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Learning-based Model Predictive Control for Safe Exploration

Torsten Koller, Felix Berkenkamp, Matteo Turchetta and Andreas Krause

Abstract— Learning-based methods have been successful in
solving complex control tasks without significant prior knowl-
edge about the system. However, these methods typically do
not provide any safety guarantees, which prevents their use
in safety-critical, real-world applications. In this paper, we
present a learning-based model predictive control scheme that
can provide provable high-probability safety guarantees. To
this end, we exploit regularity assumptions on the dynamics
in terms of a Gaussian process prior to construct provably
accurate confidence intervals on predicted trajectories. Unlike
previous approaches, we do not assume that model uncertainties
are independent. Based on these predictions, we guarantee
that trajectories satisfy safety constraints. Moreover, we use
a terminal set constraint to recursively guarantee the existence
of safe control actions at every iteration. In our experiments,
we show that the resulting algorithm can be used to safely and
efficiently explore and learn about dynamic systems.

I. INTRODUCTION

In model-based reinforcement learning (RL, [1]), we aim
to learn the dynamics of an unknown system from data,
and based on the model, derive a policy that optimizes the
long-term behavior of the system. Crucial to the success of
such methods is the ability to efficiently explore the state
space in order to quickly improve our knowledge about
the system. While empirically successful, current approaches
often use exploratory actions during learning, which lead to
unpredictable and possibly unsafe behavior of the system,
e.g., in exploration approaches based on the optimism in the
face of uncertainty principle [2]. Such approaches are not
applicable to real-world safety-critical systems.

In this paper we introduce SAFEMPC, a safe model
predictive control (MPC) scheme that guarantees the exis-
tence of feasible return trajectories to a safe region of the
state space at every time step with high-probability. These
return trajectories are identified through a novel uncertainty
propagation method that, in combination with constrained
MPC, allows for formal safety guarantees in learning control.

Related Work: One area that has considered safety
guarantees is robust MPC. There, we iteratively optimize the
performance along finite-length trajectories at each time step,
based on a known model that incorporates uncertainties and
disturbances acting on the system [3]. In a constrained robust
MPC setting, we optimize these local trajectories under
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Fig. 1. Propagation of uncertainty over multiple time steps based on a well-
calibrated statistical model of the unknown system. We iteratively compute
ellipsoidal over-approximations (purple) of the intractable image (green) of
the learned model for uncertain ellipsoidal inputs.

additional state and control constraints. Safety is typically
defined in terms of recursive feasibility and robust constraint
satisfaction. In [4], this definition is used to safely control
urban traffic flow, while [5] guarantees safety by switching
between a standard and a safety mode. However, these
methods are conservative since they do not update the model.

In contrast, learning-based control approaches adapt their
models online based on observations of the system. This
allows the controller to improve over time, given limited
prior knowledge of the system. Theoretical safety guarantees
in learning-based MPC (LBMPC) are established in [6].
A safety mechanism for general learning-based controllers
using robust MPC is proposed in [7]. Both approaches
require a known nominal linear model. The former approach
requires deviations from the system dynamics to be bounded
in an pre-specified polytope, the latter relies on sampling.

MPC based on Gaussian process (GP, [8]) models is
proposed in a number of works, e.g. [9], [10]. The difficulty
here is that trajectories have complex dependencies on states
and unbounded stochastic uncertainties. Safety through prob-
abilistic chance constraints is considered in [11]-[13] based
on approximate uncertainty propagation. While often being
empirically successful, these approaches do not theoretically
guarantee safety of the underlying system.

Another area that has considered learning for control is
model-based RL. There, we aim to learn global policies
based on data-driven modeling techniques, e.g., by explicitly
trading-off between finding locally optimal policies (ex-
ploitation) and learning the behavior of the system globally
(exploration) [1]. This results in data-efficient learning of
policies in unknown systems [14]. In contrast to MPC,
where we optimize finite-length trajectories, in RL we typi-
cally aim to find an infinite horizon optimal policy. Hence,
enforcing hard constraints in RL is challenging. Control-
theoretic safety properties such as Lyapunov stability or
robust constraint satisfaction are only considered in a few
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works [15]. In [16], safety is guaranteed by optimizing
parametric policies under stability constraints, while [17]
guarantees safety in terms of constraint satisfaction through
reachability analysis.

Our Contribution: We combine ideas from robust
control and GP-based RL to design a MPC scheme that
recursively guarantees the existence of a safety trajectory
that satisfies the constraints of the system. In contrast to
previous approaches, we use a novel uncertainty propagation
technique that can reliably propagate the confidence inter-
vals of a GP-model forward in time. We use results from
statistical learning theory to guarantee that these trajectories
contain the system with high probability jointly for all time
steps. In combination with a constrained MPC approach
and a terminal set constraint, we then prove the safety of
the system. We apply the algorithm to safely explore the
dynamics of an inverted pendulum simulation.

II. PROBLEM STATEMENT

We consider a nonlinear, discrete-time dynamical system

Tip1 = f(@e, ue) = h(ze, ue) + g(@e,ur) (D
A
prior model unknown error

where x; € R™= is the state and u; € R™ is the control
input to the system at time step ¢ € N. We assume that
we have access to a twice continuously differentiable prior
model h(xy,us), which could be based on a first principles
physics model. The model error g(x¢,wu;) is a priori un-
known and we use a statistical model to learn it by collecting
observations from the system during operation. In order to
provide guarantees, we need reliable estimates of the model-
error. In general, this is impossible for arbitrary functions g.
We make the following additional regularity assumptions.

We assume that the model-error g is of the form g(z) =
Yoo ik(z,z), ap € Rz = (z,u) € R™ x R™, a
weighted sum of distances between inputs z and representer
points z; = (x;,u;) € R™ x R™ as defined through a
symmetric, positive definite kernel k. This class of functions
is well-behaved in the sense that they form a reproducing
kernel Hilbert space (RKHS, [18]) Hi equipped with an
inner-product (-, -);. The induced norm ||g||? (9, 9)k
is a measure of the complexity of a function g € Hj.
Consequently, the following assumption can be interpreted
as a requirement on the smoothness of the model-error g
w.r.t. the kernel k.

Assumption 1 The unknown function g has bounded norm
in the RKHS Hy, induced by the continuously differentiable
kernel k, i.e. ||g||r < By.

In the case of a multi-dimensional output n, > 1, we follow
[19] and redefine g as a single-output function g such that
G(-,j) = g;(-) and assume that ||g||, < B,.

We further assume that the system is subject to polytopic
state and control constraints

U = {u e Rn“|Huu < Ay, hy € Rm“}, €))

which are bounded. For example, in an autonomous driving
scenario, the state region could correspond to a highway lane
and the control constraints could represent the physical limits
on acceleration and steering angle of the car.

Lastly, we assume access to a backup controller that guar-
antees that we remain inside a given safe subset of the state
space once we enter it. In the autonomous driving example,
this could be a simple linear controller that stabilizes the car
in a small region in the center of the lane at slow speeds.

Assumption 2 We are given a controller Tgaf.(-) and a
polytopic safe region

Xsafe = {(E S Rnl|Hsm < hs} - Xa (4)

which is (robust) control positive invariant (RCPI) un-
der Tsate(+). Moreover, the controller satisfies the control
constraints inside Xsafo, 1.€. Tsafe(r) € UVT € Xaato-

This assumption allows us to gather initial data from the
system inside the safe region even in the presence of signif-
icant model errors, since the system remains safe under the
controller mg,t.. Moreover, we can still guarantee constraint
satisfaction asymptotically outside of Xjte, if we can show
that a finite sequence of control inputs eventually steers the
system back to the safe set Xjaf0. This idea and a similar
definition of a safe set was introduced concurrently in [7]. A
set and corresponding controller which fulfill Assumption 2
for general dynamical systems is difficult to find. However,
there has been recent progress in finding stability regions
for systems of the form (1), which are RCPI by design, that
could, under additional considerations (e.g. through polytopic
inner-approximations [20]), satisfy the assumptions.

Given a controller 7, ideally we want to enforce the state-
and control constraints at every time step,

VteN: fr(xy) € X, w(a) €U, 5)

where z;11 = fr(x:) = f(xs, 7(xt)) denotes the closed-
loop system under m. Apart from 7g.fe, Which trivially
and conservatively fulfills this, it is in general impossible
to design a controller that enforces (5) without additional
assumptions. Instead, we slightly relax this requirement to
safety with high probability throughout its operation time.

Definition 1 Let 7 : R"™ — R"™ be a controller for (1)
with the corresponding closed-loop system fr. Let vy € X
and 6 € (0,1]. A system is §—safe under the controller 7 iff:

Privte N: fr(zy) € X, w(xy) €U >1—0. (6)

Based on Definition 1, the goal is to design a control
scheme that guarantees J-safety of the system (1). At the
same time, we want to improve our model by learning from
observations collected outside of the initial safe set Xgufe
during operation, which increase the performance of the
controller over time.

III. BACKGROUND

In this section, we introduce the necessary background on
GPs and set-theoretic properties of ellipsoids that we use to
model our system and perform multi-step ahead predictions.



A. Gaussian Processes (GPs)

We want to learn the unknown model-error g from data
using a GP model. A GP(m, k) is a distribution over func-
tions, which is fully specified through a mean function m :
RY — R and a covariance function k : R? x RY — R,
where d = n, + n,. Given a set of n noisy observations
Y = f(Zl) + w;, w; ~ N(O,/\Q),i =1,...,n, A € R,
we choose a zero-mean prior on g as m = 0 and regard the
differences §,, = [y1—h(z1),...,yn—h(2,)]" between prior
model ~ and observed system response at input locations
Z = [21,.., 2n)T. The posterior distribution at z is then given
as a Gaussian N (p1,,(2),02(2)) with mean and variance

fin(2) = kn(2) TV [Kp + A1) Y0 (7)
02(2) =k(z,z2) — kn(z)T[Kn + )\QIn]_lkn(z), (8)

n

where [K,)i; = k(z,25), [kn(2)]; = k(z,%;), and I, is
the n—dimensional identity matrix. In the case of multiple
outputs n, > 1, we model each output dimension with an
independent GP, GP(m, k;),j = 1, ..,n,. We then redefine
(7) and (8) as pn(-) = (n,1()s - tinyn, (+)) and op(-) =
(0n,1(-);--sOnn, (-)) corresponding to the predictive mean
and variance functions of the individual models.

Based on Assumption 1, we can use GPs to model the
unknown part of the system (1), which provides us with
reliable confidence intervals on the model-error g.

Lemma 1 [16, Lemma 2]: Assume ||g||x < B, and
that measurements are corrupted by \-sub-Gaussian noise.
Let 8, = By + 4\\/vn +1+1n(1/0), where ~, is the
information capacity associated with the kernel k. Then with
probability at least 1 — § we have for all 1 < j < n,, z €
X x U that |pin—1,;(2) = gj(2)| < Bn - on—1,;(2).

In combination with the prior model h(z), this allows
us to construct reliable confidence intervals around the
true dynamics of the system (1). The scaling 3, de-
pends on the number of data points n that we gather
from the system through the information capacity, v, =
Max 47 4= I(Ga;9), Z =X XU XTI, 7 =n-n,, ie.
the maximum mutual information 7(g4,g) between a finite
set of samples A and the function g. Exact evaluation of ~,,
is NP-hard in general, but it can be greedily approximated
and has sublinear dependence on n for many commonly used
kernels [21].

The regularity assumption Assumption 1 on our model-
error and the smoothness assumption on the covariance
function & additionally imply that the function g is Lipschitz.

B. Ellipsoids

We use ellipsoids to give an outer bound on the uncertainty
of our system when making multi-step ahead predictions.
Due to appealing geometric properties, ellipsoids are widely
used in the robust control community to compute reach-
able sets [22], [23]. These sets intuitively provide an outer
approximation on the next state of a system considering
all possible realizations of uncertainties when applying a
controller to the system at a given set-valued input. We

briefly review some of these properties and refer to [24] for
an exhaustive introduction to ellipsoids and to the derivations
for the following properties.

We use the basic definition of an ellipsoid,

E(p,Q):={zeR"(z—p)"Q (x—p) <1}, ()

with center p € R™ and a symmetric positive definite (s.p.d)
shape matrix () € R™*"™. Ellipsoids are invariant under affine
subspace transformations such that for A € R™*"™" r < n
with full row rank and b € R", we have that

A-E(p,Q)+b=E(Ap+b, AQAT). (10)

The Minkowski sum E(p1,Q1) © E(p2, Q2), i.e. the point-
wise sum between two arbitrary ellipsoids, is in general not
an ellipsoid anymore, but we have that

E(p1,Q1)®E(p2, Q2) C E(p1+p2, (14+¢71)Q1+(1+¢)Q2)
Y

for all ¢ > 0. Moreover, the minimizer of the trace of
the resulting shape matrix is analytically given as ¢ =

Tr(Q1)/Tr(Qz). A particular problem that we encounter

is finding the maximum distance r to the center of an
ellipsoid E := E(0, Q) under a special transformation, i.e.

r(Q,5) = max |[|S(z—p)|lz= max sTSTSs,
z€E(p,Q) sTQ-1s<1
(12)

where S € R"*" with full column rank. This is a general-
ized eigenvalue problem of the pair (Q, STS) and the opti-
mizer is given as the square-root of the largest generalized
eigenvalue.

IV. SAFE MODEL PREDICTIVE CONTROL

In this section, we use the assumptions in Sec. II to design
a control scheme that fulfills our safety requirements in Def-
inition 1. We construct reliable, multi-step ahead predictions
based on our GP model and use MPC to actively optimize
over these predicted trajectories under safety constraints.
Using Assumption 2, we use a terminal set constraint to
theoretically prove the safety of our method.

A. Multi-step Ahead Predictions

From Lemma 1 and our prior model h(z;, u;), we directly
obtain high-probability confidence intervals on f (x4, u;)
uniformly for all ¢ € N. We extend this to over-approximate
the system after a sequence of inputs (u, uz41, ..). The result
is a sequence of set-valued confidence regions that contain
the true dynamics of the system with high probability.

a) One-step ahead predictions: We compute an ellip-
soidal confidence region that contains the next state of the
system with high probability when applying a control input,
given that the current state is contained in an ellipsoid. In or-
der to approximate the system, we linearize our prior model
h(zy,u;) and use the affine transformation property (10) to
compute the ellipsoidal next state of the linearized model.
Next, we approximate the unknown model-error g(zs,u)
using the confidence intervals of our GP model. We finally
apply Lipschitz arguments to outer-bound the approximation



Fig. 2. Decomposition of the over-approximated image of the system (1)
under an ellipsoidal input Rg. The exact, unknown image of f (right,
green area) is approximated by the linearized model f,, (center, top)
and the remainder term d, which accounts for the confidence interval
and the linearization errors of the approximation (center, bottom). The
resulting ellipsoid R is given by the Minkowski sum of the two individual
approximations.

errors. We sum up these individual approximations, which
result in an ellipsoidal approximation of the next state of
the system. This is illustrated in Fig. 2. We formally derive
the necessary equations in the following paragraphs. The
reader may choose to skip the technical details of these
approximations, which result in Lemma 2.

We first regard the system f in (1) for a single input vector
z = (x,u), f(z) = h(z) + g(z). We linearly approximate f
around Z = (Z,u) via

F(2) = h(z) + In(2)(z — 2) + 9(2) = [(2),

where Jp,(Z) = [4, B] is the Jacobian of h at Zz.

Next, we use the Lagrangian remainder theorem [25] on
the linearization of h and apply a continuity argument on
our locally constant approximation of g. This results in an
upper-bound on the approximation error,

13)

155(2) = () < T3]z — 2B + L1z 2l
where f;(z) is the ith component of f, 1 < j < ng, Lyy;
is the Lipschitz constant of the gradient Vh;, and L, is the
Lipschitz constant of g, which exists by 2?.

The function f depends on the unknown model error g. We
approximate g with the statistical GP model, p,,(Z) =~ g(2).
From Lemma 1 we have

195 (2) = pin,j ()| < Brom 5(2), 1 < j < g

with high probability. We combine (14) and (15) to obtain

(14)

15)

15 = Fus ()] < 03 (2) + 02 |z = 2|34 Lyl 21l

) (16)
where 1 < j < ng and f,(z) = h(2)+Jp(2)(z—2)+ pn(Z).
We can interpret (16) as the edges of the confidence hyper-
rectangle

Ly
2

Iz =213 + Lyl |12 — 22,
a7

where Ly, = [Lvn1,-.s Lvh,n,) and we use the shorthand

notation a £ b := [a1 £ b1] X [an, £b,,], a,b € R,

We are now ready to compute a confidence region based
on an ellipsoidal state R = E(p,Q) C R™ and a fixed
input v € R™, by over-approximating the output of the
system f(R,u) = {f(z,u)|z € R} for ellipsoidal inputs R.
Here, we choose p as the linearization center of the state and

m(2) = fu(2) £ [Buon-1(2) +

choose @ = u, i.e. Z = (p,u). Since the function fu is affine,
we can make use of (10) to compute

Fu(R,u) = E(h(2) + pu(z), AQAT),

resulting again in an ellipsoid. This is visualized in Fig. 2
by the upper ellipsoid in the center. To upper-bound the
confidence hyper-rectangle on the right hand side of (17),
we upper-bound the term ||z — Z||2 by

I(R,u) :=

(18)

max z(x) — Z||2, 19
e s@) =zl (19)

TER

which leads to
d(R,u) := Bpon_1(Z) + Lynl®(R,u) /2 + Lyl(R,u). (20)

Due to our choice of z,Z, we have that ||z(z) — Z||2 =
||z — p||2 and we can use (12) to get [(R,u) = r(Q, I,,),
which corresponds to the largest eigenvalue of Q1. Using
(19), we can now over-approximate the right side of (17) for
inputs R by an ellipsoid

where we obtain @ ;(R,u) by over-approximating the hyper-
rectangle d(R,u) with the ellipsoid E(0, Q i(R,u)) through
atxb C E(a,\/ng - diag([by,..,bn,])), Va,b € R". This
is illustrated in Fig. 2 by the lower ellipsoid in the center.
Combining the previous results, we can compute the final
over-approximation using (11),

R+ = Th(R, U) = ]E#(Ra U) S E(O’QJ(Rv u))

Since we carefully incorporated all approximation errors and
extended the confidence intervals around our model predic-
tions to set-valued inputs, we get the following generalization
of Lemma 1.

(22)

Lemma 2 Let 6 € (0,1] and choose [3,, as in Lemma I.
Then, with probability greater than 1 — §, we have that:

Ve € R: f(z,u) € m(R,u), (23)
uniformly for all R = E(p,Q) C X, u € U.

Proof:  Define m(z,u) = h(z,u) + pn(x,u) +
Bnon—1(x,u). From Lemma 1 we have VR C X, u € U
that, with high probability, J . f(z,u) C U,cp m(z,u).
Due to the over-approximations, we have | J, ., m(z,u) C
m(R,w). |

Lemma 2 allows us to compute confidence ellipsoid
around the next state of the system, given that the current
state of the system is given through an ellipsoidal belief.

b) Multi-step ahead predictions: We now use the previ-
ous results to compute a sequence of ellipsoids that contain a
trajectory of the system with high-probability, by iteratively
applying the one-step ahead predictions (22).

Given an initial ellipsoid Ry C R™ and control input

uy € U, we iteratively compute confidence ellipsoids as
Rt+1 = m(Rt, Ut)- (24)

We can directly apply Lemma 2 to get the following result.



Corollary 1 Let 6 € (0,1] and choose (3, as in Lemma 1.
Choose xy € Ry C X. Then the following holds jointly for
all t > 0 with probability at least 1 — §: xy € Ry, where
2zt = (x4, u) € X XU, Ro, R1, .. is computed as in (24) and
x; is the state of the system (1) at time step t.

Proof: Since Lemma 2 holds uniformly for all el-
lipsoids R C X and v € U, this is a special case that
holds uniformly for all control inputs u;, ¢ € N and for all
ellipsoids Ry, t € N obtained through (24). [ ]

Corollary 1 guarantees that, with high probability, the
system is always contained in the propagated ellipsoids (24).
Thus, if we provide safety guarantees for these sequences of
ellipsoids, we obtain high-probability safety guarantees for
the system (1).

c) Predictions under state-feedback control laws:
When applying multi-step ahead predictions under a se-
quence of feed-forward inputs u; € &, the individual sets of
the corresponding reachability sequence can quickly grow
unreasonably large. This is because these open loop input
sequences do not account for future control inputs that could
correct deviations from the model predictions. Hence, we
extend (22) to affine state-feedback control laws of the form

me(xy) = Ki(@y — pe) + (25)

where K; € R™*"= js a feedback matrix and u; € R™x is
the open-loop input. The parameter p, is determined through
the center of the current ellipsoid R; = E(p:, Q). Given an
appropriate choice of K, the control law actively contracts
the ellipsoids towards their center. Similar to the derivations
(13)-(22), we can compute the function m for affine feedback
controllers (25) m; and ellipsoids R; = E(p:, @:). The
resulting ellipsoid is

(R, mt) = E(h(Z)+u(2), HiQ:H®E(0, Q (R, 7)),
(26)
where Z; = (p;,u;) and H, = A; + ByK;. The set
E(0,Q;(R;,m)) is obtained similarly to (19) as the ellip-
soidal over-approximation of
I2(Ry, St)
2
with Sy = [I,,,, K] and I(Ry, S¢) = max,er, ||S:(2(z) —
Zt)||2. The theoretical results of Lemma 2 and Corollary 1

directly apply to the case of the uncertainty propagation
technique (26).

0=+ [Bno(2) + Lvp + Lyl(Re, St)), 27

B. Safety constraints

The derived multi-step ahead prediction technique pro-
vides a sequence of ellipsoidal confidence regions around
trajectories of the true system f through Corollary 1. We
can guarantee that the system is safe by verifying that
the computed confidence ellipsoids are contained inside the
polytopic constraints (2) and (3). That is, given a sequence
of feedback controllers 7, t = 0, .., T — 1 we need to verify

Rip1 CX, m(R) CUt=0,...T—1,  (28)
where (Ry, .., Rr) is given through (24).

Since our constraints are polytopes, we have that X =
Nz X, X, = {& € R"™|[H,];.x — h¥ < 0}, where
[H,):,. is the ith row of H”. We can now formulate the state
constraints through the condition R, = E(p;,Q;) C X as
m, individual constraints R; C &;, ¢ = 1,.., m,, for which
an analytical formulation exists [26],

Moreover, we can use the fact that m; is affine in x to
obtain 7y (Ry) = E(k¢, K;Qy, KI'), using (10). The corre-
sponding control constraint 7¢(R;) C U is then equivalently
given by

(Huli, e/ (s, KoQuSTHT. < B, Vi€ {1, my ).
(30)

C. The SafeMPC algorithm

Based on the previous results, we formulate a MPC
scheme that optimizes the long-term performance of our
system, while satisfying the safety condition in Definition 1:

minimize Ji(Ro, .., Rr) (31a)

TQ s TT —1
subject to  Rysy = m(Re,m), t=0,..,T—1 (31b)
RCcX,t=1,.,T-1 (3lc)
Wt(Rt)Cu,tZO,..,T—l (31(1)
Rr C Xao, (3le)
where Ry := {x:} is the current state of the system and

the intermediate state and control constraints are defined in
(29), (30). The terminal set constraint Ry C Xj.t has the
same form as (29) and can be formulated accordingly. The
objective J; can be chosen to suit the given control task.

Due to the terminal constraint Ry C Xgafe, a solution to
(31) provides a sequence of feedback controllers mg, .., 7
that steer the system back to the safe set Xsur. We cannot
directly show that a solution to MPC problem (31) exists
at every time step (this property is known as recursive
feasibility) without imposing additional assumption, e.g. on
the safety controller 7g,f. However, employing a control
scheme similar to standard robust MPC, we guarantee that
such a sequence of feedback controllers exists at every time
step as follows: Given a feasible solution IT; = (72, .., 77 ')
to (31) at time ¢, we apply the first feed-back control 7.
In case we do not find a feasible solution to (31) at the
next time step, we shift the previous solution in a receding
horizon fashion and append 7y, to the sequence to obtain
My = (7}, ..,7rtT_1, Tsafe). We repeat this process until a
new feasible solution exists that replaces the previous input
sequence. This procedure is summarized in Algorithm 1. We
now state the main result of the paper that guarantees the
safety of our system under the proposed algorithm.

Theorem 2 Let 7 be the controller defined through algo-
rithm Algorithm 1 and xo € Xgafe. Then the system (1) is
d—safe under the controller .



Algorithm 1 Safe Model Predictive Control (SAFEMPC)

1: Input: Safe policy mgafe, dynamics model h, statistical
model GP(0, k).

2: Iy + {ﬂ'safe, ..,ﬂsafe} with |H0| =T

3: for t =0,1,.. do

4: Ji < objective from high-level planner

feasible, II <— solve MPC problem (31)

if feasible then: II; + II

else: II; (Htfl,l:Tflaﬂ-safe)

® W

xy41 < apply w, = II; o(z) to the system (1)

Proof: From Corollary 1, the ellipsoidal outer ap-
proximations (and by design of the MPC problem, also the
constraints (2)) hold uniformly with high probability for all
closed-loop systems f1, where II is a feasible solution to
(31), over the corresponding time horizon 7. Hence we can
show uniform high probability safety by induction. Base
case: If (31) is infeasible, we are §-safe using the backup con-
troller mgafe Of Assumption 2, since xg € Xgare. Otherwise
the controller returned from (31) is d-safe as a consequence
of Corollary 1 and the terminal set constraint that leads to
Ti+T € Xsafe. Induction step: let the previous controller m;
be d-safe. At time step t+1, if (31) is infeasible then IT; leads
to a state x;.7 € Xgafe, from which the backup-controller is
d-safe by Assumption 2. If (31) is feasible, then the return
path is d-safe by Corollary 1. [ |

D. Optimizing long-term behavior

While the proposed MPC problem (31) yields a safe
return strategy, we are often interested in a controller that
optimizes performance over a possibly much longer horizon.
In the autonomous driving example, a safety trajectory that
stabilizes the car towards the center of the lane can be
much shorter than for planning a steering maneuver before
entering a turn. We hence propose to simultaneously plan a
performance trajectory sg, .., sy under a sequence of inputs
ﬂgerf, . ﬂ??_fl using a performance-model me, along with
the return strategy that we obtain when solving (31). We
do not make any assumptions on the performance model
which could be given by one of the approximate uncertainty
propagation methods proposed in the literature (see, e.g.
[11] for an overview). In order to maintain the safety of
our system, we enforce that the first » € {1,., min{7T, H}}
controls are the same for both trajectories, i.e. we have that
T = w,ﬂ’erf, k=0,..,r — 1. This extended MPC problem is

minimi .
Tl't,..771't+TZ§1 Jt(8t7 aSt+H)
perf perf
Tt T g1
subject to (31b) — 3le), t =0,..,T — 1

St+1 = mpcrf(st, errf)’ t=20,.., H-1
=7 =0, -1,
(32)
where we replace (31) with this problem in Algorithm 1.
The safety guarantees of Theorem 2 directly translate to this
setting, since we can always fall back to the return strategy.

E. Discussion

Algorithm Algorithm 1 theoretically guarantees that the
system remains safe, while actively optimizing for perfor-
mance via the MPC problem (32). This problem can be
solved by commonly used, nonlinear programming (NLP)
solvers, such as the Interior Point OPTimizer (Ipopt, [27]).
Due to the solution of the eigenvalue problem (12) that
is required to compute (22), our uncertainty propagation
scheme is not analytic. However, we can still obtain exact
function values and derivative information by means of
algorithmic differentiation, which is at the core of many
state-of-the-art optimization software libraries [28].

One way to further reduce the conservatism of the multi-
step ahead predictions is to linearize the GP mean prediction
i (x4, ut), which we omitted for clarity.

V. EXPERIMENTS

In this section, we evaluate the proposed SAFEMPC
algorithm to safely explore the dynamics of an inverted
pendulum system.

The continuous-time dynamics of the pendulum are given
by mi*6 = gmlsin(f) — 76 + u, where m = 0.15kg
and [ = 0.5m are the mass and length of the pendulum,
respectively, n = 0.1Nms/raq is a friction parameter, and
g = 9.81m/s? is the gravitational constant. The state of the
system x = (6, 9) consists of the angle € and angular velocity
0 of the pendulum. The system is controlled by a torque u
that is applied to the pendulum. The origin of the system
corresponds to the pendulum standing upright.

The system is underactuated with control constraints U =
{u € R| =1 < u < 1}. Due to these limits, the pendulum
becomes unstable and falls down beyond a certain angle.
We do not impose state constraints, X = R2. However
the terminal set constraint (31e) of the MPC problem (31)
acts as a stability constraint and prevents the pendulum
from falling. Apart from being smooth, we do not make
any assumptions on our prior model & and we choose it
to be a linearized and discretized approximation to the true
system with a lower mass and neglected friction as in [16].
The safety controller 7y, is a discrete-time, infinite horizon
linear quadratic regulator (LQR, [29]) of the approximated
system h with cost matrices @ = diag([1,2]), R = 20. The
corresponding safety region Xg,¢ iS given by a conservative
polytopic inner-approximation of the true region of attraction
of 7eare. We use the same mixture of linear and Matérn
kernel functions for both output dimensions, albeit with
different hyperparameters. We initially train our model with a
dataset (Zo, 7o) sampled inside the safe set using the backup
controller mgaf.. That is, we gather ng = 25 initial samples
Zy = {29, ..,zgo} with 20 = (24, Teate (2:)), Ti € Xeate, @ =
1,..,n and observed next states §o = {yg, ..,y } C Xsate:
The theoretical choice of the scaling parameter [3,, for the
confidence intervals in Lemma 1 can be conservative and we
choose a fixed value of 3,, = 2 instead, following [16].

We aim to iteratively collect the most informative samples
of the system, while preserving its safety. To evaluate the
exploration performance, we use the mutual information
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Fig. 3. Visualization of the samples acquired in the static exploration setting in Sec. V-A for T' € {1,4,5}. The algorithm plans informative paths to the

safe set Agafe (red polytope in the center). The baseline sample set for 7" = 1 (left) is dense around origin of the system. For T' = 4 (center) we get the
optimal trade-off between cautiousness due to a long horizon and limited length of the return trajectory due to a short horizon. The exploration for 7' = 5
(right) is too cautious, since the propagated uncertainty at the final state is too large.

1(gz,,g) between the collected samples Z,, = {zo, .., 2p } U
Zy and the GP prior on the unknown model-error g, which
can be computed in closed-form [21].

A. Static Exploration

For a first experiment, we assume that the system is static,
so that we can reset the system to an arbitrary state z,, € R?
in every iteration. In the static case and without terminal set
constraints, a provably close-to-optimal exploration strategy
is to, at each iteration n, select state-action pair z,y; with
the largest predictive standard deviation [21]

Zn41 = argmax Z on,i(2), (33)

zeX XU 1<j<na.
where o7, () is the predictive variance (8) of the jth
GP(0,k;) at the nth iteration. Inspired by this, at each
iteration we collect samples by solving the MPC problem
(31) with cost function J, — 2;21 on,j» Where we
additionally optimize over the initial state z,, € X. Hence,
we visit high-uncertainty states, but only allow for state-
action pairs z, that are part of a feasible return trajectory
to the safe set Xgze.

Since optimizing the initial state is highly non-convex, we
solve the problem iteratively with 25 random initializations to
obtain a good approximation of the global minimizer. After
every iteration, we update the sample set Z,,11 = Z,,U{z,},
collect an observation (z,,y,) and update the GP models.
We apply this procedure for varying horizon lengths.

The resulting sample sets are visualized for varying hori-
zon lengths T' € {1, ..,5} with 300 iterations in Fig. 3, while
Fig. 4 shows how the mutual information of the sample sets
Z;, 1 = 0,..,n for the different values of 7'. For short time
horizons (I' = 1), the algorithm can only slowly explore,
since it can only move one step outside of the safe set. This is
also reflected in the mutual information gained, which levels
off quickly. For a horizon length of 7" = 4, the algorithm
is able to explore a larger part of the state-space, which
means that more information is gained. For larger horizons,
the predictive uncertainty of the final state is too large to
explore effectively, which slows down exploration initially,
when we do not have much information about our system.
The results suggest that our approach could further benefit
from adaptively choosing the horizon during operation, e.g.
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Fig. 4. Mutual information I(gz,,,g), n = 1,..,200 for horizon lengths
T € {1,..,5}. Exploration settings with shorter horizon gather more
informative samples at the beginning, but less informative samples in the
long run. Longer horizon lengths result in less informative samples at
the beginning, due to uncertainties being propagated over long horizons.
However, after having gathered some knowledge they quickly outperform
the smaller horizon settings. The best trade off is found for 7" = 4.

by employing a variable horizon MPC approach [30], or by
increasing the horizon when the mutual information saturates
for the current horizon.

B. Dynamic Exploration

As a second experiment, we collect informative samples
during operation; without resetting the system at every it-
eration. Starting at zg € X, We apply the SAFEMPC,
Algorithm 1, over 200 iterations. We consider two settings.
In the first, we solve the MPC problem (31) with —J,
given by (33), similar to the previous experiments. In the
second setting, we additionally plan a performance trajectory
as proposed in Sec. IV-D. We define the states of the
performance trajectory as Gaussians s; = N(my,S;) €
R™= x R™=*"= and the next state is given by the predictive
mean and variance of the current state m, and applied action
Ut. That iS, St+1 = N(mt+1, St+1) with

Mip1 = fn (Mg, ug), Sep1 = X (my,ug),t =0,.., H—1,

where ¥,,(-) = diag(o2(-)) and mg = x,. This simple
approximation technique is known as mean-equivalent un-
certainty propagation. We define the cost-function —J;
Sy trace(S{ %) = S (my = pi)T Qpert (my — py), which
maximizes the sum of predictive confidence intervals along
the trajectory si, .., Si, while penalizing deviation from the
safety trajectory. We choose r 1 in the problem (32),
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Fig. 5. Comparison of the information gathered from the system after 200

iterations for the standard setting (blue) and the setting where we plan an
additional performance trajectory (green).

i.e. the first action of the safety trajectory and performance
trajectory are the same. As in the static setting, we update
our GP models after every iteration.

We evaluate both settings for varying T € {1,..,5} and
fixed H = 5 in terms of their mutual information in Fig. 5.
We observe a similar behavior as in the static exploration
experiments and get the best exploration performance for
T = 4 with a slight degradation of performance for 7' = 5.
We can see that, except for 7' = 1, the performance trajectory
decomposition setting consistently outperforms the standard
setting. Planning a performance trajectory (green) provides
the algorithm with an additional degree of freedom, which
leads to drastically improved exploration performance.

VI. CONCLUSION

We introduced SAFEMPC, a learning-based MPC scheme
that can safely explore partially unknown systems. The algo-
rithm is based on a novel uncertainty propagation technique
that uses a reliable statistical model of the system. As we
gather more data from the system and update our statistical
mode, the model becomes more accurate and control per-
formance improves, all while maintaining safety guarantees
throughout the learning process.
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