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Abstract— We study distributed average consensus problems
in multi-agent systems with directed communication links that
are subject to quantized information flow. The goal of dis-
tributed average consensus is for the nodes, each associated with
some initial value, to obtain the average (or some value close
to the average) of these initial values. In this paper, we present
and analyze a distributed averaging algorithm which operates
exclusively with quantized values (specifically, the information
stored, processed and exchanged between neighboring agents
is subject to deterministic uniform quantization) and relies
on event-driven updates (e.g., to reduce energy consumption,
communication bandwidth, network congestion, and/or proces-
sor usage). We characterize the properties of the proposed
distributed averaging protocol on quantized values and show
that its execution, on any time-invariant and strongly connected
digraph, will allow all agents to reach, in finite time, a common
consensus value represented as the ratio of two integer that is
equal to the exact average. We conclude with examples that
illustrate the operation, performance, and potential advantages
of the proposed algorithm.

Index Terms— Quantized average consensus, event-triggered,
distributed algorithms, quantization, digraphs, multi-agent sys-
tems.

I. INTRODUCTION

In recent years, there has been a growing interest for
control and coordination of networks consisting of multiple
agents, like groups of sensors [1] or mobile autonomous
agents [2]. A problem of particular interest in distributed
control is the consensus problem where the objective is to
develop distributed algorithms that can be used by a group
of agents in order to reach agreement to a common decision.
The agents start with different initial values/information and
are allowed to communicate locally via inter-agent informa-
tion exchange under some constraints on connectivity. Con-
sensus processes play an important role in many problems,
such as leader election [3], motion coordination of multi-
vehicle systems [2], [4], and clock synchronization [5].

One special case of the consensus problem is distributed
averaging, where each agent (initially endowed with a numer-
ical value) can send/receive information to/from other agents
in its neighborhood and update its value iteratively, so that
eventually, it is able to compute the average of all initial
values. Average consensus is an important problem [4], [6]–
[12] and has been studied extensively in settings where each
agent processes and transmits real-valued states with infinite
precision.
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More recently, researchers have also studied the case when
network links can only allow messages of limited length to be
transmitted between agents (presumably due to constraints on
their capacity), effectively extending techniques for average
consensus towards the direction of quantized consensus.
Various probabilistic strategies have been proposed, allowing
the agents in a network to reach quantized consensus with
probability one [13]–[18]. Furthermore, in many types of
communication networks it is desirable to update values
infrequently to avoid consuming valuable network resources.
Thus, there is an increasing need for novel event-triggered
algorithms for cooperative control, which aim at more effi-
cient usage of network resources [19]–[21].

In this paper, we present a novel distributed average
consensus algorithm that combines the both of the features
mentioned above. More specifically, the processing, storing,
and exchange of information between neighboring agents is
“event-driven” and subject to uniform quantization. Follow-
ing [15], [18] we assume that the states are integer-valued
(which comprises a class of quantization effects). We note
that most work dealing with quantization has concentrated
on the scenario where the agents have real-valued states
but can transmit only quantized values through limited rate
channels (see, e.g., [17], [22]). By contrast, our assumption
is also suited to the case where the states are stored in digital
memories of finite capacity (as in [15], [18], [23]) and the
control actuation of each node is event-based, which enables
more efficient use of available resources. The main result of
this paper shows that the proposed algorithm will allow all
agents to reach quantized consensus in finite time by reaching
a value represented as the ratio of two integer values that is
equal to the average.

II. PRELIMINARIES

The sets of real, rational, integer and natural numbers are
denoted by R,Q,Z and N, respectively. The symbol Z+

denotes the set of nonnegative integers.
Consider a network of n (n ≥ 2) agents communicating

only with their immediate neighbors. The communication
topology can be captured by a directed graph (digraph),
called communication digraph. A digraph is defined as Gd =
(V, E), where V = {v1, v2, . . . , vn} is the set of nodes and
E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of edges (self-
edges excluded). A directed edge from node vi to node vj
is denoted by mji , (vj , vi) ∈ E , and captures the fact
that node vj can receive information from node vi (but not
the other way around). We assume that the given digraph
Gd = (V, E) is static (i.e., does not change over time) and
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strongly connected (i.e., for each pair of nodes vj , vi ∈ V ,
vj 6= vi, there exists a directed path from vi to vj). The
subset of nodes that can directly transmit information to node
vj is called the set of in-neighbors of vj and is represented
by N−j = {vi ∈ V | (vj , vi) ∈ E}, while the subset of
nodes that can directly receive information from node vj is
called the set of out-neighbors of vj and is represented by
N+

j = {vl ∈ V | (vl, vj) ∈ E}. The cardinality of N−j
is called the in-degree of vj and is denoted by D−j (i.e.,
D−j = |N−j |), while the cardinality of N+

j is called the out-
degree of vj and is denoted by D+

j (i.e., D+
j = |N+

j |).
We assume that each node is aware of its out-neighbors

and can directly (or indirectly1) transmit messages to each
out-neighbor; however, it cannot necessarily receive mes-
sages from them. In the randomized version of the protocol,
each node vj assigns a nonzero probability blj to each of
its outgoing edges mlj (including a virtual self-edge), where
vl ∈ N+

j ∪{vj}. This probability assignment can be captured
by a column stochastic matrix B = [blj ]. A very simple
choice would be to set

blj =

{
1

1+D+
j

, if vl ∈ N+
j ∪ {vj},

0, otherwise.

Each nonzero entry blj of matrix B represents the probability
of node vj transmitting towards the out-neighbor vl ∈ N+

j

through the edge mlj , or performing no transmission2.
In the deterministic version of the protocol, each node

vj also assigns a unique order in the set {0, 1, ...,D+
j − 1}

to each of its outgoing edges mlj , where vl ∈ N+
j . The

order of link (vl, vj) for node vj is denoted by Plj (such
that {Plj | vl ∈ N+

j } = {0, 1, ...,D+
j − 1}). This unique

predetermined order is used during the execution of the
proposed distributed algorithm as a way of allowing node vj
to transmit messages to its out-neighbors in a round-robin3

fashion.

III. PROBLEM FORMULATION

Consider a strongly connected digraph Gd = (V, E), where
each node vj ∈ V has an initial (i.e., for k = 0) quantized
value yj [0] (for simplicity, we take yj [0] ∈ Z). In this
paper, we develop a distributed algorithm that allows nodes
(while processing and transmitting quantized information via
available communication links between nodes) to eventually
obtain, after a finite number of steps, a quantized fraction qs

which is equal to the average q of the initial values of the

1Indirect transmission could involve broadcasting a message to all out-
neighbors while including in the message header the ID of the out-neighbor
it is intended for.

2From the definition of B = [blj ] we have that bjj = 1

1+D+
j

, ∀vj ∈ V .

This represents the probability that node vj will not perform a transmission
to any of its out-neighbors vl ∈ N+

j (i.e., it will transmit to itself).
3When executing the deterministic protocol, each node vj transmits to its

out-neighbors by following a predetermined order. The next time it needs
to transmit to an out-neighbor, it will continue from the outgoing edge it
stopped the previous time and cycle through the edges in a round-robin
fashion according to the predetermined ordering.

nodes, where

q =

∑n
l=1 yl[0]

n
. (1)

Remark 1: Following [15], [18] we assume that the state
of each node is integer valued. This abstraction subsumes a
class of quantization effects (e.g., uniform quantization).

The quantized average qs is defined as the ceiling qs = dqe
or the floor qs = bqc of the true average q of the initial
values. Let S , 1Ty[0], where 1 = [1 ... 1]T is the vector
of ones, and let y[0] = [y1[0] ... yn[0]]

T be the vector of the
quantized initial values. We can write S uniquely as S =
nL + R where L and R are both integers and 0 ≤ R < n.
Thus, we have that either L or L + 1 may be viewed as
an integer approximation of the average of the initial values
S/n (which may not be integer in general).

The algorithm we will develop will be iterative. With
respect to quantization of information flow, we have that
at time step k ∈ Z+ (where Z+ is the set of nonnegative
integers), each node vj ∈ V maintains the state variables
ysj , z

s
j , q

s
j , where ysj ∈ Z, zsj ∈ N and qsj (where qsj =

ys
j

zs
j

), and the mass variables yj , zj where yj ∈ Z and
zj ∈ N0. The aggregate states are denoted by ys[k] =
[ys1[k] ... y

s
n[k]]

T ∈ Zn, zs[k] = [zs1[k] ... z
s
n[k]]

T ∈
Nn, qs[k] = [qs1[k] ... qsn[k]]

T ∈ Qn and y[k] =
[y1[k] ... yn[k]]

T ∈ Zn, z[k] = [z1[k] ... zn[k]]
T ∈ Nn

respectively.
Following the execution of the proposed distributed algo-

rithm, we argue that ∃ k0 so that for every k ≥ k0 we have

ysj [k] =

∑n
l=1 yl[0]

α
and zsj [k] =

n

α
, (2)

where α ∈ N. This means that

qsj [k] =
(
∑n

l=1 yl[0])/α

n/α
= q, (3)

for every vj ∈ V (i.e., for k ≥ k0 every node vj has
calculated q as the ratio of two integer values).

IV. RANDOMIZED QUANTIZED AVERAGING
ALGORITHM

In this section we propose a distributed information ex-
change process in which the nodes transmit and receive
quantized messages so that they reach quantized average
consensus on their initial values after a finite number of steps.
The operation of the proposed distributed algorithm is sum-
marized below.
Initialization: Each node vj selects a set of probabilities
{blj | vl ∈ N+

j ∪ {vj}} such that 0 < blj < 1 and∑
vl∈N+

j ∪{vj}
blj = 1 (see Section II). Each value blj ,

represents the probability for node vj to transmit towards out-
neighbor vl ∈ N+

j (or perform no transmission), at any given
time step (independently between time steps). Each node has
some initial value yj [0], and also sets its state variables, for
time step k = 0, as zj [0] = 1, zsj [0] = 1 and ysj [0] = yj [0],
which means that qsj [0] = yj [0]/1.
The iteration involves the following steps:



Step 1. Transmitting: According to the nonzero proba-
bilities blj , assigned by node vj during the initialization
step, it either transmits zj [k] and yj [k] towards out-neighbor
vl ∈ N+

j or performs no transmission. If it performs a
transmission towards an out-neighbor vl ∈ N+

j , it sets
yj [k] = 0 and zj [k] = 0.
Step 2. Receiving: Each node vj receives messages yi[k]
and zi[k] from its in-neighbors vi ∈ N−j , and it sums them
along with its stored messages yj [k] and zj [k] as

yj [k + 1] =
∑

vi∈N−
j ∪{vj}

wji[k]yi[k],

and
zj [k + 1] =

∑
vi∈N−

j ∪{vj}

wji[k]zi[k],

where wji[k] = 0 if no message is received from in-neighbor
vi ∈ N−j ; otherwise wji[k] = 1.
Step 3. Processing: If zj [k+1] ≥ zsj [k], node vj sets zsj [k+
1] = zj [k + 1], ysj [k + 1] = yj [k + 1] and

qsj [k + 1] =
ysj [k + 1]

zsj [k + 1]
.

Then, k is set to k+1 and the iteration repeats (it goes back
to Step 1).

The probabilistic quantized mass transfer process is de-
tailed as Algorithm 1 below (for the case when blj =
1/(1 +D+

j ) for vl ∈ N+
j ∪ {vj} and blj = 0 otherwise).

Example 1: Consider the strongly connected digraph
Gd = (V, E) shown in Fig. 1, with V = {v1, v2, v3, v4} and
E = {m21,m31,m42,m13,m23,m34}, where each node has
initial quantized values y1[0] = 5, y2[0] = 3, y3[0] = 7, and
y4[0] = 2 respectively. The average q of the initial values of
the nodes, is equal to q = 17

4 .

v2v1

v4v3

Fig. 1. Example of digraph for probabilistic quantized averaging.

Each node vj ∈ V follows the Initialization steps (1− 2)
in Algorithm 1, assigning to each of its outgoing edges vl ∈
N+

j ∪ {vj} a nonzero probability value blj equal to blj =
1

1+D+
j

. The assigned values can be seen in the following
matrix

B =


1
3 0 1

3 0
1
3

1
2

1
3 0

1
3 0 1

3
1
2

0 1
2 0 1

2

 ,
while the initial mass and state variables are shown in Table I.

For the execution of the proposed algorithm, suppose that
at time step k = 0, nodes v1, v3 and v4 transmit to nodes
v2, v1 and v3, respectively, whereas node v2, performs no

Algorithm 1 Probabilistic Quantized Average Consensus
Input
1) A strongly connected digraph Gd = (V, E) with n = |V|
nodes and m = |E| edges.
2) For every vj we have yj [0] ∈ Z.
Initialization
Every node vj ∈ V:
1) Assigns a nonzero probability blj to each of its outgoing
edges mlj , where vl ∈ N+

j , as follows

blj =

{
1

1+D+
j

, if l = j or vl ∈ N+
j ,

0, if l 6= j and vl /∈ N+
j .

2) Sets zj [0] = 1, zsj [0] = 1 and ysj [0] = yj [0] (which means
that qsj [0] = yj [0]/1).
Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) It either transmits yj [k] and zj [k] towards a randomly
chosen out-neighbor vl ∈ N+

j (according to the nonzero
probability blj) or performs no transmission (according to
the nonzero probability bjj). If it transmitted towards an out-
neighbor, it sets yj [k] = 0 and zj [k] = 0.
2) It receives yi[k] and zi[k] from its in-neighbors vi ∈ N−j
and sets

yj [k + 1] =
∑

vi∈N−
j ∪{vj}

wji[k]yi[k],

and
zj [k + 1] =

∑
vi∈N−

j ∪{vj}

wji[k]zi[k],

where wji[k] = 1 if node vj receives values from node vi
(otherwise wji[k] = 0).
3) If the following condition holds,

zj [k + 1] ≥ zsj [k], (4)

it sets zsj [k + 1] = zj [k + 1], ysj [k + 1] = yj [k + 1], which

means that qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] .

4) It repeats (increases k to k+1 and goes back to Step 1).

transmission. The mass and state variables for k = 1 are
shown in Table II.

TABLE I
INITIAL MASS AND STATE VARIABLES FOR FIG. 1

Nodes Mass and State Variables for k = 0
vj yj [0] zj [0] ys

j [0] zsj [0] qsj [0]

v1 5 1 5 1 5 / 1
v2 3 1 3 1 3 / 1
v3 7 1 7 1 7 / 1
v4 2 1 2 1 2 / 1

TABLE II
MASS AND STATE VARIABLES FOR FIG. 1 FOR k = 1



Nodes Mass and State Variables for k = 1
vj yj [1] zj [1] ys

j [1] zsj [1] qsj [1]

v1 7 1 7 1 7 / 1
v2 8 2 8 2 8 / 2
v3 2 1 2 1 2 / 1
v4 0 0 2 1 2 / 1

It is important to notice here that nodes v1 and v3 have
mass variables y1[1] = y3[0] = 7, z1[1] = z3[0] = 1 and
y3[1] = y4[0] = 2, z3[1] = z4[0] = 1 (and update their
state variables), while node v2 has mass variables y2[1] =
y1[0]+y2[0] = 8, z2[1] = z1[0]+z2[0] = 2 (also updating its
state variables). In the latter case we can say that the mass
variables of nodes v1 and v2 will “merge”.

Suppose now that at time step k = 1, nodes v1 and v2
transmit to nodes v3 and v4. Node v3, does not perform a
transmission while node v4 has no mass to transmit. The
mass and state variables for k = 2 are shown in Table III.

TABLE III
MASS AND STATE VARIABLES FOR FIG. 1 FOR k = 2

Nodes Mass and State Variables for k = 2
vj yj [2] zj [2] ys

j [2] zsj [2] qsj [2]

v1 0 0 7 1 7 / 1
v2 0 0 8 2 8 / 2
v3 9 2 9 2 9 / 2
v4 8 2 8 2 8 / 2

Then, suppose that at time step k = 2, node v4 transmits
to node v3, while node v3, does not perform a transmission
(nodes v1 and v2 have no mass to transmit). The mass and
state variables for k = 3 are shown in Table IV.

We can see that, at time step k = 3 all the initial mass
variables are “merged” in node v3 (i.e., y3[3] = y1[0] +
y2[0]+y3[0]+y4[0] and z3[3] = z1[0]+z2[0]+z3[0]+z4[0]).
Now suppose that during time steps k = 3, 4, 5 the following
transmissions take place: “v3 transmits to v1”, “v1 transmits
to v2”, “v2 transmits to v4”. The mass and state variables
for k = 5 are shown in Table V.

TABLE IV
MASS AND STATE VARIABLES FOR FIG. 1 FOR k = 3

Nodes Mass and State Variables for k = 3
vj yj [3] zj [3] ys

j [3] zsj [3] qsj [3]

v1 0 0 7 1 7 / 1
v2 0 0 8 2 8 / 2
v3 17 4 17 4 17 / 4
v4 0 0 8 2 8 / 2

TABLE V
MASS AND STATE VARIABLES FOR FIG. 1 FOR k = 5

Nodes Mass and State Variables for k = 3
vj yj [5] zj [5] ys

j [5] zsj [5] qsj [5]

v1 0 0 17 4 17 / 4
v2 0 0 17 4 17 / 4
v3 0 0 17 4 17 / 4
v4 17 4 17 4 17 / 4

From Table V, we can see that for k ≥ 5 it holds that

qsj [k] = q =
17

4
,

for every vj ∈ V , which means that every node vj will
eventually obtain a quantized fraction qsj , which is equal to
the average q of the initial values of the nodes.

Remark 2: From the previous example, it is important to
notice that, once the initial mass variables “merge” at time
step k = 3, they remain “merged” during the operation of
Algorithm 1 for every time step k ≥ 3.

We are now ready to prove that during the operation of
Algorithm 1 each agent obtains two integer values ys and
zs, the ratio of which is equal to the average q of the initial
values of the nodes.

Proposition 1: Consider a strongly connected digraph
Gd = (V, E) with n = |V| nodes and m = |E| edges, and
zj [0] = 1 and yj [0] ∈ Z for every node vj ∈ V at time
step k = 0. Suppose that each node vj ∈ V follows the
Initialization and Iteration steps as described in Algorithm 1.
Let V+[k] ⊆ V be the set of nodes vj with positive mass
variable zj [k] at iteration k (i.e., V+[k] = {vj ∈ V | zj [k] >
0}). During the execution of Algorithm 1, for every k ≥ 0,
we have that

1 ≤ |V+[k + 1]| ≤ |V+[k]| ≤ n.
Proof: During the Iteration Steps 1 and 2 of Algo-

rithm 1, at time step k, we have that each node vj ∈ V
transmits zj [k] and yj [k] towards a randomly chosen out-
neighbor vl ∈ N+

j , or performs no transmission. Then, it
receives yi[k] and zi[k] from its in-neighbors vi ∈ N−j and
sets yj [k + 1] =

∑
vi∈N−

j ∪{vj}
wji[k]yi[k], and zj [k + 1] =∑

vi∈N−
j ∪{vj}

wji[k]zi[k]. The Iteration Steps 1 and 2 of
Algorithm 1, during time step k, can be expressed according
to the following equations

y[k + 1] =W[k] y[k], (5)

and
z[k + 1] =W[k] z[k], (6)

where y[k] = [y1[k] ... yn[k]]
T, z[k] = [z1[k] ... zn[k]]

T and
W[k] = [wlj [k]] is an n× n binary (i.e., for every k, wlj [k]
is either equal to 1 or 0, for every (vl, vj) ∈ E), column
stochastic matrix.

Focusing on (6), during time step k0, let us assume without
loss of generality that z[k0] = [z1[k0] . . . zp0

[k0] 0 . . . 0]
T,

which means that we have zi[k0] > 0, ∀ vi ∈ {v1, · · · , vp0
}

and zl[k0] = 0, ∀ vl ∈ V − {v1, · · · , vp0
}. We can assume

without loss of generality that the nodes with zero mass do
not transmit (transmit to themselves). Let us consider the
scenario where

∑
vi∈N−

j ∪{vj}
wji[k0] = 1, ∀ vj ∈ V (i.e.,

for every row ofW[k0] exactly one element is equal to 1 and
all the other are equal to zero). This means that every node
vj will receive exactly one mass variable zi[k0] (the bottom
n−p0 nodes receive their own mass). Since, at time step k0,
we have p0 nodes with nonzero mass variables, we have that
at time step k0 + 1, exactly p0 nodes have a nonzero mass
variable. As a result, for this scenario, we have |V+[k0+1]| =
|V+[k0]|.

Without loss of generality, let us consider the scenario
where wji1 [k0] = 1, wji2 [k0] = 1 (where vi1 , vi2 ∈ N−j ∪



{vj}) and wji[k0] = 0,∀ vi ∈ {N−j ∪{vj}}−{vi1 , vi2} (i.e.,
the jth row of matrix W[k0] has exactly 2 elements equal
to 1 and all the other equal to zero). Also, let us assume
that

∑
vi∈N−

l ∪{vl}
wli[k0] ≤ 1, ∀ vl ∈ V − {vj} (i.e., for

every row of W[k0] (except row j) at most one element is
equal to 1 and all the other are equal to zero). The above
assumptions, regarding matrix W , mean that, during time
step k0, only node vj will receive two mass variables (from
nodes vi1 and vi2 ) and all the other nodes will receive at most
one mass variable. We have that zj [k0+1] = zi1 [k0]+zi2 [k0]
and zl[k0+1] = zi[k0], for vl ∈ V−{vj} and some vi ∈ V−
{vi1 , vi2} (i.e., node vj received two nonzero mass variables
while all the other nodes received at most one nonzero mass
variable, also including its own mass variable). Since, at time
step k0, we had p0 nodes with nonzero mass variables and
at time step k0 + 1 node vj received (and summed) two
nonzero mass variables, while all the other nodes received at
most one nonzero mass variable, this means that, at time step
k0 + 1, we have p0 − 1 nodes with nonzero mass variables.
This means that |V+[k0 + 1]| < |V+[k0]|.

By extending the above analysis for scenarios where each
row ofW[k], at different time steps k, has multiple elements
equal to 1 (but W[k] remains column stochastic) we can
see that the number of nodes vj with nonzero mass variable
zj [k] > 0 is non-increasing and thus we have |V+[k+1]| ≤
|V+[k]|, ∀ k ∈ N.

Proposition 2: Consider a strongly connected digraph
Gd = (V, E) with n = |V| nodes and m = |E| edges and
zj [0] = 1 and yj [0] ∈ Z for every node vj ∈ V at time
step k = 0. Suppose that each node vj ∈ V follows the
Initialization and Iteration steps as described in Algorithm 1.
With probability one, we can find k0 ∈ N, so that for every
k ≥ k0 we have

ysj [k] =

n∑
l=1

yl[0] and zsj [k] = n,

which means that

qsj [k] =

∑n
l=1 yl[0]

n
,

for every vj ∈ V (i.e., for k ≥ k0 every node vj has
calculated q as the ratio of two integer values).

Proof: From Proposition 1 we have that |V+[k+1]| ≤
|V+[k]| (i.e., the number of nonzero mass variables is non-
increasing). We will show that the number of nonzero mass
variables is decreasing after a finite number of steps, until, at
some k0 ∈ N, we have yj [k0] =

∑n
l=1 yl[0] and zj [k0] = n,

for some node vj ∈ V , and yi[k0] = 0 and zi[k0] = 0, for
each vi ∈ V − {vj}). In this scenario, (2) and (3) hold for
each node vj for the case where α = 1.

The Iteration Steps 1 and 2 of Algorithm 1, during time
step k, can be expressed according to (5) and (6), where
y[k] = [y1[k] ... yn[k]]

T, z[k] = [z1[k] ... zn[k]]
T, and

W[k] = [wlj [k]] is an n × n binary, column stochastic
matrix. Focusing on (6), suppose that, during time step
k0, we have zi[k0] > 0, zj [k0] > 0 and wli[k0] = 1,
wlj [k0] = 1. This scenario will occur with probability equal

to (1 + D+
i )
−1(1 + D+

j )
−1 (i.e., as long as nodes vi and

vj both transmit towards node vl). Furthermore, we have
that the mass variables of vi and vj will not “merge” in vl
with probability 1− (1 +D+

i )
−1(1 +D+

j )
−1. By extending

the above analysis we have that, every n time steps, the
probability that two nonzero mass variables “merge” is
positive and lower bounded by

(∏n
j=1(1 + D+

j )
−1)2 (i.e.,

Pmerge ≥
(∏n

j=1(1 +D
+
j )
−1)2).

Thus, from the execution of Algorithm 1, we have that the
probability that all nonzero mass variables “merge” will be
arbitrarily close to 1 for a sufficiently large k. This means that
∃k0 ∈ N for which yj [k0] =

∑n
l=1 yl[0], and zj [k0] = n,

for some node vj ∈ V , and yi[k0] = 0, and zi[k0] = 0, for
each vi ∈ V−{vj}. Once this “merging” of all nonzero mass
variables occurs, we have that the nonzero mass variables of
node vj will update the state variables of every node vi ∈ V
(because it eventually will be forward to all other nodes)
which means that ∃k1 ∈ N (where k1 > k0) for which
ysi [k1] =

∑n
l=1 yl[0] and zsi [k1] = n, for every node vi ∈ V .

This means that after a finite number of steps, (2) and (3)
will hold for every node vj ∈ V for the case where α = 1.

Remark 3: It is interesting to note that during the op-
eration of Algorithm 1, after a finite number of steps k0,
the state variables of each node vj ∈ V , become equal to
ysj [k] =

∑n
l=1 yl[0], z

s
j [k] = n, so that

qsj [k] =

∑n
l=1 yl[0]

n
,

for k ≥ k0. This means that (2) and (3) will hold for each
node vj for the case where α = 1. However, this does not
necessarily hold for the distributed algorithm presented in
the following section.

Remark 4: It is also worth pointing out that during the
operation of Algorithm 1, once (2) and (3) hold for each
node vj for the case where α = 1, then each node also
obtains knowledge regarding the total number of nodes in
the digraph, since zsj [k] = n, ∀vj ∈ V , which may be useful
for determining the number of agents in the network.

V. EVENT-TRIGGERED QUANTIZED AVERAGING
ALGORITHM

In this section we propose a distributed algorithm in
which the nodes receive quantized messages and perform
transmissions according to a set of deterministic conditions,
so that they reach quantized average consensus on their initial
values. The operation of the proposed distributed algorithm
is summarized below.
Initialization: Each node vj assigns to each of its outgoing
edges vl ∈ N+

j a unique order Plj in the set {0, 1, ...,D+
j −

1}, which will be used to transmit messages to its out-
neighbors in a round-robin fashion. Node vj has initial value
yj [0] and sets its state variables, for time step k = 0, as
zj [0] = 1, zsj [0] = 1 and ysj [0] = yj [0], which means that
qsj [0] = yj [0]/1. Then, it chooses an out-neighbor vl ∈ N+

j

(according to the predetermined order Plj) and transmits



zj [0] and yj [0] to that particular neighbor. Then, it sets
yj [0] = 0 and zj [0] = 0 (since performed a transmission).
The iteration involves the following steps:
Step 1. Receiving: Each node vj receives messages yi[k]
and zi[k] from its in-neighbors vi ∈ N−j and sums them
along with its stored messages yj [k] and zj [k] to obtain

yj [k + 1] =
∑

vi∈N−
j ∪{vj}

wji[k]yi[k],

and
zj [k + 1] =

∑
vi∈N−

j ∪{vj}

wji[k]zi[k],

where wji[k] = 0 if no message is received from in-neighbor
vi ∈ N−j ; otherwise wji[k] = 1.
Step 2. Event-Triggered Conditions: Node vj checks the
following conditions:

1) It checks whether zj [k + 1] is greater than zsj [k],
2) If zj [k+1] is equal to zsj [k], it checks whether yj [k+1]

is greater than (or equal to) ysj [k].
If one of the above two conditions holds, it sets ysj [k+1] =

yj [k + 1], zsj [k + 1] = zj [k + 1] and qsj [k + 1] =
ys
j [k+1]

zs
j [k+1] .

Step 3. Transmitting: If the event-trigger conditions above
do not hold, no transmission is performed. Otherwise, if the
event-trigger conditions above hold, node vj chooses an out-
neighbor vl ∈ N+

j according to the order Plj (in a round-
robin fashion) and transmits zj [k + 1] and yj [k + 1]. Then,
since it transmitted its stored mass, it sets yj [k+1] = 0 and
zj [k+1] = 0. Then, k is set to k+1 and the iteration repeats
(it goes back to Step 1).

This event-based quantized mass transfer process is sum-
marized as Algorithm 2, where each node vj at time step k
maintains mass variables yj [k] and zj [k] and state variables
ysj [k] and zsj [k] (and qsj [k] = ysj [k]/z

s
j [k]). Note that the event

trigger conditions effectively imply that no transmission is
performed if zj [k] = 0.

We now analyze the functionality of the distributed al-
gorithm and we prove that it allows all agents to reach
quantized average consensus after a finite number of steps.
Depending on the graph structure and the initial mass vari-
ables of each node, we have the following two possible
scenarios:

A. Full Mass Summation (i.e., there exists k0 ∈ N where
we have yj [k0] =

∑n
l=1 yl[0] and zj [k0] = n, for

some node vj ∈ V , and yi[k0] = 0 and zi[k0] = 0,
for each vi ∈ V − {vj}). In this scenario (2) and (3)
hold for each node vj for the case where α = 1.

B. Partial Mass Summation (i.e., there exists k0 ∈ N so
that for every k ≥ k0 there exists a set Vp[k] ⊆ V
in which we have yj [k] = yi[k] and zj [k] = zi[k],
∀vj , vi ∈ Vp[k] and yl[k] = 0 and zl[k] = 0, for each
vl ∈ V − Vp[k]). In this scenario (2) and (3) hold for
each node vj for the case where α = |Vp[k]|.

An example regarding the scenario of “Partial Mass Sum-
mation” is given below.

Algorithm 2 Deterministic Quantized Average Consensus
Input
1) A strongly connected digraph Gd = (V, E) with n = |V|
nodes and m = |E| edges.
2) For every vj we have yj [0] ∈ Z.
Initialization
Every node vj ∈ V:
1) Assigns to each of its outgoing edges vl ∈ N+

j a unique
order Plj in the set {0, 1, ...,D+

j − 1}.
2) Sets zj [0] = 1, zsj [0] = 1 and ysj [0] = yj [0] (which means
that qsj [0] = yj [0]/1).
3) Chooses an out-neighbor vl ∈ N+

j according to the
predetermined order Plj (i.e., it chooses vl ∈ N+

j such that
Plj = 0) and transmits zj [0] and yj [0] to this out-neighbor.
Then, it sets yj [0] = 0 and zj [0] = 0.
Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) It receives yi[k] and zi[k] from its in-neighbors vi ∈ N−j
and sets

yj [k + 1] =
∑

vi∈N−
j ∪{vj}

wji[k]yi[k],

and
zj [k + 1] =

∑
vi∈N−

j ∪{vj}

wji[k]zi[k],

where wji[k] = 0 if no message is received (otherwise
wji[k] = 1).
2) Event triggered conditions: If one of the following two
conditions hold, node vj performs Steps 3 and 4 below,
otherwise it skips Steps 3 and 4.
Condition 1: zj [k + 1] > zsj [k].
Condition 2: zj [k + 1] = zsj [k] and yj [k + 1] ≥ ysj [k].
3) It sets zsj [k + 1] = zj [k + 1] and ysj [k + 1] = yj [k + 1]
which implies that

qsj [k + 1] =
ysj [k + 1]

zsj [k + 1]
.

4) It chooses an out-neighbor vl ∈ N+
j according to the

order Plj (in a round-robin fashion) and transmits zj [k + 1]
and yj [k+ 1]. Then it sets yj [k+ 1] = 0 and zj [k+ 1] = 0.
5) It repeats (increases k to k+1 and goes back to Step 1).

Example 2: Consider a strongly connected digraph Gd =
(V, E), shown in Fig. 2, with V = {v1, v2, v3, v4} and
E = {m21,m32,m43,m14} where each node has an initial
quantized value y1[0] = 9, y2[0] = 3, y3[0] = 9 and
y4[0] = 3 respectively. We have that the average of the initial
values of the nodes, is equal to q = 24

4 .

At time step k = 0 the initial mass and state variables for
nodes v1, v2, v3, v4 are shown in Table VI.

TABLE VI
INITIAL MASS AND STATE VARIABLES FOR FIG. 2
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Fig. 2. Example of digraph for partial mass summation.

Nodes Mass and State Variables for k = 0
vj yj [0] zj [0] ys

j [0] zsj [0] qsj [0]

v1 9 1 9 1 9 / 1
v2 3 1 3 1 3 / 1
v3 9 1 9 1 9 / 1
v4 3 1 3 1 3 / 1

Then, during time step k = 0, every node vj will transmit
its mass variables yj [0] and zj [0] (since the event-triggered
conditions hold for every node). The mass and state variables
of every node at k = 1 are shown in Table VII.

It is important to notice here that, for time step k = 1,
nodes v1 and v3 have mass variables equal to y1[1] = 3,
z1[1] = 1 and y3[1] = 3, z3[1] = 1 but the corresponding
state variables are equal to ys1[1] = 9, zs1[1] = 1 and ys3[1] =
9, zs3[1] = 1. This means that at time step k = 1, the event-
triggered conditions do not hold for nodes v1 and v3; thus,
these nodes will not transmit their mass variables (i.e., they
will not execute Steps 3 and 4 of Algorithm 2). The mass
and state variables of every node at k = 2 are shown in
Table VIII.

TABLE VII
MASS AND STATE VARIABLES FOR FIG. 2 FOR k = 1

Nodes Mass and State Variables for k = 1
vj yj [1] zj [1] ys

j [1] zsj [1] qsj [1]

v1 3 1 9 1 9 / 1
v2 9 1 9 1 9 / 1
v3 3 1 9 1 9 / 1
v4 9 1 9 1 9 / 1

TABLE VIII
MASS AND STATE VARIABLES FOR FIG. 2 FOR k = 2

Nodes Mass and State Variables for k = 2
vj yj [2] zj [2] ys

j [2] zsj [2] qsj [2]

v1 12 2 12 2 12 / 2
v2 0 0 9 1 9 / 1
v3 12 2 12 2 12 / 2
v4 0 0 9 1 9 / 1

During time step k = 2 we can see that the event-triggered
conditions hold for nodes v1 and v3 which means that they
will transmit their mass variables towards nodes v2 and v4
respectively. The mass and state variables of every node for
k = 3 are shown in Table IX.

TABLE IX
MASS AND STATE VARIABLES FOR FIG. 2 FOR k = 3

Nodes Mass and State Variables for k = 3
vj yj [3] zj [3] ys

j [3] zsj [3] qsj [3]

v1 0 0 12 2 12 / 2
v2 12 2 12 2 12 / 2
v3 0 0 12 2 12 / 2
v4 12 2 12 2 12 / 2

Following the algorithm operation we have that, for k = 3,
the event-trigger conditions hold for nodes v2 and v4 which
means that they will transmit their masses to nodes v1 and
v3 respectively. As a result we have, for k = 4, that the
mass variables for nodes v1 and v3 are y1[4] = y4[3] =
12, z1[4] = z4[3] = 2 and y3[4] = y2[3] = 12, z3[4] =
z2[3] = 2 respectively. Then, during time step k = 4, we
have that the event-triggered conditions hold for nodes v1 and
v3 which means that they will transmit their mass variables
to nodes v1 and v3. We can easily notice that, during the
execution of Algorithm 2 for k ≥ 3, we have Vp[k] = Vp[k+
2] (where Vp[3] = {v2, v4} and Vp[4] = {v1, v3}), which
means that the exchange of mass variables between the nodes
will follow a periodic behavior and the mass variables will
never “merge” in one node (i.e., @k0 for which yj [k0] =∑n

l=1 yl[0] and zj [k0] = n, for some node vj ∈ V , and
yi[k0] = 0 and zi[k0] = 0, for each vi ∈ V − {vj}).

As a result, from Table IX, we can see that for k ≥ 3 it
holds that

qsj [k] = q =
24/α

4/α
,

for every vj ∈ V , for α = |Vp[k]| = 2. This means that,
after a finite number of steps, every node vj will obtain a
quantized fraction qsj which is equal to the average q of the
initial values of the nodes.

Remark 5: Note that the periodic behavior in the above
graph is not only a function of the graph structure but also of
the initial conditions. Also note that, in general, the priorities
will also play a role because they determine the order in
which nodes transmit to their out-neighbors (in the example,
priorities do not come into play because each node has
exactly one out-neighbor).

Proposition 3: Consider a strongly connected digraph
Gd = (V, E) with n = |V| nodes and m = |E| edges. The
execution of Algorithm 2 will allow each node vj ∈ V to
reach quantized average consensus after a finite number of
steps, bounded by n5.

VI. SIMULATION RESULTS

In this section, we present simulation results and
comparisons. Specifically, we present simulation results
of the proposed distributed algorithms for the di-
graph Gd = (V, E) (borrowed from [24]), shown
in Fig. 3, with V = {v1, v2, v3, v4, v5, v6, v7} and
E = {m21,m51,m12,m52,m13,m53,m24,m54,m65,m75,
m36,m47,m67}, where each node has initial quantized val-
ues y1[0] = 5, y2[0] = 4, y3[0] = 8, y4[0] = 3, y5[0] = 5,
y6[0] = 2, and y7[0] = 7, respectively. The average q of the
initial values of the nodes, is equal to q = 34

7 .
In Figure 4 we plot the state variable qsj [k] of every node

vj ∈ V as a function of the number of iterations k for
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Fig. 3. Example of digraph for comparison of Algorithms 1 and 2.

the digraph shown in Fig. 3. The plot demonstrates that
the proposed distributed algorithms are able to achieve a
common quantized consensus value to the average of the
initial states after a finite number of iterations.
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Deterministic Quantized Average Consensus for Digraph of Fig. 3

Fig. 4. Comparison between Algorithm 1 and Algorithm 2 for the digraph
shown in Fig. 3. Top figure: Node state variables plotted against the number
of iterations for Algorithm 1. Bottom figure: Node state variables plotted
against the number of iterations for Algorithm 2.

VII. CONCLUSIONS
We have considered the quantized average consensus

problem and presented one randomized and one deterministic
distributed averaging algorithm in which the processing,
storing and exchange of information between neighboring
agents is subject to uniform quantization. We analyzed the
operation of the proposed algorithms and established that
they will reach quantized consensus after a finite number of
iterations.

In the future we plan to investigate the dependence of
the graph structure with full and partial mass summation
of the initial values. Furthermore, we plan to extend the
operation of the proposed algorithm to more realistic cases,
such as transmission delays over the communication links
and the presence of unreliable links over the communication
network.
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