be formulated and applied to solve the problem. In
this regard, Model Predictive Control (MPC) strategy, with
receding horizon principle, is suitable, particularly when the
dynamics of the storages are considered, since the deci-
sions/control inputs are always updated at each sampling
time according to the measurement of the states. Distributed
MPC (DMPC) methods that have been proposed to solve
economic dispatch problems include those that are based
on dual decomposition [4], alternating direction method of
multipliers (ADMM) [2], optimality condition decomposition
(OCD) [3] and population dynamics [6]. These approaches
are suitable since they are able to obtain an optimal solution
given that the related optimization problem is convex.

Two important features in such distributed approaches are
the necessity to share information among the agents (in
this case the microgrids) and the cooperation of the agents
to apply the algorithm and to comply with the decisions
obtained from the distributed algorithm. In this work, we
deal with the problem of agent compliance, in which some
of the agents do not always implement the decision obtained
from the distributed algorithm. Instead, they may implement
a different decision that is more beneficial for them but
compromise the performance of the other agents and hence
the entire system.

Agents with such adversarial behaviors are identified in
[7] as liar agents or in [8] as misbehaving agents. The
authors of [7] propose a secure dual-decomposition-based
DMPC, in which the agents that provide extreme control
input values are monitored and disregarded, to deal with this
issue. Furthermore, [8] addresses a cyber-attack problem of
a consensus-based distributed control scheme for distributed
energy storage systems. The proposed approach in [8] in-
cludes a fuzzy-logic-based detection and a consensus based
leader-follower distributed control scheme. Related to the
cyber-security issue of cyber physical systems, in particular
power systems, the work of [9] provides a mathematical
framework for attack detection and monitoring. In addition,
[10]–[12] and some of their references also discuss consensus
problems in which some of the agents perform adversarial
behavior to prevent convergence.

The contributions of this paper is as follows. We study the
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impact of an adversarial behavior in the distributed energy
management system that is based on a DMPC scheme and
propose to actively use the storage system and the possibility
to establish/disestablish connections between agents to deal
with this behavior. To this end, we propose an approach that
consists of two main steps. The first step is the robustification
of the economic dispatch problem. By considering the robust
reformulation, we ensure that the regular agents always
obtain a solution that satisfies all the constraints defined
in the economic dispatch problem even though there are
some agents that do not comply with the decisions. In the
second step, we propose an active strategy to identify the
adversarial agents that is based on hypothesis testing using
Bayesian inference (e.g., [13]). In this method, each regular
agent must solve a local mixed-integer problem to decide
the connections with its neighbors at each time instant.
By actively connecting/disconnecting with neighbors, regular
agents can then assess their hypothesis. Additionally, we
also provide a decentralized sub-optimality certificate of our
proposed approach.

Differently from [8], we consider a DMPC scheme to act
as an energy management. Thus, our work is more related to
[7] than the approaches discussed in [8], [10]–[12]. However,
the methodology that we propose in this paper is different
than that proposed in [7], in a way that it is more specific
for the aforementioned problem and particularly for power
systems. Moreover, unlike [7], our approach can deal with
more than one adversarial agent in a network.

This paper is structured as follows. In Section II, the
dynamic economic dispatch problem of interconnected mi-
crogrids is formulated. Moreover, a distributed approach that
is based on dual decomposition and the adversary model
are presented. In Section III, the approach to deal with the
adversarial behavior is proposed. Section IV provides the
numerical simulations and Section V concludes the paper.

Notations: The set of real numbers and integers are
denoted by R and Z, respectively. Moreover, R≥a denotes
all real numbers in the set {b : b ≥ a, b, a ∈ R} and
Z≥a denotes all integers in the set {b : b ≥ a, b, a ∈ Z}.
A similar definition can be used for the strict inequality
case. For column vectors vi with i ∈ L = {l1, . . . , l|L|},
the operator [v>i ]>i∈L denotes the column-wise concatenation,
i.e., [v>i ]>i∈L = [v>l1 , · · · , v

>
l|L|

]>. The vector 1n denotes
[1 1 · · · 1]> ∈ Rn. The set cardinality and Euclidean
norm are denoted by |·| and ‖·‖2. Furthermore, P(·) denotes
the probability measure. Finally, discrete-time instants are
denoted by the subscript k.

II. PROBLEM FORMULATION & DISTRIBUTED APPROACH

In this section, the dynamic economic dispatch is formu-
lated as an MPC problem. Afterward, a DMPC strategy based
on a distributed optimization approach is formulated for this
problem. Finally, the adversaries are defined.

A. Dynamic Economic Dispatch Problem

Consider a network of interconnected microgrids, which
can be represented as an undirected graph S = (N , E),

where N = {1, 2, . . . , |N |} denotes the set of microgrids
and E ⊆ N ×N denotes the set of physical links among the
microgrids. In this regard, the link (i, j) ∈ E implies that
it is possible to exchange energy between microgrids i and
j. Furthermore, denote the set of neighbors of microgrid i
by Ni, i.e., Ni = {j : (i, j) ∈ E}. Each microgrid i ∈ N
consists of an aggregated local load, denoted by pdi,k ∈ R≥0,
a set of dispatchable distributed generators, denoted by Gi,
and a storage system from which electrical energy can be
stored and retrieved. Each microgrid can also obtain power
by buying it from the main grid. In this economic dispatch
problem, optimal power generation of the generators and
storage usage are sought by considering their economical
costs such that the loads are satisfied. Additionally, pdi,k is
assumed to be bounded as follows:

|pdi,k − p̂di,k|≤ dmax
i , (1)

where p̂di,k, d
max
i ∈ R≥0 denote the forecast and the upper

bound, respectively, which are assumed to be known a priori.
Note that the forecast and bound can be obtained from
historical data.

The power balance equations that must be satisfied by each
microgrid i ∈ N at each time instant k ∈ Z≥0 are as follows
[2], [3]:

p̂di,k − pGi,k − psti,k − pimi,k −
∑
j∈Ni

ptji,k = 0, (2)

ptij,k + ptji,k = 0, ∀j ∈ Ni, (3)

where pGi,k =
∑

m∈Gi p
g
m,k ∈ R≥0 denotes the total power

generation in microgrid i, with pgm,k being the power gen-
eration of distributed generator m; psti,k ∈ R denotes the
power delivered by or to the storage; pimi,k ∈ R≥0 denotes
the imported power from the main grid; and ptji,k ∈ R,
for all j ∈ Ni, denote the power flows between microgrids
i and j and can be regarded as a coupled variable. Note
that (2) resembles the DC approximation of the power flow
equation, in which ptji,k is a function of the voltage angles.
Furthermore, (3) ensures that there is an agreement between
two neighboring microgrids in terms of the power exchanged
between them.

The dynamics of the storage system, for each i ∈ N , is
represented as follows:

xi,k+1 = aixi,k + bip
st
i,k, (4)

where xi,k denotes the state-of-charge (SoC) of storage i,
ai ∈ (0, 1] denotes the the efficiency of the storage and
bi = − Ts

ecap,i
, where Ts and ecap,i denote the sampling

time and the maximum capacity of the storage, respectively.
Additionally, for each microgrid i ∈ N , some local

operational constraints are also considered as follows:

xmin
i ≤ xi,k ≤ xmax

i , (5)

−pchi ≤ psti,k ≤ pdhi , (6)

pG,min
i ≤ pGi,k ≤ p

G,max
i , (7)

pimi,k ≤ p
im,max
i (8)

−pt,max
ji ≤ ptji,k ≤ p

t,max
ji , ∀j ∈ Ni, (9)



where xmin
i , xmax

i ∈ R≥0 denote the minimum and the
maximum SoC of the storage of microgrid i, respectively.
Note that 0 ≤ xmin

i ≤ xmax
i ≤ 1. Moreover, pchi ∈ R≥0 and

pdhi ∈ R≥0 denote the maximum charging and discharging
power of the storage. Furthermore, pG,min

i , pG,max
i ∈ R≥0

denote the minimum and the maximum power generated
by the distributed generators of microgrid i, respectively,
pim,max
i denotes the maximum imported power from the

main grid, and pt,max
ji denotes the maximum energy that can

be transferred between microgrid i and j. Notice that (9) is
symmetric and pt,max

ji = pt,max
ij , for all (i, j) ∈ E .

Now, denote the control input vector of microgrid i
by ui,k = [psti,k pGi,k pimi,k uc>

i,k ]> ∈ R3+|Ni|, where
uc
i,k = [ptji,k]>j∈Ni

is the vector of coupled control
input variables. We denote hp as the prediction horizon and
consider the quadratic cost function

Ji,k = u>i,kRiui,k, (10)

where Ri = diag([csti cGi cimi cti1
>
|Ni|]) > 0, in which

csti , c
G
i , c

im
i , cti ∈ R>0 denote the cost of storage operation,

the cost of producing energy, the cost of buying energy from
the main grid, and the cost of transferring energy to/from the
neighbor due to losses [2]. Thus, the finite-time optimization
problem that underlies an MPC strategy for the dynamic
economic dispatch of this system can be written as

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (11a)

subject to Fiui,`|k ≤ fi,`, ∀i ∈ N , (11b)

uc
i,`|k +

∑
j∈Ni

Giju
c
j,`|k = 0, ∀i ∈ N , (11c)

for all ` ∈ {k, . . . , k + hp − 1}, where the local constraints
(11b) that only include local control inputs are constructed
from (2), (4)-(9), while the coupled constraints (11c) are
constructed from (3).

Remark 1: Without loss of generality, pGi,k is considered
as one of the control input instead of pgm,k, for all m ∈ Gi,
for simplicity of the exposition. Considering pgm,k, for all
m ∈ Gi, in ui is also straightforward and only increases the
dimension of ui. 2

Remark 2: In the matrix Ri, the weight/cost of exchang-
ing energy, cti , is considered to be smaller than the other
weights. 2

Remark 3: Problem (11) considers the load forecast,
which does not always match with the actual load. Therefore,
the proposed robust reformulation in Section III-A takes into
account the fact that pdi,k, for all i ∈ N , are bounded, as
expressed in (1). 2

Problem (11) is convex since the inequality constraints
form a polyhedron, the coupled equality constraints are
affine, and the cost function (10) is strictly convex. Further-
more, the following assumption is considered.

Assumption 1: For Problem (11), there exists a nonempty
set of feasible solutions and it includes a subset in which
ptij,k = ptji,k = 0, for any (i, j) ∈ E and k ∈ Z≥0. 2

Note that ptij,k = ptji,k = 0 implies that there is no
power exchanged between microgrids i and j. Based on
this assumption, it is considered that each microgrid is able
to satisfy its load independently, e.g., in the island mode.
However, it is more cost efficient if the microgrids exchange
power among them when they are connected.

B. Distributed Energy Management based on Dual Decom-
position

In general, many distributed optimization algorithm can be
applied as a DMPC strategy to solve Problem (11). However,
for the clarity of the explanation, a DMPC algorithm based
on dual decomposition is considered in this paper. It is known
that the solution obtained from a distributed algorithm based
on dual decomposition converges to the optimal solution if
the problem is convex with strictly convex cost function [14].
In order to design the mentioned algorithm, the Lagrangian
function associated to Problem (11) is derived and its dual
problem [15] is decomposed into smaller problems that are
assigned to the agents (microgrids). The DMPC strategy
based on dual decomposition is stated in Algorithm 1, where
λi,` ∈ R|Ni|, for all ` ∈ {k, . . . , k+hp−1} and all i ∈ N , are
the Lagrange multipliers associated to the coupled constraints
(11c). In this algorithm, each agent should solve the local
optimization problem in step 4 and update its Lagrange
multipliers via the gradient-ascent method at each iteration.
Finally, denote the optimal decisions obtained by the DMPC
strategy for time k by u?

i,k|k, for all i ∈ N .

Algorithm 1 DMPC algorithm based on dual decomposition,
for each agent i ∈ N

1: Set r = 1, ε ∈ R>0, and initialize λ(r)
i,`

2: while
∣∣∣∣[ψ>i,k · · · ψ>i,k+hp−1

]∣∣∣∣
2
> ε do

3: Receive λ(r)
j,` for all ` ∈ {k, . . . , k + hp − 1} from

the neighbors, all j ∈ Ni, and send λ(r)
i,` for all ` ∈

{k, . . . , k + hp − 1} to the neighbors
4: Solve the local optimization problem:

minimize
{ui,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

(
Ji,`(ui,`|k) + y>i,`u

c
i,`|k

)
subject to (11b), ∀` ∈ {k, . . . , k + hp − 1},

where y>i,` = λ
(r)>
i,` +

∑
j∈Ni

λ
(r)>
j,` Gji

5: Receive the decision uc
j,`|k for all ` ∈ {k, . . . , k +

hp − 1} from the neighbors, all j ∈ Ni, and send uc
i,`|k

for all ` ∈ {k, · · · , k + hp − 1} to the neighbors
6: Update λi,` for all ` ∈ {k, . . . , k + hp − 1} as

λ
(r+1)
i,` = λ

(r)
i,` + γψi,`,

where ψi,` =
(
uc
i,`|k +

∑
j∈Ni

Giju
c
j,`|k

)
and

0 < γ < 1
7: r ← r + 1
8: end while



C. Adversary Model

The agents are classified as regular and adversarial agents
based on the following definitions.

Definition 1: Agent i belongs to the set of regular agents,
denoted by R, if it always implements its control input ui,k

according to the decision obtained from the DMPC strategy,
i.e., ui,k = u?

i,k|k, for all k ≥ 0. Otherwise, agent i belongs
to the set of adversarial agents, denoted by A. 2

Definition 2: An attack is defined as the event at one time
instant when at least one adversarial agent implements its
control input that is different than the decision obtained from
the DMPC strategy. 2

We consider the f -local model of adversaries, which is
stated in Definition 3.

Definition 3 ([10]): The set of adversarial agents is f -
local if |A ∩ Ni|≤ f , for f ∈ Z≥1 and all i ∈ N . 2

In this paper, the case is restricted for f = 1, as stated in
the following Assumption 2.

Assumption 2: Each agent has at most one adversarial
neighbor. 2

Assumption 3: Regular agents do not have prior knowl-
edge of the occurrence of the attacks, but they have an
initial expectation on the probability of attacks, denoted by
Pat ∈ (0, 1]. 2

The adversarial agents may try to gain advantage by
implementing a different decision that benefits these agents.
In the economic dispatch problem, the adversarial agents may
get benefit if they decide to reduce the energy production
and/or store more energy to their storages. Therefore, in
order to meet their power balance equation, they ask their
neighbors to provide the deficiency i.e., ptij,k > pt?ij,k|k,
for j ∈ A and i ∈ R, where pt?ij,k|k denotes the decision
obtained from the DMPC method. Although it leads to a
global suboptimal solution, the adversarial agents gain an
advantage locally by performing this action. In other words,
the adversarial agents are not willing to cooperate for their
own interest. It is also possible that this behavior is observed
due to a fault in the adversarial agents.

III. PROPOSED APPROACH

In this section, the problem is reformulated such that
the regular agents are robust against attacks and propose
a methodology to identify the adversarial neighbors and to
prevent an attack from them once they are identified.

A. Robustification Against Attacks

Regular agents might be affected negatively from the
attacks of their adversarial neighbors. Due to the coupled
constraints (3), regular agents must conform with the actions
taken by their adversarial neighbors. For instance, if the
adversarial neighbor j ∈ A requests more power than the
agreed solution, then the regular microgrids i ∈ Nj must
adjust their decision (control inputs ui,k) in order to satisfy
their power balance (2). In this regard, the existence of
a storage unit at each microgrid could help to mitigate
this issue without affecting the operation of the distributed
generators. Additionally, uncertain loads might have similar

effect to all microgrids and we consider that the deviation
between the forecast and the actual load is compensated by
the storage units.

In order to meet the power balance (2) when an attack oc-
curs, more power from the storage (psti,k) is taken. However,
it implies that the evolution of the SoC is different than the
one that is predicted by the dynamic model (4). Due to this
circumstance, it may happen that the minimum limit of the
storage capacity (5) is violated.

In order to ensure that there is no violation on the con-
straints, a formulation that robustifies Problem (11) against
such attacks as well as the uncertainty of the load is pro-
posed. To this end, we consider the attack as disturbance,
denoted by wa

i,k, and denote the load disturbance by wd
i,k.

These disturbances affect the power balance (2) as follows:

p̂di,k−pGi,k−psti,k−pimi,k−wd
i,k−wa

i,k−
∑
j∈Ni

ptji,k = 0. (12)

Although wd
i,k and wa

i,k are uncertain, they are bounded by
(1) and (9), respectively. Therefore, agent i ∈ R might
consider the worst case of the total disturbance, denoted by
wi,k = wa

i,k + wd
i,k, which is stated as follows:

wmax
i,k = max

j∈Ni

(
2pt,max

ji

)
+ dmax

i , (13)

due to (9) and Assumption 2. Since wi,k is compensated
by the power delivered by/to the storage psti,k, the constraints
related to psti,k, i.e., (5) and (6), might be violated. Therefore,
these constraints are tightened to accommodate the worst
case disturbance wmax

i,k as follows:

xmin
i − biwmax

i,k ≤ aixi,` + bip
st
i,` ≤ xmax

i + biw
max
i,k , (14)

−pchi + wmax
i,k ≤ psti,` ≤ pdhi − wmax

i,k , (15)

for all ` ∈ {k, . . . , k + hp − 1}. Hence, the robust reformu-
lation of Problem (11) is stated as follows:

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (16a)

subject to F r
i ui,`|k ≤ f r

i,`, ∀i ∈ N , (16b)

uc
i,`|k +

∑
j∈Ni

Giju
c
j,`|k = 0, ∀i ∈ N , (16c)

for all ` ∈ {k, . . . , k + hp − 1}, where (16b) with the
appropriate F r

i and f r
i,` is defined according to (2), (4), (7)-

(9), and (13)-(15).
Proposition 1: Suppose that Assumption 1 holds. Problem

(16) has feasible solutions if and only if

wmax
i,k ≤ min

(
1

2

(
pchi + pdhi

)
,− 1

2bi

(
xmax
i − xmin

i

))
.

(17)
Furthermore, suppose that both Assumption 2 and (17) hold.
Then, any feasible solution of Problem (16) does not violate
operational constraints (2)-(9) even though an attack, which
is defined in Definition 2, occurs. 2

Proof: The difference between Problems (11) and (16)
is the fact that the tightened constraints (14) and (15) are



considered in Problem (16). Thus, a feasible region exists if
and only if xmin

i − biwmax
i,k ≤ xmax

i + biw
max
i,k and −pchi +

wmax
i,k ≤ pdhi −wmax

i,k . The necessary and sufficient condition
(17) is obtained from these two inequalities. Provided that
a feasible solution of Problem (16) exists, the second claim
follows from the formulation of Problem (16).

If the condition of wmax
i,k stated in Proposition 1 is not

satisfied, then pGi,k and/or pimi,k must also be involved in
compensating wi,k. In this regard, the constraints related to
pGi,k and pimi,k must be tightened with similar procedure as
that previously explained. For the remaining of the paper,
suppose that the next assumption holds.

Assumption 4: Condition (17) holds true, implying the
existence of feasible solutions of Problem (16). 2

Therefore, the DMPC method presented in Algorithm 1
can be then applied to solve Problem (16) by simply sub-
stituting (11b) with (16b) in the local optimization problem,
i.e., step 5.

Remark 4: Problem (16) can also be expressed as a min-
max problem [16]. However, in this robust reformulation
(16), the computational complexity is lower than that in the
min-max counterpart. 2

B. Attack Identification and Mitigation

In this section, the methodology to identify the adversarial
agents in the system and, at the same time, to block the
attacks is presented. It is an active detection strategy, where
regular agents test their hypothesis to find their adversar-
ial neighbors by deciding to open/close their connections
with their neighbors. The methodology involves applying
Bayesian inference for hypothesis testing (e.g., [13]) and
solving mixed-integer optimization problems. Note that in
the control literature, Bayesian inference has also been
applied to system identification [17] and fault detection [18],
while hypothesis testing has been used within the framework
of fault diagnosis and robust control [19].

Firstly, a regular agent, i ∈ R, detects an attack performed
by one of its neighbors by evaluating its own SoC at the
current time instant as follows:

∆i,k =
∣∣xi,k − (xi,k−1 + b>i u

?
i,k−1 + bip̂

d
i,k−1

)∣∣ , (18)

where bi = bi[0 − 1>2+|Ni|]
>. If ∆i,k > bid

max
i , then at k,

agent i is considered to be attacked, otherwise agent i is not
attacked.

Remark 5: An attack wa
i,k such that |wa

i,k + wd
i,k|≤ dmax

i

is undetectable since the regular agents cannot distinguish it
from the load disturbance. However, such an attack is toler-
able since the agents consider the bound of load disturbance
as dmax

i in the first place. 2
Although an attack can be detected, for |Ni|> 1, it is not

possible to determine which neighbor is the adversarial one
by only evaluating (18). Therefore, in order to identify the
adversarial neighbors, we apply a hypothesis testing method
that is based on Bayesian inference [13].

Each agent, i ∈ R, considers the following set of hy-
potheses, Hi = {H0

i ,H
j
i : j ∈ Ni}, where the hypotheses

are defined as follows:

• H0
i : There is no attack,

• Hj
i : Neighbor j is an adversarial agent,

for all j ∈ Ni. The Bayesian inference is used as the model
to update the probability of the hypotheses as follows:

Pk+1(Hj
i ) =

Pk(Hj
i )Pk(∆i,k|Hj

i )

Pk(∆i,k)
, (19)

for all Hj
i ∈ Hi, where Pk(Hj

i ) denotes the probability of
hypothesis Hj

i at time instant k, Pk(∆i,k) denotes the the
marginal likelihood of ∆i,k, and Pk(∆i,k|Hj

i ) denotes the
probability of observing ∆i,k given hypothesis Hj

i and is
formulated as follows:

Pk(∆i,k ≤ bidmax
i |Hj

i ) =

{
1, for j = 0,
1− vji,kPat, for all j ∈ Ni,

Pk(∆i,k > bid
max
i |Hj

i ) =

{
0, for j = 0,

vji,kPat, for all j ∈ Ni,

where vji,k ∈ {0, 1}, for all j ∈ Ni, denote the decision
whether agent i connects to and negotiates with neighbor j,
i.e., vji,k = 1 implies agent i connects to neighbor j, whereas
vji,k = 0 implies agent i does not connect to neighbor j. Note
that Pk+1(Hj

i ) is the a posteriori probability of Hj
i given

the event ∆i,k, i.e., Pk+1(Hj
i ) = P(Hj

i |∆i,k). The initial
probabilities of all hypotheses are defined as

P0(Hj
i ) =

{
1− Pat, for j = 0,
Pat/|Ni| for all j ∈ Ni,

(20)

implying that it is initially considered that each neighbor is
equally likely to be adversarial.

In order to decide the connection that a regular agent
i ∈ R will have with its neighbors at each time instant,
each agent i ∈ R solves a local mixed-integer optimization
problem of the form:

minimize
vi,k,{ui,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

Ji,`(ui,`|k) + Jv
i (vi,k) (21a)

subject to F lc
i ui,`|k + F lc

v,ivi,k ≤ f lc
i,`, (21b)

vi,k ∈ Ci ∪ {1|Ni|}, (21c)

where vi,k = [vji,k]>j∈Ni
. Here, the cost function Jv

i (vi,k) :

R|Ni| → R penalizes the decision of having a connection
with the neighbors. It is expressed as follows:

Jv
i (vi,k) = γnat

∑
j∈Ni

Pk(Hj
i )(v

j
i,k)2,

where γ ∈ R>0 denotes a weight that can be tuned and
nat denotes the number of attacks that agent i has received,
i.e., the number of time instants at which ∆i,k > bid

max
i .

By having nat as a weight, establishing a connection with a
neighbor is penalized more if the number of received attacks
increases. Moreover, (21b) is obtained from (2), (4), (7), (8),
(14), and (15) as well as from the following expressions:

wmax
i,k = max

j∈Ni

(
2pt,max

ji vji,k

)
+ dmax

i , (22)

−pt,max
ji vji,k ≤ p

t
ji,` ≤ p

t,max
ji vji,k, ∀j ∈ Ni, (23)



for all ` ∈ {k, . . . , k + hp − 1}, whereas, in the constraint
(21c), Ci = {zj = 1|Ni|− ej , j = 1, 2, . . . , |Ni|}, where ej ,
for all j = 1, 2, . . . |Ni|, are the standard basis vectors of
|Ni|-dimensional Euclidean space.

Problem (21) is a mixed-integer quadratic program
(MIQP) due to the existence of vi,k. Notice that we penalize
vji,k, for each j ∈ Ni, proportionally to the probability
value of the hypothesis associated to neighbor j, Pk(Hj

i ).
Furthermore, (21c) implies that agent i only allows that it
is disconnected from at most one neighbor. This means that
there are only |Ni|+1 possible solutions of vi,k. In addition,
this constraint is added based on Assumption 2.

Proposition 2: Suppose that Assumptions 1 and 4 hold.
Then, Problem (21) has feasible solutions. 2

Proof: Any solution of vi,k ∈ Ci ∪ {1|Ni|} implies the
satisfaction of (17) since Assumption 4 holds and yields a
feasible solution of {ui,`|k}

k+hp−1
`=k by choosing ptji,` = 0,

for all j ∈ Ni and ` ∈ {k, . . . , k+hp−1} since this solution
satisfies (23) and, according to Assumption 1, also satisfies
(2),(4)-(8).

Finally, suppose that the decision v?i,k = [vj?i,k]>j∈Ni
is the

solution obtained from solving Problem (21). Now, instead
of using (13), each agent i ∈ R computes the worst case
of the disturbance by plugging v?i,k into (22). Thus, in the
robust problem (16), the local constraints (16b) are switched
by (21b) with vi,k = v?i,k, for all i ∈ N .

C. Overall Scheme and Sub-optimality Bound

The overall scheme of the proposed method is given in
Algorithm 2.

Algorithm 2 Resilient distributed algorithm, for i ∈ R
1: Initialize the hypothesis probabilities according to (20)
2: for k = 1, 2, . . . do
3: Evaluate (18) to detect an attack
4: Update the probability value of the hypotheses ac-

cording to (19)
5: if Pk(Hj

i ) = 1, j ∈ Ni, then

6: vj?i,k =

{
0, for Pk(Hj

i ) = 1,

1, for Pk(Hj
i ) = 0

7: Compute u?
i,k|k by solving (16), considering

(16b) is formed by (2), (4), (7), (8), (14), (15), (23) with
vi,k = v?i,k, and wmax

i,k = dmax
i , using Algorithm 1

8: else
9: Compute vj?i,k, for all j ∈ Ni, by solving (21)

10: Compute u?
i,k|k by solving (16), considering

(16b) is formed by (2), (4), (7), (8), (14), (15), (22) and
(23), with vi,k = v?i,k, using Algorithm 1

11: end if
12: Apply u?

i,k|k and v?i,k
13: end for

Assumption 5: Any agent can temporarily disconnect the
physical link between itself and its neighbors, respecting the
decision of v?i,k. Two agents, i and j, where (i, j) ∈ E , can
only exchange energy if and only if vj?i,k = vi?j,k = 1. 2

Assumption 5 implies that, although there exists a con-
nection between agents i and j, either of them can block
the influence by closing the connection. The decisions ob-
tained by performing Algorithm 2 are characterized by the
following Proposition 3.

Proposition 3: Suppose that Assumptions 1-5 hold. If the
regular agents, i.e. all i ∈ R, apply Algorithm 2, then the
obtained decision u?

i,k, for all i ∈ R, do not violate the
operational constraints (2)-(9) under an attack that is defined
by Definition 2, for all k ∈ Z≥0. 2

Proof: A regular agent i ∈ R obtains its control inputs
u?
i,k|k in either step 7 or 10, based on whether the adversarial

neighbor has been identified or not. The difference between
steps 7 and 10 is the definition of wmax

i,k , and it is seen that
dmax
i is smaller than or equal to wmax

i,k that is expressed
in (22). By Assumption 4, wmax

i,k , expressed in (22) or in
step 7, satisfy (17). In the case that v?i,k = 1|Ni|, we
obtain the original robustified problem (16) and the claim
follows immediately from Proposition 1. Now, we consider
the case that one of the neighbor is blocked. Suppose that
agent j ∈ Ni is blocked, i.e., vj?i,k = 0. The constraint (23)
yields the following equality constraint: ptji,` = 0, for all
` ∈ {k, . . . , k + hp − 1}. Assumptions 1 and 4 result in
a feasible solution u?

i,k, where pt?ji,k = 0. Thus, the claim
follows from Proposition 1. Furthermore, by Assumption 5,
agent i is physically disconnected from agent j. Therefore,
if agent j is adversarial, then it cannot attack agent i.

Remark 6: The proposed attack identification and mitiga-
tion methods can be implemented along with any distributed
optimization algorithm that is able to solve Problems (11)
and (16). 2

We also provide a sub-optimality certificate of the control
inputs obtained by performing Algorithm 2, which is stated
in Proposition 4.

Proposition 4: Suppose that {uo
i,`}

k+hp−1
`=k , for all i ∈ N ,

are the minimizers of the following problem:

minimize
{{ui,`|k}i∈N }

k+hp−1

`=k

∑
i∈N

k+hp−1∑
`=k

Ji,`(ui,`|k) (24a)

subject to Fiui,`|k ≤ fi,`, ∀i ∈ N , (24b)

for all ` ∈ {k, . . . , k + hp − 1}, {u?
i,`}

k+hp−1
`=k denotes the

solution obtained from Algorithm 2 in step 7 or 10, and
{ũ∗i,`}

k+hp−1
`=k denotes the solution obtained from solving

Problem (11). Then, the sub-optimality of the solution, i.e.
∆Ji,k =

∑k+hp−1
`=k

(
Ji,`(u

?
i,`)− Ji,`(ũ∗i,`)

)
, is bounded as

follows:

∆Ji,k ≤
k+hp−1∑

`=k

(
Ji,`(u

?
i,`)− Ji,`(uo

i,`)
)
.

2
Proof: The system achieves global optimal performance

if all agents i ∈ N apply the solution obtained from solving
(11), implying the adversarial agents do not attack, and the
forecast loads are equal to the actual ones. We prove the
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Fig. 1. The topology of the PG&E 69-bus distribution system and its 8-
agent resulting partition. Blue crosses and squares indicate the distributed
generators and storages, respectively.

proposition by showing that the following inequalities hold:

k+hp−1∑
`=k

Ji,`(u
?
i,`) ≥

k+hp−1∑
`=k

Ji,`(ũ
∗
i,`) ≥

k+hp−1∑
`=k

Ji,`(u
o
i,`).

Notice that Problem (24) is actually a relaxed formulation
of Problem (11), i.e., Problem (11) without constraint (11c).
Therefore, any feasible solution of Problem (11) is also a
feasible solution of Problem (24), but not necessarily vice
versa. Furthermore, the constraints imposed in the problem
that is solved either in steps 7 or 10 of Algorithm 2 are
tighter than those in Problem (11), implying any feasible
solution obtained from applying Algorithm 2 is also feasible
for Problem (11), but not necessarily vice versa.

Remark 7: Problem (24) is trivially separable since there
is no coupling constraint. Therefore, each agent i ∈ N can
compute {uo

i,k}
k+hp−1
`=k independently as follows:

{uo
i,k}

k+hp−1
`=k = arg min

{ui,`|k}
k+hp−1

`=k

k+hp−1∑
`=k

Ji,`(ui,`|k)

subject to Fiui,`|k ≤ fi,`,

for all ` ∈ {k, . . . , k + hp − 1}. 2

IV. CASE STUDY

As a case study, we use the PG&E 69-bus distribution
network, which has been modified by adding distributed
generators and energy storages [5], as depicted in Fig. 1.
We follow the partition given by [5] to divide the network
into eight interconnected microgrids (agents). The opera-
tional parameters of each microgrid are given in Table I.
Furthermore, we consider two types of load profiles, which
are industrial and residential, and assign each microgrid to
one of the profiles randomly. Moreover, we generate the load
profile and load forecast of each microgrid by considering the
available load data as the maximum loads. In this case study,
microgrids 2, 6, and 7 are chosen to be adversarial and the
probability of attacks is set to be 0.3, which is known by the
regular agents. Furthermore, the prediction horizon of each
agent is hp = 4 steps and we consider one-day simulation
with sampling time of 15 minutes.

TABLE I
PARAMETERS OF THE MICROGRIDS

Parameters Value Unit Agent (i)

xmin
i , xmax

i , xi,0 40, 70, 55 % all

pchi , pdhi 300, 300 kW all

pG,min
i , pG,max

i 0,1500 kW all

pt,max
i , pim,max

i 100, 2000 kW all
ecap,i 1000 kWh all
ai 1.0 - all

csti , cimi , cti 1, 250, 0.1 - all

cgi 5 - 2, 3, 6, 7

cgi 10 - 1, 4, 5, 8

TABLE II
TOTAL COST OF THE SYSTEM

Scenario Dist. Attack/Load Cost (Pro- Constraint
Strategy Disturbance portional) Satisfaction

1 Nominal No 1.00 Yes
2 Nominal Yes 1.06 No
3 Alg. 3 Yes 1.91 Yes
4 Alg. 2 Yes 1.18 Yes

Algorithm 3 Distributed robust algorithm, for i ∈ R
1: for k = 1, 2, . . . do
2: Compute ui,k by solving Problem (16), considering

(16b) is formed by (2), (4), (7)-(9), and (13)-(15), with
Algorithm 1

3: Apply ui,k

4: end for

We consider four simulation scenarios, in each of which
a different distributed strategy is applied (see Table II).
As the baseline performance, in Scenario 1, the nominal
approach, i.e., applying Algorithm 1 to solve Problem (11),
is implemented for the case in which the adversarial agents
do not attack and there is no load disturbance, whereas,
in Scenario 2, the nominal approach is applied to the case
with attacks and load disturbance. In Scenario 3, we apply
the robustified approach without attack identification and
mitigation as shown in Algorithm 3, while in Scenario 4,
we apply the proposed approach. Table II shows the overall
performance of the network over the whole simulation time.
The proposed approach achieves a better performance than
the robustified approach while ensuring the satisfaction of the
constraints. As shown in Fig. 2, in Scenario 2, the minimum
limit of the SoC is violated. However, this violation does
not occur in Scenarios 3 and 4. Moreover, Fig. 3 shows
how agent 1 detects agent 2 as the adversarial neighbor in
Scenario 4. Once detected, i.e., at k = 8, agent 1 disconnects
from agent 2. Additionally, the average sub-optimality bound
of the proposed approach is 49% of the nominal performance
(Scenario 1), whereas the measured sub-optimality is 18%.
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Fig. 2. The evolution of the SoC of agents 1 (top) and 5 (bottom). The
black horizontal line indicates the minimum limit of SoC, xmin

i .
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Fig. 3. The evolution of the hypothesis probability (top) and the connection
decision (bottom) of agent 1. Note that the decision v?

1,k are the same for
k = 8, 9, . . . , 96, since the adversarial neighbor is detected at k = 8.

V. CONCLUSION AND FUTURE WORK

A distributed energy management for interconnected mi-
crogrid systems that is based on dynamic economic dispatch
problem is investigated. We analyze the case of having
microgrids that perform an adversarial behavior, i.e., some
microgrids do not comply with the decisions obtained from
the distributed strategy. Furthermore, we propose a robusti-
fied formulation and an attack identification and mitigation
method such that the distributed strategy can deal with such
adversaries. Additionally, we also provide a sub-optimality
certificate of the proposed approach.

Future work includes extending the proposed approach
such that the stochasticity of the loads is taken into ac-
count explicitly in order to improve the performance and
assumptions on the number of adversarial neighbors are

relaxed. Furthermore, we will also explore the possibility to
improve the detection strategy as well as the attack mitigation
method, e.g., by considering that the agents might exchange
their hypothesis probability and by considering vi,k, for all
i ∈ N , as continuous variables that determine the limit of
the connections among agents.
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