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Abstract— This paper combines the so-called congelation
of variables method with adaptive immersion and invariance
(I&I) to adaptively control systems with varying parameters.
A dynamic scaling estimator without overparameterization is
proposed. This does not require solving partial differential
equations and removes other restrictive assumptions in the
classical /&I estimator design. A controller that guarantees
input-to-state stability of the closed-loop system is then used.
The joint estimator-controller design guarantees global stability
of the adaptive closed-loop system, convergence of the plant
state and global boundedness of the estimator state. A design
example for the position/force control of a series elastic actuator
is discussed. This exploits the idea that bounded nonlinearities
in the system dynamics can be viewed as time-varying parame-
ters. Simulation results show a well-damped transient response
and illustrate the theoretical results.

I. INTRODUCTION

Adaptive control has under gone extensive research in the
past 30 years (see e.g. [1], [2], [3], [4]), though only a few
works have been performed for systems with time-varying
parameters. The early works on adaptive control for time-
varying systems (see e.g. [5]) exploit persistency of excitation
to guarantee stability. Later works (see e.g. [6], [7]) remove
the restriction of persistency of excitation and only require
bounded and slow (in an average sense) parameter variations.

More recent works mainly belong to two trends. One of the
trends is based on the robust adaptive law (RAL) [3], where
a switching parameter update law called o-modification is
applied. In this scheme asymptotic tracking is achieved when
the parameters are constant, otherwise the tracking error
is related to the rates of the parameter variations [8]. In
[9] and [10] the parameter variations are modelled via the
superposition of known structured parameter variations and
unknown unstructured variations. The residual tracking error
is only related to the rates of the unstructured parameter
variations.

The other trend is based on filtered transformations, see
[11], [12] and [13]. These methods can guarantee asymptotic
tracking provided that the parameters are bounded in a
compact set, their derivatives are %] and the disturbance
on the state evolution is additive and .%. In addition a
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priori knowledge on parameter variations is not needed, and
the residual tracking error is independent of the rates of
parameter variations.

In [14] a method called the congelation of variables has
been proposed. This method substitutes the time-varying pa-
rameters in the Lyapunov function used for controller design
with constant unknown parameters. The controller design
is then divided into a traditional adaptive control design
with constant unknown parameters and a damping design to
counteract the perturbation caused by the substitution of pa-
rameters. This method achieves adaptive regulation with state
feedback and output feedback as well as removes common
restrictions on the derivatives of the unknown parameters.

This paper intends to combine the congelation of variables
method with the adaptive immersion and invariance (1&I)
scheme introduced in [15] and developed in [16], [4] and
[17]. In the adaptive I&I scheme the parameter estimate
is composed of a dynamic updated part and a static part
(the B function). The major feature of this scheme is that it
avoids the cancellation of parameter estimation error terms
and renders %, the inner product of the regressor and the
parameter estimation error, while in most other schemes the
parameter estimation error terms are cancelled and one can
only conclude boundedness of the estimation error. This fea-
ture, though does not necessarily guarantee the convergence
of the parameter estimation error, typically achieves good
transient performance due to the extra damping effect given
by the B function.

In this paper the only restriction on parameter variations
is the following natural assumption.

Assumption 1: The vector of g unknown time-varying
parameters O satisfies, V¢ > 0, the box constraint

6<6(1)<h, 8.0€RY, (1)

where the sign “<” is to be understood element-wise. Only
the “radius” of the compact set § = %|9 — 0| is assumed to
be known while 6 and 6 may be unknown. o

II. AN INTRODUCTORY EXAMPLE

In order to study the combination of the adaptive I&I
scheme with the congelation of variables method in the
presence of time-varying parameters, we first consider a
scalar system, the time-invariant case of which has been
discussed in Section 3.2 of [4], namely the system

F=u+x%0, )

where the state x(7) € R, the input u(z) € R, and the unknown
time-varying parameter 6(¢) € R. Consider a nominal con-



troller with a constant parameter ¢, that is
u=—kyx— kx> —xzﬁ, 3)

where A(t) = ¢ — 0(t) is the perturbation term caused by the
congelation of variables. Due to Assumption 1, it is always
possible to select £ = 1(6+6) such that |A(t)| < 8, V¢ > 0.
Consider now the Lyapunov function candidate V;(x) = 1 X2
Taking the time derivative of V, along the trajectories of the
system yields

Ve =— kpc2 — kgx4 — XA

P N
for some selection of k; > 0 and k> > 0. This confirms that
the system is stabilizable. Note the fact that ¢ is unknown and
not implementable: one needs to use adaptive controller to
“recover”’ the nominal controller. To this end, define the off-
the-manifold error z = 6 — £+ B(x). If one regards 6 + B(x)
as the parameter estimate, then the estimation error is z+A =
6 — 6+ B(x). Based on the nominal stabilizing controller, we
construct the adaptive control law

u= —klx—k2x3—x2(é+ﬁ(x)) ®)
and the update law
é:—gz(xz(é—i-ﬁ(x))—i—u), ©)
with k1 > % and kp > %52, which yields the x-dynamics
X =—kix—kyx® —x2(z+A) (7)

and the z-dynamics

i=— —ﬁxz(erA) (8)

Consider V, again and its time derivatives along the trajec-
tories of the system. This yields

Ve = — kx> —kox* fx3(z+A)

3 1 1 ©))
— (k1 — E)xz — (ko — 26 x4 4x422
To dominate the positive term x*z? let
9B
- = 10
x =y, (10)
with y > 0. Consider the Lyapunov function candidate

Vi (%,2)
jectories of the closed-loop system is such that
Ve =Vi—2x*(z+A)

_ _é 2 s VAN N
(k] 2)x (k2 25 )x

It can be concluded, invoking LaSalle-Yoshizawa theorem,
that limx(z) = 0 and z(r) is globally uniformly bounded.
t—oo0

=V(x) + z—zz. Its time derivative along the tra-

3 Y

1
—x*72 <0

Additionally, as a feature of the adaptive I&I scheme,
2 (t)z(t) € 2.

Compared to the introductory example in [4], the control
law (5) contains an extra nonlinear damping term —kx> to

counteract the perturbation caused by the parameter varia-
tions. This idea is similar to the methods used in [14].
Remark 1: It can be seen from this simple example that
the method of congelation of variables is essentially de-
signing a nominal robust controller with constant unknown
parameters for a system with vanishing perturbation terms
and then designing an adaptive controller to “recover” the
nominal controller. o
Note that for the scalar case one only needs to solve for
B(x) by integrating both sides of (10): B(x) =y [y x>dx =
%7x3. In general equation (10) reduces to a partial differential
equation (PDE) and constructing 3 by integration requires
restrictive assumptions, as discussed in [4] and [17].

III. DYNAMIC SCALING ESTIMATOR

In this section we consider a linearly parameterized non-
linear system! described by the equation

%= fulx,u) + " (x)6, (12)

where the state x(r) € R”, the input u(¢) € R™, and the vector
of unknown time-varying parameters 0(z) € R?. To avoid
impractically restrictive assumptions, the dynamic scaling
technique (which has been originally developed for high-
gain observers [18]) is applied and the off-the-manifold error
z(t) € R? is defined as

_ 6 —(+B(x,%)

r

. 13)

where r(t) € R is the scaling factor, 6(¢) is the dynamic part
of the parameter estimate 6 + 3 (x,%£), £ € RY is the constant
vector of congealed parameters, f(x,%) is the static part of
the parameter estimate and

B (x,%)

with T =TT = 0. The auxiliary state £ is updated using the
filter

f=fulr,u) + " (x) (é +B(x,%)) — L(x,r,X)Z,

=Td(#)x, (14)

15)

where ¥ = £ —x, and L(x,r,X) is the injection gain to be
designed later. As a result the %-dynamics is

X=—L(x,n%)i+rd" (x)(z+ é). (16)
r
Applying the parameter update law:
A aﬁ T A a aﬁ A
0= 3. (fu(x,u) + P (x)(e +[3(x,x))) — gx 17
yields the z-dynamics
A
t= TR (W)(+) 2. (18)

Note that ®(£) = P(x) + D(x,%)(I, ® X) with some D(x,%) €
2

R?*"™ due to the smoothness of ®(-), where ® denotes the

'If not otherwise stated, all functions and mappings are assumed to be €

(and therefore also locally Lipschitz), though such regularity assumptions
can be further relaxed.



Kronecker product. Finally the dynamics of z can be written
as

zz-41¢uy+0@jxh®i»¢T@Xz+%)—gz (19)

Lemma 1: Consider the plant (12) and the dynamic scal-

ing estimator with
7= c|D(x,%)(I, %) |gr, (20)

where r(0) =1, ¢, = 2T, | - |r the Frobenius norm, and

L(x,r,%) = Ar’l, 4+ L(x,r,%), 21
with A > 0, L(x,r,%) = ecr’diag(|D(x,%)(I, ® ¢))[}), € >
0, and e; the j—th unit vector in R", for j=1,...,n.

The Lyapunov function candidate V3 (z,%,r) = 2z Tz +
FA|%? + JAer? has a time derivative along the trajectories
of the system that satisfies

Vap <= 107 (e — A+ 68700 (). (22

Moreover, if § =0, i.e. all unknown parameters are constant,
2(t) € Lo, 1(t) € Lio, X(t) € LouN Ls, and @7 (x(1))z(t) €
b. o
Remark 2: The selection of D(x,%) is not unique. One
obvious selection is
P(x+x) —D(x)
|2
which is always well-defined due to the smoothness of ®(-).
In some cases, “smart” selections can lead to much simpler
estimators. For example, consider the regressor ®(x) =
[0, x; + x2]. The design following (23) yields D(x,%) =

D(x,%) = (Liox)", (23)

X7 +X1 X X5+X1 X; PO

[0, 0, L2 221 However, it is easy to see that a
X+ X +X

much simpler selection is D = [0, 0, 1, 1]. o

Remark 3: Compared to its counterpart in [17], Lemma 1
does not use overparameterization, which makes the result
applicable to non-overparameterized controllers. In addition,
Lemma 1 uses the Frobenius norm instead of the induced
2-norm, which can be turned into pre-computed expressions
without online norm computation. Due to the same reason,
the Kronecker products in the D-terms are not implemented
in practice and do not complicate the estimator design. ¢

Although the estimator design cannot guarantee the bound-
edness of the estimator states alone, this problem can be
solved by a joint estimator-controller design, as discussed in
the next section.

IV. ISS CONTROLLER

Consider a linearly parameterized, input affine, nonlinear
system described by the equation

i=f(x) +g(u+ @' (x)8,

which is a special form of (12) with f,(x,u) = f(x) + g(x)u.
Consider a nominal control law v(x,¢), which is a function of
the state x(¢) and a constant vector of parameters ¢ (assumed
to be known). The resulting closed-loop system is

i=f(x) +g(@)v(x,6) + @ (x)(£—A) = fi(x).

(24)

(25)

To be able to conclude stability properties one typically needs
to make a structural assumption based on the plant and the
nominal controller.

Assumption 2: The system (25) has a globally asymptot-
ically stable equilibrium at x = x,. o

Remark 4: Assumption 2 means that the system can be
robustly stabilized in the presence of perturbation A(z) even
when the controller does not incorporate 8(¢) directly, but
only uses a constant £ (typically selected as %( 6+0)) related
to O(¢). This is the fundamental difference between nom-
inal controllers of classical certainty-equivalence adaptive
schemes and the nominal controller in the congelation of
variables scheme. It can also be seen that when 6 is constant,
f =0 and A =0, and the nominal controller reduces to the
classical case. o

Since ¢ is unknown in adaptive control scenarios, we
replace ¢ with the parameter estimate 6 + B, which yields
an adaptive control law of the form? v(x,0 + f) and the
closed-loop dynamics

=f(x)+ g )v(x, 6+ B) + " (x)(6+B —rz—4)
:féﬁ (‘x)7
Proposition 1: Consider the system (24) and the dynamic
scaling estimator given by (14), (15), (17), (20), (21). As-
sume that Assumption 2 holds and there exists a positive
definite (centered at x = x,) and radially unbounded function

V, and a control law v(x, 0 + B) such that the time derivative
of V, along the trajectories of the system satisfies

(26)

17 1
Vo= 52 fap(0) < ~U(x) — 687 B(x) [+ 2|<1>T<x>z|2(,27)

where U(x) is a positive-definite function centered at x = x,.
Then tlglolo x(t) = x, and all other states are globally uniformly
bounded. o

Remark 5: From (27) we can see that the aim of designing
a controller that guarantees plant-controller input-to-state
stability is to use strengthened damping terms to construct
the stabilizing term §%|®(x)|2 in V; to dominate the positive
term 82|®(x)|% in Vg resulting from the estimator design,
and treat @' (x)z as an exogenous input. The stability of the
whole plant-controller-estimator system is then guaranteed
by the property of the estimator that @' (x)z is .%5.

In practice, this ISS controller is applicable to at least three
types of systems. The first type is given by systems satisfying
the matching condition, which is the case considered in
the introductory example in Section II. The second type is
given by systems satisfying the extended matching condition,
which will be discussed in the design example in Section
V. The third type is given by systems in parametric strict-
feedback form. This type of systems requires the overparame-
terized and lower triangular estimator-controller design of the
I&I scheme. In this case, ®(x) and z in Proposition 1 become

2Note that v(x, + B) may not be the nominal control law evaluated with
the parameter estimate. For example. in adaptive backstepping design one
has to add terms to compensate for the terms %(é + B) caused by the
substitution of 6+ f for £.



¢i(x1,...,x;) and z;, i =1,...,n due to overparameterization.
The design procedures are elaborated in [4], [16], [17]
and the modifications for time-varying parameters can be
performed in the same spirit as the method shown in this
paper. o

Remark 6: The result in [15] on linearly parameterized
plant implicitly requires the number of unknown parameters
not to be larger than the dimension of the state, i.e. g < n.
This restriction is removed in this paper by designing an ISS
controller with respect to the input @' (x)z. o

V. A DESIGN EXAMPLE ON SERIES ELASTIC ACTUATORS

In this section we provide an illustration of the proposed
ideas designing a controller for the so-called series elastic
actuators (SEAs) [19]. SEAs are widely used in robotics:
they turn a force control problem into a position control
problem using the elastic characteristic of the link due to
the well-known Hooke’s law.

Control problems arise in SEA due to the extra dynamics
caused by the elastic linkage compared to traditional servo
problems. A variety of control methods have been applied on
SEAs, including PID control [19], PD control with a distur-
bance observer [20], adaptive control [21], and sliding mode
control [22]. In most works, the elastic linkage is modelled
as a linear spring with known stiffness and the force exerted
on the load is determined by the relative position between
the load and the actuator. However, in general, the elastic
linkage has nonlinear elastic characteristic. Such nonlinearity
is either designed on purpose [23], [24], or unavoidable due
to the property of elastic material [25].

Assume that the nonlinearity can be described by the
model

Fy = K(d)d, (28)

where Fj; is the elastic force of the spring, K; is the apparent
stiffness parameter, and d is the deflection of the spring.
Since d(r) is time-varying, K;(d) is also a function of time
that can be written as K,(¢) with a slight abuse of notation.
This allows to view K as a time-varying parameter and apply
the adaptive control scheme introduced above to the SEA
position/force control problem.

Frnotor = Kfl
i Nonlinear spring Fixed
| M ENANAANS
: i load
i DC motor i Fspring = —Ks(d)d

Fyiscous = —Ky d ‘T+

Fig. 1. The SEA with a fixed load.

We now consider the SEA connected with a fixed load
as shown in Fig. 1. This is the scenario in which the end-
effector is in contact with the object to be manipulated and
gradually exerts force on the object (e.g. the egg-grasping

task). The goal of the control is to let the DC motor drive
the moving end of the spring to a desired deflection d, such
that the force exerted on the load is the desired value K(d,).
The transient stage should behave in an over-damped way so
that the force on the end-effector does not cause damages.
The physical model of the SEA with fixed load driven by a
translational DC motor (a compound of DC motor, gearbox,
and linkages that turn the rotary motion into translational
motion) is given by the differential equations
md = — K(d)d — K,d + Kyi,
Li=—Ri—Kyd+Vj,
where m is the apparent mass of the moving parts (the total
inertia of the rotor of the motor, the gearbox and other
linkages), K, is the viscous friction constant, K is the force
constant, Kj, is the back-electromotive-force constant, L is
the inductance of the armature, R is the resistance of the
armature, i is the current through the armature, and Vj,
is the voltage on the armature. Here we assume that the
constants of the DC motor are known and the only unknown
“parameter” is K,(d(r)).

(29)

S a
a o
T
I

Stiffness (K(d), N/m)

35 I I I
-0.04  -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Deflection (d, m)

Fig. 2. The stiffness Ks(d) of the nonlinear spring.

Consider an asymmetric nonlinear spring?, the stiffness of

which (plotted in Fig. 2) is given by

_ Z()] >
2Ka(1- 7). d20

/)
2Ksz(1 Tﬂ% ), d<0,
where K1 and K,, are the stiffness constants of the linear
springs used to realize the nonlinear spring device, ly1, lp,
l1, I, are parameters related to geometric configurations such
that ly; <1y, lopp < [p. The system (29) has an equilibrium at
d=d,, d=0,i=i, with input V;, = Vj,,. In a regulator
problem we want to shift the origin of the state variables to
the desired set point. To this end, define the shifted elastic
characteristic Kj.(d) such that K.(d —d.) = K;(d). This
allows writing (29) into the 3-dimensional state space model

K(d) = (30)

X1 =x2,
X =00 —axs +x3, ¢(x1) = —x1, 31
X3 =U,

3The realization of the nonlinearity using linear springs is shown in
Fig. 8 (b) of [23] and the realization of the asymmetry is shown in Fig. 4
of [24].



where x(t) = d —ds, x2(t) = d, x3(t) = L(i i), u(t) =

m

L ((Vin— Ri— Kpd) = (Vins —Ri.)), a = %2 and
1 K (x1) — K (0
9()(?1) = % <Ks* (xl) + <1)X1<)d*) . (32)

Due to the boundedness of K. (x;) and the Lipschitz con-
tinuity of Ky (x1) at x; =0, 6(x;(r)) can be treated as a
bounded time-varying parameter 6(¢), with a slight abuse of
notation.

Unlike the system (2) in the introductory example, (31)
does not satisfy the matching condition, thus requiring the
use of the adaptive backstepping techniques [2].

Step 1. Let & = x1, & = xp — oy be the first two error
variables in the backstepping design, and let the first virtual
control law be

o = —01, (33)
which yields
E=&+a=—0+6&. (34)
Step 2. Let (g’g =x3 — 0p and
A 8061
00 =—-0,—§& —¢2(9+[3)+ax2+87xl)@. 35)
Then the dynamics of & becomes
L=&Gtm=-0-E+E&+h(z+A).  (36)
Step 3. Let the actual control law
da 00 , A
u=—03— &+ a—x+ =— ((6+B) —axs +x3)
8x1 8x2
(37)
n (9062 - (9062 ;\+ 80{2@
-+ —=X+—0.
or T ax T 06
This yields the dynamics of the third error variable
: da
53:*63*52+Tz¢2(”2+A)~ (38)
X2

Proposition 2: Consider system (31) with the dynamic
scaling estimator given by (14), (15), (17), (20), (21), and
the controller (37). Select the damping terms as

13
o1 =(ki + 581, (39)
0y =(ka+7* +1)&, (40)
0
o3 :(k3+(a—jj)2(r2+1))<§3, 1)

with k; > 0, k; > 0, and k3 > 0. Then limx(z) = 0, in
particular, d — d, as t — oo, and all other stateog are globally
uniformly bounded. o

Proof: Consider the Lyapunov function candidate V; =
1€+ 1E2 4 1E2. The time derivative of Ve along the

trajectories of the system is such that
Ve=—0161+ &6 — 028 — 616+ &6+ Sada(rz+A)
do
— 038 — &6+ 53872%(VZ+A)
X2
<-01é— & —0s&+E (P +1)
FE2R( 1)+ L (02 + L 5%3
3 ox 2 20
(42)
Using the damping terms (39)-(41) yields

. 1
Ve < —kif —ka& —kaf5 =6l + 51002l (43)

It can be concluded from Proposition 1 that tlimé(t) =0
—yo0
and all other states are globally uniformly bounded. Using a
standard argument for stability in the backstepping scheme,
,h_{gé(t) = 0 implies tlggxl (t)=0 and tlgg oy () =0, which
gives tlim x2(t) =0, since tlim & (t) = 0. In the same way we
—o0 —o0
can prove that llim x3(t) = 0 and this completes the proof. W
—o00

Remark 7: In practice it is not necessary to use 0 directly
in the controller since in most cases the parameter variations
are not in the worst case. Typically a discounted variation
radius 8; < 0 can be implemented to avoid large control
amplitude and other robustness issues caused by a high-gain
controller. o

Consider now the SEA with the parameters: K;; = 45N/m,
Ko =50N/m, lpy =lpp =1x1072m, [} =l =5 x 10>m,
m=1kg, R=3Q, L = 1.5 x 107*H, Ky = 15N/A, K, =
2.5V-s/m, K, = 0.01N-s/m, and the estimator-controller set-
tingg T=9y =1x10°, A =e=5,¢c=100, ky =2, ky =2,
ks =2, 65 =2. Letd, =2 x 10~2m, and the initial condition
x = [-0.04, 0, —0.85]" (the third element enforces zero
initial armature current).

As shown in Fig. 3 the actuation is intentionally tuned to
be overdamped so that the force is smoothly exerted on the
load thus preventing damages. Fig. 5 shows the variation of
0(r) during the transient stage. Note that 6(¢) is bounded as
is stated in the discussion on (32).

VI. CONCLUSIONS AND FUTURE WORK

In this paper the adaptive I1&I scheme has been modified
with the congelation of variables method to cope with
time-varying parameters. A non-overparameterized dynamic
scaling estimator is proposed to avoid solving PDEs in the
estimator design of the adaptive 1&I scheme. An ISS con-
troller is then designed. This works jointly with the estimator
to guarantee global stability of the system, convergence of
the plant state and global boundedness of the estimator
state. A design example for an SEA in which the bounded
nonlinearity in the system dynamics is regarded as a time-
varying parameter is discussed. The simulation results show a
well-damped transient response that fulfills the position/force
control task.

The proposed adaptive control scheme has still limitations
in general set-point regulation and reference tracking tasks.
These will be investigated in the future.
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