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Abstract— This paper presents a dual receding horizon out-
put feedback controller for a general non linear stochastic sys-
tem with imperfect information. The novelty of this controller
is that stabilization is treated, inside the optimization problem,
as a negative drift constraint on the control that is taken from
the theory of stability of Markov chains. The dual effect is then
created by maximizing information over the stabilizing controls
which makes the global algorithm easier to tune than our
previous algorithm. We use a particle filter for state estimation
to handle nonlinearities and multimodality. The performance
of this method is demonstrated on the challenging problem of
terrain aided navigation.

I. INTRODUCTION

Stochastic model predictive control (SMPC) is a
widespread technique to deal with control problems where
the state is subject to stochastic disturbances, hard constraints
on the input and potentially soft constraints on the state. Its
principle is to apply a receding horizon strategy based on
the resolution of a finite horizon stochastic optimal control
problem. Although, when only partial and noisy informa-
tion on the state is available through some observations,
classic SMPC combined with a state estimator may lead
to overcautious controls or even destabilizing ones. It is
due to the fact that, in general, the control influences the
observations and then state estimation in addition to guiding
the system in a standard way. This property is known as the
dual effect property of the control. Stochastic optimal control
problems with imperfect information are much harder than
their counterpart in the perfect information case. The main
reason is that to be optimal with partial information, one
needs to anticipate the information that will be available.
Consequently, the optimal law possesses the property of
dual effect. As it is computationally intractable, suboptimal
outputfeedback control laws are computed instead, with the
idea to keep the dual effect property. Therefore, they are
called dual controllers.

Usually, dual controllers are either implicit or explicit. The
design of implicit dual controls, which we do not address in
this paper, is based on the idea to approximate the Bellman
equation of the problem. See [1] for a review on implicit dual
control and [2] for an example of use of a particle filter in
implicit dual control. On the contrary, in explicit dual control,
one modifies the original problem to incorporate an explicit
excitation of the system to maintain the dual effect. Explicit
dual effect can be included in the optimization problem as a
constraint or in the cost. Including it as a constraint generally
leads to controllers with persistent excitation, constraints on
information or approximation with scenario trees. Including
it in the cost leads to integrated experiment design, where a

measure of information is added to the original cost. In [3], a
persistent excitation controller is presented but it is supposed
that the system is linearizable which is not a suitable assump-
tions in our framework. Controllers with constraints on the
information may lead to infeasibilty problems that are also
hard to anticipate in nonlinear cases. In [4], this infeasibility
issue is addressed in the deterministic framework. Scenario
tree methods are computationally demanding and usually rely
on Kalman filters inside the optimization problem, like in [5],
[6] which are not adapted to multimodal cases.

In integrated experiment design, a new term based on the
Fisher information matrix (FIM) is added to the original
cost as classically done in optimal design [7]. However, if
the original cost to minimize conditions the stability of the
system, then the resulting trade off may destabilize it.

That is why, in this paper, we propose an output feedback
dual SMPC based on integrated experiment design for infor-
mation probing and on a Lyapunov constraint on the control
to ensure stability. Output feedback is obtained by setting
the initial condition of the optimization problem as particles
from a particle filter that is able to deal with state estimation
for arbitrary systems.

The paper is organized as follows. Section II recalls
some important probabilistic notations. Section III recalls the
bases of SMPC with imperfect information and describes
our approach. Section IV recalls the principle of particle
filtering and section V describes the particular optimization
problem that is solved in a receding horizon manner. In
[8] and [9], stochastic output feedback stability is proved
but a separation principle was assumed. Actually, proving
stochastic output feedback stability in the general case, when
observability depends on the control, and when the only
efficient estimators are particle filters, has never been proved
to the best of our knowledge. However, we demonstrate the
efficiency of our method on a challenging application in
section VI.

II. NOTATION

Let (Ω,F , P ) be a probability space. In the following,
random variables refer to F-measurable functions defined on
Ω. For i ∈ N, B(Ri) denotes the set of Borel sets of Ri. For
a random variable X and a probability distribution, X ∼ p
means that p is the probability law of X . P (·|·) and E(·|·)
denotes conditional probability and expectation. Px and Ex
denotes especially probability and expectation conditionally
to X0 = x, for x ∈ Ri. Pp and Ep denotes probability and
expectation conditionally to X0 ∼ p.
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III. PROBLEM SETUP

A. Description of the system

We consider a discrete-time controlled stochastic dynami-
cal system (Xk)k∈N valued in Rnx described by the follow-
ing equation, ∀k ∈ N:

Xk+1 = f(Xk, Uk, ξk), X0 ∼ p0, (1)

where:

• p0 is the initial probability law.
• (Uk)k∈N is the control process valued in Rnu .
• (ξk)k∈N are i.i.d. random variables valued in Rnξ dis-

tributed according to pξ. For each k ∈ N, ξk represents
an external disturbance on the dynamics.

• f : Rnx × Rnu × Rnξ −→ Rnx is measurable.

We also assume that the state of the system is only avail-
able through some observations represented by a stochastic
process (Yk)k∈N valued in Rny which verifies, ∀k ∈ N:

Yk = h(Xk, ηk), (2)

where:

• (ηk)k∈N are i.i.d. random variables valued in Rnη dis-
tributed according to pη . For each k ∈ N, ηk represents
an external disturbance on the observations.

• h : Rnx × Rnη −→ Rny is measurable.

For k ∈ N, we define the information vector Ik as follow:

Ik = (Y0, U0, . . . , Yk−1, Uk−1, Yk), (3)

From Ik, one can derive two important quantities in stochas-
tic control with imperfect information that are the conditional
distribution of Xk given Ik denoted by µk and the condi-
tional distribution of Xk+i given (Ik, Uk, . . . , Uk+i−1) for
any i ∈ N∗, denoted by µk+i|k. Moreover, we denote by K
the Markov kernel defined by equation (1) and we assume
that the conditional distribution defined by equation (2) has
a density with respect to the Lebesgue measure such that
there exists a likelihood function denoted by ρ. Therefore,
for k ∈ N, A ∈ B(Rnx) and B ∈ B(Rny ) :

P (Xk+1 ∈ A|Xk = xk, Uk = uk) = K(A, xk, uk),

P (Yk ∈ B|Xk = xk) =

∫
B

ρ(yk, xk)dyk.

µ0 is supposed to be known. Thus, ∀(k, i) ∈ N2, µk and
µk+i|k verify the following nonlinear filtering equations that
can be summed up to:

µk+1 = F pµk, Yk+1, Ukq , (4)

µk+i+1|k = G
`

µk+i|k, Uk+i
˘

. (5)

The expressions of F and G are classic and can be found
in [1]. A control policy at time k is then a map, denoted by
πk, that maps a conditional distribution µk to a control Uk.
We denote a sequence of control policies by:

πi:j := (πi, . . . , πj), for i ≤ j.

B. Dual stochastic model predictive control

Stochastic model predictive control is a widely used
method for designing controllers in the presence of possibly
unbounded disturbances in nonlinear dynamics as the one
described in equation (1). It consists in solving a finite-
horizon discrete stochastic optimal problem, to only apply
the first control policy of the optimal sequence and to solve
the problem again starting from the new state of the system.
See [10] for a review on general stochastic MPC.

A MPC scheme is defined by the following features:

• A time horizon, T ∈ N∗.
• A family of set of constraints on the control, Ui ⊂ Rnu ,
∀i = 0, .., T − 1.

• ∀i = 0, .., T −1, an instantaneous cost gi: Rnx×Rnu×
Rnξ −→ R and a final cost gT : Rnx −→ R.

The choice of the objective functions gi and gT and of
the control constraints Ui is a matter of modelling. Indeed,
one often has an economic cost to minimize that comes
from practical considerations, such as a price or a fuel
consumption. Moreover, the control must be designed to
attain some target in the state space: it is the guiding problem.
There are two classical ways to address this issue in MPC:

• Adding a new term to the cost to enforce stability in
some sens. In this case, the general cost is decomposed
in the following way, for i = 0, .., T :

gi = gstab
i + geco

i , (6)

Thus, gi and gT realize a compromise between conver-
gence and economic costs. For instance, in the LQG
case, gi(x, u, ξ) = xTMxx + uTMuu where Mx and
Mu are positive definite matrices. The first term drives
the state of the system to zero and the second term
penalizes high controls. The compromise is dealt with
by tuning the matrices Mx and Mu.

• Adding a drift constraint on the first control, U0, that en-
forces the decreasing of some Lyapunov-like function,
during the first time step only, such that, for i = 0, .., T :

gi = geco
i , (7)

a negative drift condition on U0.

Actually, since only U0 is applied on the system, the
Lyapunov function decreases along the whole trajectory
and then stability is obtained. It is also known as
Lyapunov Economic MPC, see [11] for a review in
the deterministic setting. In the stochastic setting, it has
been applied with output feedback for continuous-time
nonlinear systems in [9] and for a discrete-time linear
system with bounded controls in [8].

In the presence of partial information represented by
equation (2), the theoretical receding horizon problem to
solve is more complex than in the perfect information case,
as the the new state of the system is µk [12], and it evolves
according to equation (4). Thus, the problem to solve at each
time k denoted by (P kC) can be written as follows:



min
π0:T−1

Eµk

”∑T−1
i=0 E[gi(Xi, Ui, ξi)|Ii] + E[gT (XT )|IT ]

ı

s.t. µ̃i+1 = F pµ̃i, Yi+1, Uiq ,
Ui = πi(µ̃i),
Ui ∈ Ui, ∀i = 0, .., T − 1,
µ̃0 = µk.

In (P kC), the conditional expectation w.r.t. the available
information Ii emphasizes the fact that the observations, are
propagated from k to k + T and depend on the control.
Therefore, as recalled in [1] and [13], one can see from
the Dynamic Programming Principle that the optimal control
policies of (P kC) generally have the dual effect property [14].
As optimal policies are intractable in the general nonlinear
case due to the curse of dimensionality, suboptimal policies
that are constructed instead. They are called dual controllers
as they preserve the dual effect property by:
• controlling the system in the standard way defined by

equation (6) or (7).
• explicitely or implicitely probing information to im-

prove the quality of the future observations.
In this article, we focus on explicit dual controllers that take
information into account inside the cost. This technique is
called integrated experiment design. In fact, the new cost
denoted by gex

i realizes a trade off between the original costs
gi and gT and a measure of information denoted by ginfo

i such
that, for i = 0, .., T :

gex
i = gi + ginfo

i , (8)

An important issue appears when, additionally, the guiding
objective is incorporated in the cost as described in equation
(6). Consequently, (8) represents the sum of three terms that
usually contain weights that must be tuned. By construction,
the weights affect the convergence of the system to the
guiding goal which makes their tuning difficult. Indeed, if
too much importance is given to ginfo

i then probing will be
efficient but the system may get stuck far from the target. On
the contrary, if too much importance is given to gstab

i then
the probing effect will not be sufficient and output feedback
performance may be poor. It is difficult to know which case
will occur a priori depending of the value of the weights
because the optimal costs are not known at first sight.

That is why, in this paper, we present an output-feedback
explicit dual controller based on the minimization of the
Fisher information matrix subject to a negative mean drift
condition for nonlinear discrete-time systems coupled with
a particle filter for state estimation. In other words, we have
chosen to model our problem with equations (7) and (8).

Furthermore, in explicit dual control, one does not have to
propagate the information inside the dynamics with equation
(4) anymore because it is dealt with in a different way. It
is sufficient to propagate µi|0 with equation (5) which is
much simpler. Besides, one wants to solve in practice a
finite dimensional optimization problem so one looks for
control values and not policies anymore. Then, the general
optimization problem associated with our method, denoted

by (P kex), can be written as follows:

min
u0:T−1

Eµk

”

E[
∑T−1
i=0 gex

i (Xi, ui, ξi) + gex
T (XT )|I0]

ı

s.t. µ̃i+1|0 = G
`

µ̃i|0, ui
˘

,
ui ∈ Ui, ∀i = 0, .., T − 1,
µ̃0 = µk.

negative drift condition on u0.

IV. STATE ESTIMATION

From the definition of (P kex), it is clear that dual SMPC
requires the computation of µk. However, in the general
nonlinear case, µk cannot be computed explicitly so approx-
imation methods are needed. Kalman filters are widespread
and easy-to-compute approximations of the posterior distri-
bution but they may fail in the presence of high nonlinearities
and multimodality. That is why we use particle filters that
are known to handle these difficulties at the price of a
higher computational cost. A particle filter approximates the
posterior distribution µk by a set of N particles,

`

xlk
˘

l=1,..,N
valued in Rnx , associated with nonnegative and normalized
weights

`

ωlk
˘

l=1,..,N
. The approximate distribution, denoted

by, µNk , is then defined as follows:

µNk =
∑N
l=1 ω

l
kδxlk , (9)

Algorithm 1 described the steps of a particle filtering
algorithm with adaptive resampling. Furthermore, we define
the conditional expectation of the state, denoted by x̂k
w.r.t. the information Ik and its particle approximation, the
empirical mean of the filter x̂Nk i.e:

x̂k = E[Xk|Ik], x̂Nk =
1

N

∑N
l=1 ω

l
kx

l
k.

V. CONTROL POLICY

The goal of this section is to present our new explicit dual
receding horizon control scheme. The main idea is to priori-
tize the guiding goal by adding a stabilizing constraint on the
first control of the finite horizon optimization problem. This
constraint consists in forcing the decreasing of a Lyapunov-
like function during the first time step starting from the
current estimator the state. It is equivalent to stabilizing an
estimator of the state. The success of such a technique de-
pends highly on the estimation error. Indeed, if the estimation
error is high or even diverges, driving the estimator to the
target does not imply driving the true state to the target. It
is a well known problem in the deterministic setting [15].
In [9] and [8], output feedback stability is proved but it was
assumed that the estimation error converges uniformly w.r.t.
the control. This assumption is not realistic anymore in our
setting because the observations do depend on the control
and the estimation error may diverge if the dual effect is
not taken into account. Accordingly, our method consists in
solving a version of (P kex) where gex

i is based on the Fisher
information matrix and the drift condition comes from the
theory of Markov chains stability.



A. Foster-Lyapunov drift in case of perfect information

Perfect information is met when full knowledge of the
state Xk is available. In the time homogeneous case, the
control is computed from a state feedback control policy i.e.
a measurable maps, denoted by α, that maps a state Xk to a
control Uk. Thus, for any α, one can define the corresponding
closed loop system as follows, ∀k ∈ N:

Xk+1 = f(Xk, α(Xk), ξk), X0 ∼ p0. (10)

A state feedback control policy is said to be admissible if
∀x ∈ Rn, α(x) ∈ U0. Therefore, equation (10) defines also
a time-homogeneous Markov chain whose stability can be
studied via the classical theory of negative drifts conditions
discussed in [16] and recalled in [17]. In proposition 1, we
focus on geometric drifts conditions that are closely related to
Lyapunov conditions for exponential stability for continuous-
time processes.

Algorithm 1 Particle filter with adaptive resampling
1: Create a sample of N particles xl0 according to the law
µ0 and initialize the weights ωl0 with 1

N
2: for i = 0, 1, 2 . . . do
3: Prediction:
4: Given a control ui and the particles

`

xli
˘

l=1,..,N
,

compute the predicted particles by drawing samples from
K i.e.

xli+1|i ∼ K(dxi+1|i, x
l
i, ui), for l = 1, .., N.

5: Correction:
6: Get the new observation Yi+1

7: Compute the updated weights
`

ω̃li
˘

l=1,..,N
thanks to

the likelihood function ρ:

ω̃li = ωliρ(Yi+1, x
l
i+1|i)

8: if Resampling then
9: Draw the a posteriori particles

`

xli+1

˘

l=1,..,N

from the set
´

xli+1|i

¯

l=1,..,N
and

`

ω̃li
˘

l=1,..,N
using a

resampling technique and set ωli+1 = 1
N

10: else
11: Set xli+1 = xli+1|i and ωli+1 = ω̃li/

∑N
l=1 ω̃

l
i

12: end if
13: end for

Proposition 1: Suppose that there exist b > 0 and λmin ∈
[0, 1[, a measurable function V : Rnx −→ [0,+∞[, a
compact set C ⊂ Rnx and an admissible state feedback
control policy α such that E[V (f(x, α(x), ξ0)] ≤ λminV (x),
∀x /∈ C and supx∈CEx[V (X1)] = b

Then, ∀λ ∈ [λmin, 1[,

Ex[V (Xk)] ≤ λkV (x) + b(1− λ)−1,∀k ∈ N, ∀x ∈ Rn,

where Xk is computed with equation (10).
Proposition 1 is a slightly different reformulation of propo-

sition 1 in [17], but its proof follows from the one in [17]. In
particular, we consider that the parameter λ can be chosen

arbitrarily in [λmin, 1[. In practice, λ is a parameter to
tune that determines the convergence speed of the system.
Moreover, as explained in [17], if proposition 1 is verified
for a norm-like function V then for r > 0, Px(‖Xk‖> r)
decreases as the inverse of V so the distribution of state
concentrates itself around 0. That is why, in the rest of the
paper, we suppose that our guiding goal is to drive the system
(1) to 0. To do that, we also suppose that the assumptions in
proposition 1 are fulfilled and notably that the system (1) can
be stabilized with perfect information with some admissible
state feedback control policy α.

B. Receding horizon policy

In our dual MPC scheme, the information is quantified
by the Fisher information Matrix (FIM), denoted by Ji.
Recursive computation of the FIM can be found in [18].
Thus, explicit dual effect is created by minimizing some
functions of the FIM, gfish

i and gfish
T such that, in (P kex) :

gex
i (Xi, Ui, ξi) = geco

i (Xi, Ui, ξi) + gfish
i (Ji), (11)

In (P kex), the drift condition is taken from proposition 1 and,
applied to x̂k only when x̂k /∈ C such that, for some λ ∈
[λmin, 1[:

Ex̂k [V (f(x̂k, u0, ξ0)] ≤ λV (x̂k), when x̂k /∈ C.

It is important to notice that the admissibility of the drift
constraint is guaranteed by the existence of the stabilizing
admissible state feedback policy α.

A good approximation technique to approach (P kex) in
practice is the scenario approach [19]. It appears that, in out-
put feedback MPC, there is a synergy between the scenario
approach and particle filtering. In fact, the initial condition
for each independent scenario is chosen as a particle from
the current set of particles. It improves global performance
compared to a similar technique involving a Kalman filer
in which, the initials conditions are always drawn according
to a unimodal law. This method was already used in [20]
and [13]. The approximation, denoted by

´

P k,Nex

¯

, can be
defined, ∀λ ∈ [λmin, 1[, by:

min
u0···uT−1

∑Ns
l=1 ω

l
k

´∑T−1
i=0 gex

i

`

X l
i , ui, ξ

l
i

˘

+ gex
T

`

X l
T

˘

¯

s.t. X l
i+1 = f(X l

i , ui, ξ
l
i),

ui ∈ Ui,
X l

0 = xlk, ∀l = 1, .., Ns, ∀i = 0, .., T − 1,

1

Ndr

∑Ndr
`=1 V (f(x̂Nk , u0, ξ̃

`
0) ≤ λV (x̂Nk ), when x̂Nk /∈ C,

where:

• Ns < N is the number of scenarios considered. It
is supposed to be less than the number of particles
for computational reasons, so Ns particles must be
extracted from the original set.

• Ndr ∈ N∗ is the size of the sample used to approximate
the expectation in the drift constraint.



• (ξli)i=0,..,T−1,l=1,..,Ns
and (ξ̃`0)`=1,..,Ndr

are i.i.d. ran-
dom variables sampled from pξ.

Additionally, when x̂Nk ∈ C the drift condition is not
necessarily feasible so we decided to apply the stabilizing
policy α to x̂Nk , such that Uk = α(x̂Nk ), as it is done for
classical certainty equivalence controllers. This means that
if x̂Nk enters C there is no probing anymore. It is not a
problem as one can see C as the target set.

C. Global algorithm

The complete Output feedback algorithm is summarized
in Algorithm 2. This method has two main advantages
compared to the one we presented in [13].

First, in [13], both the stability properties and the informa-
tion were incorporated as two terms of the cost. Therefore,
the weights between the terms were difficult to tune and,
especially in receding horizon control where they deeply
influence the convergence of the system. In particular, it
was compulsory to decrease the weights on gfish

i and gfish
T

with time otherwise the system converged to a point that
was far from the target. Moreover, tuning the decreasing
of this weight was also complicated a priori. In our new
method, the stability properties are much less influenced by
the cost because of the drift condition which is a constraint.
The most important parameter to tune is λ, and, in principle,
it influences only the convergence speed of the system and
not its qualitative properties of stability.

Secondly, from a numerical point of view, as stated in [9],
the stability properties are contained in one constraint and
are easier to achieve in practice. Indeed, the convergence
of the system depends little on the quality of the solution of
the optimization problem and much more on its admissibility
which is easy to obtain with classical solvers.

Algorithm 2 Fisher/Lyapunov Output Feedback Control
1: Create a sample of N particles xl0 according to the law
µ0 and initialize the weights ωl0 with 1

N .
2: for k = 0, 1, 2, . . . do
3: if x̂Nk /∈ C then
4: Solve

´

P k,Nex

¯

starting from the particles xlk and
the weights ωlk.

5: Get an optimal sequence (u∗0, . . . , u
∗
T−1).

6: Set Uk = u∗0.
7: else
8: Set Uk = α(x̂Nk )
9: end if

10: Compute the a posteriori particles xlk+1 and weights
ωlk+1 given Uk according to Algorithm 1

11: end for

VI. APPLICATION AND NUMERICAL RESULTS

A. Description of the application

Algorithm 2 has been applied to the guidance and local-
ization of a drone by terrain-based navigation (TBN). The
guiding goal is to drive a drone in a 3D space from an

uncertain initial condition X0 to a compact set centered
around 0. If the original target is not 0 then a translation can
be made to center the problem around 0. It is assumed that
the drone can be described by 3 positions and 3 speeds, Xk =
(xk, yk, zk, v

x
k , v

y
k , v

z
k)
T and the control of 3 accelerations

Uk = (uxk, u
y
k, u

z
k)
T . (xk, yk) represents a horizontal position

and zk an altitude. Its dynamics is linear with bounded
controls such that, for k ∈ N :

Xk+1 = AXk +BUk + ξk, ‖Uk‖≤ Umax, (12)

where Umax > 0 and A ∈ Rnx×nx and B ∈ Rnx×nu
correspond to a discrete-time second order system with
damping on the speed. Because of the constraint on the
control, classical linear controllers are not feasible and the
closed loop system must be nonlinear. The guiding problem
is addressed with a drift constraint taken from proposition
8 in [17] such that V (X) = e‖X‖ and C is a ball centered
around 0 whose radius depends only on the disturbances of
the dynamics. To guarantee the existence of an admissible
stabilizing state feedback policy, α, the maximum control
Umax must be sufficiently high. See [17] for the precise
definition of α, Umax and C.

The speed is supposed to be measured. Concerning the
position, the paradigm of TBN is that only a measure of
the difference between the altitude of the drone, zk, and the
altitude of the corresponding vertical point on the ground
is available. The ground is represented by a map, hm,
that maps a horizontal position (x, y) to the corresponding
height of the terrain. In practice, hm is determined by a
smooth interpolation of data points so it is highly nonlinear.
Therefore, the observation equation is:

h(Xk, ηk) = (zk − hm(xk, yk), vxk , v
y
k , v

z
k)
T

+ ηk.

Because of the potential multimodality of hm, state esti-
mation must be dealt with by a particle filter. Moreover, it
appears very naturally that dual control is required in this
application. Indeed, the quality of the observations depends
on the control and more precisely on the area that is flied over
by the drone. Let us assume that the drone flies over a flat
area with constant altitude then one measurement of height
matches a whole horizontal area and the estimation error on
(xk, yk) is of the order of magnitude of the size of the area.
On the contrary, if the drone flies over a rough terrain, then
one measurement of height corresponds to a smaller area on
the ground and the estimation error is reduced. Finally, an
intuitive good dual control strategy is to go toward the target
avoiding to fly over uninformative areas.

B. Numerical results
Figure 1 represents the horizontal projection of a trajec-

tory obtained by algorithm 2 with the terrain map in its
background. The scenario has been chosen such that, if the
system goes in straight line to the target then it flies over
a flat area. We can see that in figure 1 that, as expected,
the system makes a detour to avoid the flat area, so that
the particles tighten around the true position, and finally
reaches the target. In this run, the algorithm has been stopped



when the target enters the compact C. Figure 2 shows RMSE

Fig. 1. Plot of one trajectory obtained by Fisher/Lyapunov particle control
and of the particles from the particle filter

in horizontal position after 30 Monte Carlo simulations of
three different policies: a constrained LQ MPC with no
information probing, the policy described in this article and
the policy described in [13] where stability was forced by
the minimization of the distance to the target.

Fig. 2. Plot of the RMSE in horizontal position for 3 policies: without the
FIM (blue), with the FIM and the drift (red), with the FIM and the distance
to the target (green)

The simulations were run in MATLAB and the optimiza-
tion problems were solved using the modelling language
AMPL and the solver Ipopt.

VII. CONCLUSION

In this paper, we have presented a new explicit dual output
feedback stochastic MPC for nonlinear systems. Its principle
is to choose at each time step the controls that maximizes the

information over the control that forces the mean decreasing
of some Lyapunov-like function for discrete-time nonlinear
stochastic systems. In particular, it does not involve penal-
ization of the guiding goal in the cost which is a classical
feature of MPC. Output feedback is obtained by coupling the
resolution of an optimization problem with a particle filter.
The method is applied to terrain aided navigation and appears
to be easier to tune that one of our previous method.
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