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Sampled-data Filters with Compactly Supported Acquisition Prefilters

Yutaka Yamamoto1, Kaoru Yamamoto2, and Masaaki Nagahara3,

Abstract— This paper studies the problem of reconstructing
continuous-time signals from discrete-time uniformly sampled
data. This signal reconstruction problem has been studied by
the authors in various contexts, and led to a new signal pro-
cessing paradigm. The key idea there is to employ a physically
realizable signal generator model, and design an (sub)optimal
filter via H∞(C+) optimal sampled-data control theory. The
present paper aims at extending this framework to a more
general setting where observed data are acquired through an
acquisition device (prefilter) that has compact support. In this
way, the framework can capture the properties of processing
signals with a localized acquisition filter. We give a general
setup as well as approximate solution methods along with their
convergence results. A simulation is presented to illustrate some
properties of the result.

I. INTRODUCTION

Modern sampled-data control theory finds yet another
area of application, i.e., digital signal processing [12]. As
discussed there, one of the central problems in digital signal
processing is the reconstruction of the original analog signal
from its sampled data. Shannon [5] first considered this
problem in the context of uniform and ideal sampling. He
effectively used the sampling theorem [13] as the central
guiding methodology, and proved that if the original signal
is perfectly band-limited below the so-called Nyquist fre-
quency, one could fully recover the original analog signal
from its sampled data. Since then, this Shannon paradigm
has dominated digital signal processing to date.

Recently, we have developed and proposed a completely
new methodology based on H∞ sampled-data control theory:
[12], [3], [4]. The present paper intends to extend this
framework to a general context with compactly supported
acquisition prefilters.

Making use of the fact that modern sampled-data control
theory can optimize intersample behavior, these papers suc-
cessfully derived new design formulas for digital filters that
can be used to recover the original analog signals.

A crucial element there is that we assume a natural model
that describes the signal class to be processed. Instead of
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assuming the artificial perfect band-limiting hypothesis, we
assume that the target signals are generated by a linear, time-
invariant, stable, finite-dimensional system. Such a system
gives a stable filter that controls the decay curve toward high-
frequency. Unlike the case for the sampling theorem, this
model gives a decay curve beyond the Nyquist frequency, yet
it gives rise to enough information that allows us to recover
optimal high frequency behavior via sampled-data control
theory, which is prohibited by the Shannon paradigm. The
new theory has proven to be successful, and in some part it
is incorporated in actual devices.

In this new theory, however, the signal generator (or signal
acquisition device) is assumed to be a linear, time-invariant,
stable and finite-dimensional system. This is a natural setting
in the following sense: In many cases, we consider (analog)
signals generated by a physical system, be it natural or
artificial (man-made), which obeys the underlying physical
laws. In this sense, it is very natural to consider signals
generated by such systems, and this leads to the basic setting
considered in our previous work, e.g., [12], [3], [4].

On the other hand, there are situations that do not readily
satisfy the above hypotheses. Suppose we are encountered
with an unknown class of signals, for which there is no
generating model available. We receive these signals through
some device, and we obtain their sampled values. We may
want to identify some characteristics of such signals through
those observed data.

The theory of wavelets is built on such assumptions. To
this end, one may assume an acquisition device, and obtain
the sampled-data once filtered after this acquisition device.
In such a context, we often assume that such an acquisition
device is described by a prefilter that has compact support.
This allows for a finer resolution in the time domain, and
time-local properties are better preserved. For example, when
there is a singularity in the target signal (e.g., discontinuity),
it is easier to detect it in such a framework. This is the core
of the time-frequency analysis enabled by wavelet theory.

To make sampled-data signal processing theory compatible
with such a time-local approach, we need to extend our the-
ory to the new context where the signal processing prefilter is
derived from an acquisition device that has compact support.
This assumption does not satisfy the basic hypotheses in [12],
and we need to generalize our framework to this context. The
theory requires an extension of the tools and settings of those
given in [12], and it is the target of the present paper.

II. PROBLEM FORMULATION

As in our previous work [12], [8], we consider the
sampled-data system depicted in Fig. 1.
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Fig. 1: Signal reconstruction error system
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Fig. 2: Sampling kernel φ(t) (left) and fast discretization of
φ(t) (right)

Here the exogenous signal wc goes through a filter F (s)
and becomes the actual target analog signal y. Contrary
to our previous work [12], [3], [4], [8], etc., this F (s)
is not necessarily derived from a linear, finite-dimensional,
time-invariant system. We assume that F (s) is given as
the Laplace transform of a function φ(·) that has compact
support on [0, T ] ⊂ [0,∞). This F (s) may not necessarily
represent the physical characteristic of a signal generating
system, but rather represents a characteristic of our signal
acquisition device. The totality of such y constitutes the
signal class to be reconstructed. The resulting analog signal y
is then sampled with a sampling period h, and then becomes
the digital signal that must be processed. The objective here
is to reconstruct the analog signal y from given sampled data
y(kh), k = 0, 1, 2, · · · . Note that the prefilter F (s) is stable
because φ has compact support, and the signal y is obtained
as the convolution φ ∗ wc in the time domain.

Fig. 2 (left) shows an example of the sampling kernel φ(t).

The discrete-time signal yd is first upsampled by factor M
by the upsampler ↑M

↑M : yd 7→ xd : xd[k] =

{
yd[l], k =Ml, l = 0, 1, . . .
0, otherwise ,

and becomes another discrete-time signal xd with sampling
period h/M . The discrete-time signal xd is then processed
by a digital filter K(z) to be designed, and becomes a
continuous-time signal uc by going through the zero-order
holdHh/M (which works in sampling period h/M ), and then
becomes the final signal zc by passing through an analog
buffer filter P (s). Here P (s) can be assumed to be 1 for
simplicity. An advantage here is that one can use the fast hold
device Hh/M thereby making possible more precise signal
restoration. The objective here is to design a digital filter
K(z) for given F (s), M and P (s), to optimally reconstruct
the filtered signal y. To allow for a processing time, we
introduce some delay L for reconstructing y, i.e., y(t − L)
instead of y(t); for convenience we take L to be an integer

multiple of the sampling period h, i.e., L = mh for some
positive integer m.

Fig. 1 shows the signal reconstruction error system block
diagram. The delay in the upper portion of the diagram
corresponds to the fact that we allow a certain amount of
time delay for signal reconstruction. Let Tew denotes the
input/output operator from wc to ec(t) := y(t−mh)−zc(t).
Our design objective is as follows:

Problem 1: Given stable F (s) and P (s) and an attenua-
tion level γ > 0, find a digital filter K(z) such that

‖Tew‖∞ = sup
wc∈L2[0,∞)

‖Tewwc‖2
‖wc‖2

< γ.

Remark 2.1: The above L2-induced norm ‖Tew‖∞ is in-
deed the H∞-norm of the operator Tew [11].

In the sequel, we may denote the sampling and hold
operations with associated upsamplers, etc., simply by S and
H, respectively, to make the notation simpler.

III. EXAMPLES OF ACQUISITION FILTERS

Several examples can be listed as an acquisition filter char-
acteristic function φ. Most of them are commonly utilized in
wavelet expansion. The simplest is perhaps the Haar scaling
function φ0:

φ0(t) :=

{
1, 0 ≤ t ≤ T
0, otherwise

(1)

where T can vary depending on our choice.
A more elaborate choice would be that of the second-order

B-spline function

B2(t) :=


t, 0 ≤ t ≤ T/2
2− t, T/2 ≤ t ≤ T
0, elsewhere.

(2)

A. Cardinal Exponential Splines
Unser and Blu [7], [6] introduced the notion of cardinal

exponential splines. The first-order exponential splines are
obtained by truncating usual exponential functions to a
bounded interval [0, T ] for some positive T :

βα(t) :=

{
eαt, 0 ≤ t ≤ T,
0, elsewhere.

(3)

Typically, T is normalized to 1, but we leave it as a free
parameter here.

What is interesting to us is the following lemma that
asserts that the usual sampled-data filter K[z] designed for
the anti-aliasing prefilter F (s) = 1/(s−α), i.e., the Laplace
transform of eαt, works also for the present case with βα(t)
whose Laplace transform is

1− e−T (s−α)

s− α
.

Here α is assumed to be negative to guarantee stability.
Lemma 3.1: Suppose α < 0. Let F0(s) = 1/(s − α),

FT := (1 − e−T (s−α))/(s − α) and let K[z] be a filter
designed for Fig. 1 with F = F0 such that

‖Tew‖ =
∥∥(e−mhs −HKS)F0

∥∥ < ε. (4)



Then K also satisfies

‖Tew‖ =
∥∥(e−mhs −HKS)FT∥∥ < 2ε. (5)

Proof Observe that (4) implies∥∥(e−mhs −HKS)eαT e−TsF0

∥∥
= eαT

∥∥(e−mhs −HKS)F0

∥∥ < ε

because α < 0. It follows that∥∥(e−mhs −HKS)FT∥∥ =
∥∥∥(e−mhs −HKS)(F0 − e−T (s−α)F0)

∥∥∥
≤

∥∥(e−mhs −HKS)F0

∥∥
+

∥∥∥(e−mhs −HKS)e−T (s−α)F0

∥∥∥
< 2ε. 2

This means that for the first-order cardinal exponential
splines, the (sub)optimal filter K[z] can be designed without
really involving a special configuration. Note, however, that
although the filter K[z] can be taken to be the same, the
processing result can be quite different since the obtained
acquired signal y and its sampled values for FT are different
from those obtained through F0. The one for FT are more
localised due to the compact support nature of FT .

IV. DESIGN FOR THE GENERAL CASE

The input/output relation with compactly supported im-
pulse response function φ is not realizable as a linear,
time-invariant, finite-dimensional system. However, it can be
well realized as a linear, time-invariant, infinite-dimensional
system as we see now.

Suppose that the least upper bound of suppφ is T > 0.
Then we easily see that

φ = δT ∗ (δ−T ∗ φ) = (δ−T )
−1 ∗ (δ−T ∗ φ),

where δa is the Dirac delta distribution and (δa)
−1 denotes

its inverse with respect to convolution. This means that the
impulse response φ is pseudorational in the sense of [9].
Hence it can be realized as follows:

Let q := δ−T and p := δ−T ∗φ. We first compute the state
space Xq associated to the “denominator” q. According to
[9], we have

Xq = {x ∈ L2
loc[0,∞) : (δ−1 ∗ x)|[0,∞) = 0}

≡ L2[0, 1],

where L2
loc[0,∞) denotes the space of functions that are

locally L2. Denote by xt(·) the state at time t belonging
to the space L2[0, 1], our realization takes the form

d

dt
xt(θ) =

∂

∂θ
xt(θ) + φ(θ)u(t) (6)

=: Axt +Bu(t) (7)
y(t) = xt(0). (8)

We must also specify the domain of A. According to [9]
again, we must have

D(A) := {x ∈ Xq :
dx

dθ
∈ Xq}

= {x : dx/dθ ∈ L2
loc[0,∞), supp(dx/dθ) ⊂ [0, T ]}

= {x : dx/dθ ∈ L2[0, T ] and x(T ) = 0}. (9)

But this realization is not very convenient for deriving a
formula for the solution of our problem. Following [2], we
can give an approximation of (6), (8) as follows:

The state x ∈ L2[0, T ] and the “B” element above can be
approximated by piecewise constant step functions as

x =

N∑
i=1

xiχ[(i−1)τ,iτ)(θ)

where xi denotes the averaging value x((i − 1)τ) with
τ = T/N , and χ[(i−1)τ,iτ) is the characteristic function
of the interval [(i − 1)τ, iτ). Similarly for φ. Taking the
forward difference approximation for A = ∂/∂θ, we obtain
the following approximation for (6) and (8):

d

dt


x1
x2
...
xN

 =
1

τ


1 −1 0 · · · 0
0 1 −1 0

. . . 0

. . . 1 −1
0 0 · · · 1




x1
x2
...
xN



+


φ1
φ2
...
φN

u(t) (10)

y(t) = x1. (11)

Note that in (10) the last row should correspond to the
difference (x((N −1)τ)−x(T ))/τ , which is equal to xN/τ
by x(T ) = 0. The condition x(T ) = 0 follows from (9).

We can invoke this approximation in the usual sampled-
data design filter method as developed in, e.g., [12]. How-
ever, the resulting formula may not be so convenient for
actual computation when N is large. For this purpose, it is
more straightforward to resort directly to fast-sample/fast-
hold approximation of the convolution operator via φ. We
will show this formula in the next section.

V. SOLUTION METHOD VIA FAST-SAMPLE/FAST-HOLD
APPROXIMATION

The acquisition kernel φ is generally not realizable by
a finite-dimensional LTI system, so that the standard H∞

sampled-data theory is not directly applicable. Instead,
we employ the fast-sample/fast-hold (FSFH) approximation
method. This method approximates continuous-time inputs
and outputs via a sampler and hold that operate in the period
h/N for some positive integer N . Here we let N = Ml1
where l1 is a positive integer.

The multirate system given by Fig. 1 can be cast into a
single-rate sampled-data system via lifting [10], [1], and the
H∞ control problem can be solved for the generalized plant
Fig. 3, where the filter K̃(z) is a linear and time-invariant,
single-input/M -output system. Once the optimal filter K̃(z)
is obtained, one can obtain the interpolation filter K(z) by

K(z) =
[
1 z−1 . . . z−M+1

]
K̃(zM ).

The design procedure of this problem by the FSFH ap-
proximation for a linear and time-invariant F (s) is given in
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Fig. 3: Sampled-data control system

[12] and we employ the similar approach here. The FSFH
approximation of the filter F in the current setting is given as
follows. Let φN be the averaging approximant of the impulse
response φ. This is given by the step function approximation
with step size τ = T/N . For simplicity, we assume that
τ is an integer multiple of h/N . More details follow in
the next section where we discuss the convergence of this
approximation. Then,

FN (z) :=

l2−1∑
i=0

φN (ih/N)z−i

where l2 = TN/h.
As in [12], the FSFH approximation of P (s) is given by

PN (z)=


ANP AN−1

P BP AN−2
P BP . . . BP

CP DP 0 . . . 0

CPAP CPBP DP
. . .

...
...

...
...

. . . 0

CPA
N−1
P CPA

N−2
P BP CPA

N−3
P BP . . . DP


where

[
A B
C D

]
is the packed notation for continuous-time

transfer function D + C(sI −A)−1B, and

P (s) =

[
APc

BPc

CPc
DPc

]
,

AP = eAPch/N , BP =

∫ h/N

0

eAPc tBPc
dt.

The sampled-data error system Tew can then be approx-
imated by the discrete-time, linear, time-invariant system
TN (z) as follows:

TN (z) = z−mFN (z)− PN (z)HK̃(z)SFN (z)

where

H := diag {Il} ∈ RN×M , Il := [1, 1, . . . , 1]T ∈ Rl1 ,

S := [1, 0, . . . , 0]T ∈ R1×N .

Our design problem (Problem 1) can be approximated by
‖TN‖∞ < γ. The convergence of this approximate design
problem is discussed in the next section.

VI. CONVERGENCE OF THE APPROXIMATE DESIGN

Be it the averaging approximation or the FSFH one, we
need to guarantee that the approximate design converges to
the solution to the original problem.

For simplicity, we assume φ(·) is a continuous function.
Let φN be the averaging approximant of φ, that is, we take
the step function

N−1∑
k=0

φ(kτ)χ[kτ,(k+1)τ)

where τ = T/N and χ[a,b) is the characteristic function
of the interval [a, b). (For the general case where φ is not
continuous, we need only take the average of φ on each
interval [kτ, (k + 1)τ).

Let FN (s) denote the Laplace transform of φN , i.e.,
FN := L[φN ]. We start with the following lemma:

Lemma 6.1: Under the assumption, for each fixed u ∈ L2

φN ∗ u converges uniformly to φ ∗ u on [0,∞) as N →∞.
Furthermore, this convergence is uniform in u in the unit
ball of L2.
Proof Let u ∈ B1, the unit ball of L2. Since φ and φN
have compact support, we have∣∣∣∣∫ t

0

(φN (t− τ)− φ(t− τ))u(τ)dτ
∣∣∣∣

≤
∫
|φN (t− τ)− φ(t− τ)| · |u(τ)|dτ

≤
∥∥φN − φ∥∥2 ‖u‖2 =

∥∥φN − φ∥∥2 . (12)

Since the estimate on the right-hand side of (12) is indepen-
dent of t, the uniform convergence follows. 2

We also need the following lemma which asserts that FN
converges to F in H∞ norm.

Lemma 6.2: Under the same hypotheses, FN converges to
F in H∞ norm as N →∞.
Proof We have∣∣∣∣∣

∫ T

0

(φN − φ(t))e−jωtdt

∣∣∣∣∣
≤
∫ T

0

|φN − φ(t))|dt

≤

{∫ T

0

|φN − φ(t))|2dt

}1/2{∫ T

0

1dt

}1/2

=
√
T
∥∥φN − φ∥∥2 . (13)

The last term clearly goes to zero as N →∞, independently
of ω. Hence ‖FN − F‖∞ → 0. 2

Theorem 6.3: Let φN be the approximant of φ as above.
For a given δ > 0, take N such that

sup
0≤t<∞

|(φN ∗ u− φ ∗ u)(t)| < δ, (14)

and
‖FN − F‖∞ < δ. (15)

Let K be a filter designed for FN such that∥∥(e−mhs −HKS)FN∥∥ < ε. (16)



Then we have∥∥(e−mhs −HKS)F∥∥ < ε+ δ + Cδ, (17)

for some constant C depending on K.
Proof Observe that∥∥(e−mhs −HKS)F − (e−mhs −HKS)FN

∥∥
∞

=
∥∥e−mhs(F − FN )−HKS(F − FN )

∥∥
∞

≤
∥∥e−mhs(F − FN )

∥∥
∞ + ‖HKS(F − FN )‖∞ . (18)

Now note that HKS gives a continuous operator from
C[0,∞) (with uniform convergence topology) to L2. Let C
denote its operator norm (gain). Then it follows that∥∥(e−mhs −HKS)F∥∥∞ ≤ ∥∥(e−mhs −HKS)FN∥∥∞

+
∥∥(e−mhs −HKS)F − (e−mhs −HKS)FN

∥∥
∞

≤
∥∥(e−mhs −HKS)FN∥∥∞

+
∥∥(e−mhs −HKS)F − (e−mhs −HKS)FN

∥∥
∞

≤ ε+ δ + Cδ (19)

by (18). Hence (17) follows. 2

This theorem guarantees that a filter K designed for
FN with sufficiently large N can also work for F . This
guarantees the validity of the present approximate design
method.

VII. NUMERICAL EXAMPLE

We show some numerical results. Throughout the exam-
ples, the sampling period, upsampling factor, and delay step
are fixed to h = 1, M = 2, and m = 2, respectively.

Example 7.1: Fig. 4 shows the comparison of filter coef-
ficients designed a) for the cardinal exponential spline e−0.6t

(T = 1), and b) the usual sampled-data filter with F (s) =
1/(s + 0.6). While the former exhibits more oscillatory
behavior, the two filters are quite close to each other and
their difference are within 0.06 ∼ 0.07 in magnitude. In
view of the fact that these two filters are only suboptimal,
this assures the validity of the statement at the end of Section
III.

We now show some processing results for images. Con-
sider the test image of Lena shown in Fig. 5.

This original image has a rather rough texture, and we
see that by controlling the support length of the acquisition
filter F , we can suitably smooth out the image. We will
enlarge this image using the Haar scaling function (1) for
T = 0.5h, h, 5h, 10h. The results are shown in Fig. 6.

For the image Fig. 6a processed with a short width (0.5h)
of support, the resulting image shows some jaggy characters.
With a wider support (T = h or T = 5h), the results are
more acceptable. They also show more smoothing skin tones.
The result for the case T = 10h of wider support however
presents an artifact of slanted lines, which is probably due
to an aliasing effect. Summarizing, in the present case, the
intermediate case of T = 5h shows the best compromise
between resolution and the smoothing effect. What leads to
the best choice is however left for future study.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

(a) Filter for the exponential spline e−0.6t

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

(b) Filter designed for F (s) = 1/(s+ 0.6)

Fig. 4: Filter coefficients comparison for cardinal exponential
spline with a standard sampled-data filter

Fig. 5: Test image Lena

VIII. A RELATIONSHIP WITH WAVELET EXPANSION

We here give a short note on the relationship with wavelet
expansion. Suppose for simplicity suppφ ⊂ [0, 1], and the
sampling period h = 1.

Lemma 8.1: Let ψ(t) := φ(t− 1). For u ∈ L2
loc[0,∞),

(φ ∗ u)(k) = 〈ψ, δ−k+1 ∗ u〉, k = 1, 2, . . . (20)

In particular,
(φ ∗ u)(1) = 〈ψ, u〉.

Proof Noting φ(t) = 0 outside of [0, 1], we have

(φ ∗ u)(k) =
∫ ∞
0

φ(k − τ)u(τ)dτ

=

∫ k

k−1
φ(k − τ)u(τ)dτ

=

∫ k

k−1
ψ(τ − k + 1)u(τ)dτ

=

∫ 1

0

ψ(t)u(t+ k − 1)dt

= 〈ψ, δ−k+1 ∗ u〉. 2



(a) Processed with T = 0.5h

(b) Processed with T = h

(c) Processed with T = 5h

(d) Processed with T = 10h

Fig. 6: Processing of Lena image with Haar scaling functions

This means that the sampled-values {(φ∗u)(k)}∞k=1 gives
the expansion coefficients of u in terms of the scaling
function ψ. It thus follows that if we take

K(z) = I,H := ψ,

The resulting output
∞∑
k=1

(φ ∗ u)(k)ψ(t− k+1) =

∞∑
k=1

〈ψ, δ−k+1 ∗ u〉ψ(t− k+1)

gives the expansion of u in terms of ψ.
That is, the filtered output gives the scaling function

expansion by taking the mirror image of the scaling function.
We can form a filterbank to go to the lower resolution
expansion. This will be explored in our subsequent work.

IX. CONCLUSION

We have given a generalization of sampled-data signal
processing theory [12], [8] to the case where the acquisition
filter has compact support. This property is expected to be
more adequate for signals with stronger local properties, e.g.,
images, rather than the usual case where more stationary
nature is prevalent, for example, musical sounds. While
we have seen some results in image processing, its precise
advantages are yet to be seen in our future investigations.
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