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Abstract— We introduce continuous Lagrangian reachability
(CLRT), a new algorithm for the computation of a tight and
continuous-time reachtube for the solution flows of a nonlinear,
time-variant dynamical system. CLRT employs finite strain
theory to determine the deformation of the solution set from
time ti to time ti+1. We have developed simple explicit analytic
formulas for the optimal metric for this deformation; this is
superior to prior work, which used semi-definite programming.
CLRT also uses infinitesimal strain theory to derive an optimal
time increment hi between ti and ti+1, nonlinear optimization
to minimally bloat (i.e., using a minimal radius) the state set
at time ti such that it includes all the states of the solution
flow in the interval [ti, ti+1]. We use δ-satisfiability to ensure
the correctness of the bloating. Our results on a series of
benchmarks show that CLRT performs favorably compared to
state-of-the-art tools such as CAPD in terms of the continuous
reachtube volumes they compute.

I. INTRODUCTION

Recent work introduced Lagrangian ReachTube algorithm
(LRT), a new approach for the reachability analysis of con-
tinuous, nonlinear, dynamical systems [8]. LRT constructs a
discrete-time reachtube (or flowpipe) that given a dynamical
system, tightly overestimates the set of reachable states at
each time point.

The main idea of LRT was to construct a ball-overestimate
in a metric space that minimizes the Cauchy-Green stretching
factor at every discrete time instant. LRT was shown to
compare favorably to other reachability analysis tools, such
as CAPD [5], [27] and Flow* [6], [7] in terms of the discrete
reachtube volumes they compute on a set of well-known
benchmarks.

This paper proposes a continuous-time-reachtube exten-
sion of LRT, the motivation for which is two-fold. First, LRT,
while being optimal in the discrete setting, is not sound in
the continuous setting: it is not obvious how to find a ball
tightly overestimating the dynamics between two discrete
points. Second, LRT is not directly applicable to the analysis
of hybrid systems, as the dynamics of a hybrid system may
change dramatically between two discrete time points due to
a mode switch.

The main goal of our algorithm, which we call continuous
Lagrangian ReachTube algorithm (CLRT), is to efficiently
construct an ellipsoidal continuous-reachtube overestimate
that is tighter than those constructed by available state-of-
the-art tools such as CAPD. CLRT combines a number of
techniques to achieve its goal, including infinitesimal strain
theory, analytic formulas for the tightest deformation metric,
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nonconvex optimization, and δ-satisfiability. Computing an
as tight-as-possible Lagrangian continuous-reachtube over-
estimate helps avoid false positives when checking if a set
of unsafe states can be reached from a set of initial states.

The class of continuous dynamical systems in which
we are interested is described by nonlinear, time-variant,
ordinary differential equations (ODEs):

ẋ(t) = f(t, x(t)), (1a)
x(t0) = x0, (1b)

where x : R → Rn. We assume f is a smooth function,
which guarantees short-term existence of solutions. The class
of time-variant systems strictly includes the class of time-
invariant systems.

Given an initial time t0, set of initial states X ⊂ Rn, and
time bound T > t0, CLRT computes a conservative reachtube
of (1), that is, a sequence of time-stamped sets of states
(R1, t1), . . ., (Rk, tk = T ) satisfying:

Reach ((t0,X ) , [ti−1, ti]) ⊂ Ri for i = 1, . . . , k,

where Reach ((t0,X ) , [ti−1, ti]) denotes the set of all reach-
able states of ODE system (1) in the time interval [ti−1, ti].
The time steps are not necessarily uniformly spaced, and are
chosen using infinitesimal strain theory (IST).

In contrast to LRT [8], which only computes the set of
states reachable at discrete and uniformly spaced time steps
ti, for i∈{1, . . ., k}, CLRT computes a tight overestimate for
the set of states reachable in non-uniformly spaced continu-
ous time intervals [ti−1, ti]. Hence, CLRT computes space-
time cylinders overestimating the continuous-time reachtube.

We also note that the LRT approach, as in prior work on
reachability [12], [17], employed semi-definite programming
(SDP) to compute an appropriate weighted norm minimizing
the Cauchy-Green stretching factor (deformation metric). We
instead derive a very simple analytic formula for the tightest
deformation metric. Thus, there is no need to invoke an
optimization procedure to find a tight deformation metric,
as the formula for the tightest one is now available. We also
provide a very concise proof of this fact. Moreover, using
SDP significantly increases the running time of the algorithm
(compared to the approach based on analytical formulas), and
can result in numerical instabilities (refer to the discussion
in [8]) and excessive bloating.

Let us enumerate the key contributions of this work;
1. Computation of tightest Lagrangian reachtubes using ex-
plicit analytic formulas for the deformation metric. 2. Deriva-
tion of continuous-time reachtube bounds by bloating the
discrete-time reachtube via nonconvex optimization. 3. Ap-
plication of infinitesimal strain theory to adaptive time-step
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selection. 4. Computation of the stretching factor is derived
in weighted metric spaces, where the natural enclosures are
ellipsoids. 5. Demonstrate improved performance by using
ellipsoidal bounds in place of boxes, which are more natural
for control theoretic verification problems.

Let Reach ((t0,X ) , ti−1)⊂BMi−1
(xi−1, δi−1), where

BMi−1
(xi−1, δi−1) is the ball computed by LRT

for time ti−1. To construct a continuous reachtube
overestimate for the interval [ti−1, ti], we bloat the
radius of this ball to ∆i−1>δi−1, until it becomes
a tight overestimate for the entire interval; i.e.,
Reach ((t0,X ) , [ti−1, ti])⊂BMi−1

(xi−1,∆i−1).
To ensure that the bloating is as tight as possible, we first

find the largest time ti such that the displacement gradient
tensor of the solutions originating in BMi−1

(xi−1, δi−1)
becomes sufficiently close to linear. Second, to obtain an
initial estimate ∆̂i−1, we assume that f in (1) is convex in the
interval [ti−1, ti], and solve a convex optimization problem.
Third, because for general nonlinear systems f is likely non-
convex, we, through an iterative process where ∆̂i−1 is used
as an initial value, compute a sound estimate of ∆i−1 using
an SMT solver.

We have implemented a prototype of CLRT in C++
and thoroughly investigated its performance on a set of
benchmarks, including those used in [8]. Our results show
that compared to CAPD, CLRT performs favorably in terms
of the continuous-reachtube volumes they compute. Also
note that contrary to LRT, CLRT is fully implemented in
C++, which significantly improves the runtime performance
of our algorithm. Presently, CLRT externally uses CAPD
to compute gradients of the flow, but we know how to
achieve this independently, and we are currently working on
implementing/distributing CLRT as a software library written
in C++.

The rest of the paper is organized as follows. Section II
provides background on infinitesimal strain theory, LRT, and
convex optimization. Sections IV and V describe the bloating
factor and optimization steps that we use. Section VI presents
the CLRT algorithm. Section VII contains our experimental
results. Section IX offers our concluding remarks and direc-
tions for future work.

II. BACKGROUND

This section gives the necessary background, such that
paper is self contained. We present techniques that are used
by the CLRT algorithms presented in Section VI to construct
overestimating tight continuous reachtubes.

A. Finite and Infinitesimal Strain Theory

A central assumption in continuum mechanics is that a
body can be modeled as a continuum, and that the physical
quantities distributed over the body can be therefore repre-
sented by continuous fields [26].

A body B is composed of an infinite number of material
points P and the assignment of each of these material points
to a unique position in space defines a configuration of B.
A reference (or initial) configuration of B occupying region

98 Chapter 3. Kinematics

FIGURE 3.1. The reference and current configurations of a body.

will sometimes be given the same notation, 9( for example.
A prescribed reference configuration of a body B, occupying the region

9( with boundary 89(, is defined against which other configurations of the
body are to be compared. The current configuration of the body, occupying
the region 9(t with boundary 89(t, is the configuration of B at time t. It is
not required that the body ever actually be in the reference configuration.
However, an initial configuration of B, at some time t = to say, is often the
natural choice of reference configuration in elasticity problems. In this case,
the action of some external agents, the nature of which are not of concern
at this juncture, cause the material points of the body to move until, at
time t, they are in new positions which define the current configuration of
the body.

A body B can be thought of as a set of material points, so that each
material point P in B is an element of the set, which is indicated by writing
P E B. When B is in its reference configuration, let the position vector of
a material point P E B relative to some prescribed origin 0 be denoted
by X(P). This will be referred to as the reference position of P. Then,
the region 9( occupied by B when it is in its reference configuration can be
thought of as a set of reference positions:

9( = {X(P) IP E B} , (3.1.1)

the set of all X(P) such that P is in R The material points of B occupy
new positions in the current configuration. When B is in its current con�
figuration, that is, at time t, let the position vector of a material point
P E B relative to the same origin 0 be denoted by x(P, t) (see Figure 3.1).
This will be referred to as the current position of P. Thus, the region 9(t

occupied by B at time t can be thought of as a set of current positions:

9(t = {x(P, t) I P E B} ,

the set of all x(P, t) such that P is in R

(3.1.2)

radu.grosu@tuwien.ac.at

Fig. 1: The reference (or initial) configuration R and the current configuration
Rt of a body B subjected to deformation [26]. A material point P has reference
coordinates X(P ) in R, and current coordinates x(P, t) in Rt, if one uses the
same system of coordinates. The displacement vector u shows how the position of a
material point P changes from R to Rt.

R is used for comparison with the current configurations of
B occupying region Rt at subsequent moments of time t.

Given a material point P ∈B, the position vector X(P )
of P relative to a prescribed origin O in R is called P ’s
reference position. The position vector x(P, t) of P relative
to O in Rt is called the current position of P . For simplicity,
Figure 1 uses the same coordinate systems for R and Rt.
However, as we show later, it is convenient to use different
coordinate systems or vector bases, which minimize the
associated norms of R and Rt. The coordinates of the
reference (undeformed) R are called Lagrangian, whereas
the ones of the current (deformed) Rt are called Eulerian.

The displacement u of a material point P from its position
in R to its position in Rt is defined by the following vector
equation:

u(P, t) = x(P, t)−X(P ) (2)

Assuming that each material point P in B occupies a
single position in space at time t, there is a (nonlin-
ear) vector operator χ, mapping X(P ) to x(P, t), that is,
x(P, t) =χ(X(P ), t). Using χ, the Lagrangian description
of the displacement field is given by the following equation:

u = χ(X(P), t)−X(P ) (3)

A tensor T(P, t) is a physical quantity associated with
the material point P of a body B at the time t. This
representation can be given in either Lagrangian coordi-
nates as T(P, t) = Ψ(X(P ), t) or Eulerian coordinates as
T(P, t) =ψ(x(P, t), t). Since the tensor is the same no
matter in which coordinates it is expressed, the Lagrangian
description is related to the Eulerian description by:

Ψ(X(P ), t) =ψ(χ(X(P ), t), t) (4)

A particularly important (nonsingular) tensor is the deforma-
tion gradient tensor F defined by the following equation:

F = ∇X x(P, t) = ∇X χ(X(P ), t) (5)

By Equations (2,3), the displacement gradient tensor is
related to the deformation gradient tensor as follows:

∇X u = F− I (6)

where I is the identity matrix. A description of the deforma-
tion independent of both translation and rotation is given by a
strain tensor, of which the right Cauchy-Green deformation



Fig. 2: Overview of LRT from [8]. Dashed arrows reflect the
solution flow χ and the evolution of state discrepancy.

tensor C and the Green-St. Venant strain tensor E, are two
examples:

C = FT · F E = (C− I)/2 (7)

Now by using the definition of F from Equation 6, the Green-
St. Venant strain tensor E can be rewritten as follows:

E = [(∇X u) + (∇X u)T + (∇X u)T · (∇X u)]/2 (8)

If the norm ‖∇X u‖� 1, that is, each component of ∇X u is
of order O(ϕ), for some small parameter ϕ, then one speaks
about infinitesimal deformation and the associated theory is
called the infinitesimal strain theory (IST).

In this case, the product (∇X u)T · (∇X u) is of order
O(ϕ2), and it can be therefore neglected. This, leads to the
linearized version ε of E:

ε = [(∇X u) + (∇X u)T ]/2 (9)

which is called the infinitesimal strain tensor ε. Similarly,
the infinitesimal rotation tensor ω is defined as follows:

ω = [(∇X u)− (∇X u)T ]/2 (10)

For infinitesimal deformations, dX = dx, and for any tensor
T, the gradients of T with respect to the Lagrangian and
Eulerian coordinates are the same, as δT/δX = δT/δx [26].
Hence, in IST it is not necessary to distinguish anymore
between Lagrangian and Eulerian coordinates.

B. Review of the LRT Algorithm

The LRT algorithm computes a conservative, discrete-time
reachtube for nonlinear, time-variant dynamical systems,
based on finite strain theory [8].

The main idea of LRT is to use the right Cauchy-Green
strain tensor C to determine, in a tightest metric, the stretch-
ing factor (SF) of a ball propagated by the system dynamics
in the next time step. According to Eqs. (6,7), C = FT · F,
F =∇X x, and x =χ(X, t), where χ(X, t) is the solution-
flow of the system. F is the sensitivity matrix [9].

By ‖ · ‖2 we denote the Euclidean norm, by ‖ · ‖∞
we denote the max norm; we use the same notation for
the induced operator norms; We use the standard notation
� 0 for positive definiteness. Let B(x, δ) be the closed ball
centered at x with radius δ. BM (x, δ) is the closed ball in the
metric space defined by matrix M � 0. By χt1t0 we denote the
flow induced by (1). ∇xχt1t0 denotes the partial derivative in

x of the flow WRT the initial condition at time t1, which
we call the gradient of the flow, also referred to as the
sensitivity matrix [9], [10]. Let M ∈ Rn×n and M � 0.
We say that matrix M defines a metric space when the
metric of this space is defined using the distance function
dM (x, y) =

√
xTMy. We denote the norm weighted by

M � 0 as ‖x‖M =
√
xTMx.

Let matrices M0,M1 � 0 define two metric spaces. Let
BM0

(x0, δ0) be an initial region, given as a ball in metric
space M0, centered at x0 and of radius δ0. Let y0 be a
point on the surface of BM0(x0, δ0), and x′0 =χt1t0(x0) and
y′0 =χt1t0(y0), where χt1t0(x) abbreviates the solution flow
χ(x, t0, t1) of x when time passes from t0 to t1. Let δ1 be
the distance between y′0 and x′0 in the metric space defined
by matrix M1 (see Figure 2 for a geometric representation).

SF Λ measures the deformation of the ball BM0
(x0, δ0)

into the ball BM1(x′0, δ1), i.e. Λ = δ1/δ0. One can thus
use the SF to bound the infinite set of reachable states at
time t1 with the ball-overestimate BM1

(χt1t0(x0), δ1) in an
appropriate metric M1 � 0, which may differ from M0 � 0.
If M1 =M0 we refer to the computed SF as M0-SF or M1-
SF, and if M0 6= M1 we refer to the computed SF as M0,1-
SF.

LRT’s performance on computing tighter overapproxima-
tion depends on an appropriate choice of matrix M1. LRT
computes M1� 0 by solving a semi-definite optimization
problem. Note that the output produced by LRT can be used
to compute a validated bound for the finite-time Lyapunov ex-
ponent (FTLE) ln(Λ)/T , where T is the time horizon. FTLE
is used e.g, in climate research to detect Lagrangian-coherent
structures [23]. The correctness of the LRT algorithm is given
by the following theorem [8].

Theorem 1 (Thm. 1 in [8]): Let t0≤ t1 be time points,
and χt1t0(x) the solution at t1 of the Cauchy problem (1),
with initial condition (t0, x). Let M0,M1 ∈ Rn×n with
M0,M1� 0, and AT0 A0 = M0, AT1 A1 = M1 their respective
decompositions. Let the ball in the M0-norm with center
x0 and radius δ0, X = BM0(x0, δ0) ⊆ Rn be a set of
initial states for (1). Assume that there exists a compact,
conservative enclosure F ⊆ Rn×n for the gradients such
that:

∇xχt1t0(x) ∈ F , ∀x ∈ X . (11)

Suppose Λ> 0 is an upper bound of the whole set of M0,1

SFs [8], that is:

Λ ≥
√
λmax

(
(AT0 )−1FTM1FA

−1
0

)
, ∀F ∈ F . (12)

where λmax represents the maximum eigenvalue. Then,
every solution at time t1 belongs to the ball:

χt1t0(x) ∈ BM1(χt1t0(x0),Λ · δ0). (13)

Observe that
√
λmax

(
(AT0 )−1FTM1FA

−1
0

)
=∥∥A1FA

−1
0

∥∥
2
, where ‖ · ‖2 is spectral (Euclidean) matrix

norm.



III. EXPLICIT ANALYTIC COMPUTATION OF THE
TIGHTEST DEFORMATION METRIC

Observe that Thm. 1 provides freedom in switching
metric spaces used from step to step (by convention,
M0 � 0 denotes the initial metric, and M1 � 0 de-
notes the metric of the solution-set bound after one time-
step). To decide if a change of norm should be per-
formed, we compute M̂1 that minimizes the M1-stretching
factor

(√
λmax

(
(AT1 )−1FTM1FA

−1
1

))
, and decide based

on that; i.e., if the resulting M̂1-stretching factor (SF) is
by some measure significantly smaller than the M0-SF(√

λmax
(
(AT0 )−1FTM0FA

−1
0

))
, then switching to M̂1

may result in a tighter overestimate.
We provide here a surprising argument that the optimal

choice of M̂1 minimizing the M1-SF, as well as its decompo-
sition M̂1 = ÂT1 Â1 can be obtained using a straightforward
computation that we present here.

Motivated by related work [12], [17], the LRT ap-
proach [8] identified a tight metric by solving a Semi-Definite
Programming (SDP) problem. We show that we do not need
to invoke any (convex) optimization technique to find a tight
deformation metric, because actually there exist explicit sim-
ple analytical formulas for the tightest deformation metric.
In particular, this improves upon existing results two-fold:
the computation is much faster, and the computed bounds
are tighter than the ones computed using SDP. We provide
an illustrative example to support our claims in Fig. 3.
We are convinced that our technique can be applied in the
related settings considered in [12], [17], where the authors
compute continuous reach-tubes by overestimating solution
flows using matrix measures.

Our goal is to minimize the value of Λ, the upper bound
for the M1-SF given in Theorem 1. As finding the best
enclosure for a set of SF is a hard problem, we use the
following heuristics. The set of gradients F ⊂ Rn×n in our
algorithm is given by an interval matrix. Our choice of M1 is
determined by the value of the gradient F being the middle
of F , i.e. F = mid (F). We derive an analytical formula for
M̂1 minimizing the M1-SF for F . We devote the remainder
of this section to answer the following crucial question.
For a given gradient matrix F , what is the M̂1 minimizing
the M1 SF?

Definition 1 (Analytic M̂1 � 0): Let F ∈ Rn×n be a full-
rank matrix (in our application a gradient of the flow). Let
V (F ) ∈ Cn×n denote the invertible matrix of normal-
ized eigenvectors of F (column-wise). To make this matrix
invertible in the case of higher-dimensional eigenspaces
(where some eigenvectors are equal), we need to include
generalized eigenvectors. For gradients of nonlinear flow
equal eigenvectors rarely occurs; hence we do not treat the
case of equal eigenvalues in detail.

We define M̂1 as follows:

Â1(F ) = V (F )−1 and M̂1(F ) = Â1(F )T Â1(F ) (14)

When F is known from context, we simply write
Â1 = Â1(F ), and M̂ = M̂1(F ).

We now prove that the choice made in Def. 1 is optimal,
i.e. it minimizes the M1 SF. We remark that our choice of
M̂1 is unique by construction using normalized eigenvectors.

Theorem 2 (M̂1 is optimal): Let F ∈ Rn×n be a full-
rank matrix. Let Â1 and M̂1 be defined by (14). Let the
M1-SF be given by

Λ(A1, F ) =
√
λmax

(
(AT1 )−1FTM1FA

−1
1

)
=
∥∥A1FA

−1
1

∥∥
2

It holds that

min
A1∈Rn×n

A1 is invertible

Λ(A1, F ) = Λ(Â1, F ),

i.e., M̂1 = ÂT1 Â1 minimizes the M1-SF.
Proof: First, for arbitrary A1, it holds that

σ1(A1FA
−1
1 ) = ‖A1FA

−1
1 ‖2 = max

‖x‖=1,‖y‖=1

∣∣yTA1FA
−1
1 x

∣∣,
where σ1 denotes the largest singular value of A1FA

−1
1 .

Let us pick yT = wT , and x = w, where w is the nor-
malized eigenvector corresponding to the largest eigenvalue
of A1FA

−1
1 . We have

‖A1FA
−1
1 ‖2 = max

‖x‖2=1,‖y‖2=1

∣∣yTA1FA
−1
1 x

∣∣ ≥∣∣wTA1FA
−1
1 w

∣∣ = |λmax(A1FA
−1
1 )| = |λmax(F )|.

Hence, the M1 SF cannot be smaller than |λmax(F )|.
Second, we show that this lower bound is in fact attained

for Â1 = Â1(F ) defined by (14). We have

‖Â1FÂ
−1
1 ‖2 =

√
λmax

(
(ÂT1 )−1FT ÂT1 Â1FÂ

−1
1

)
=
√
λmax (diag(|λ1|2, . . . , |λn|2)) = |λmax(F )|,

where λ1, . . . , λn denote the eigenvalues of F .
Remark 1: Let us remark on how we compute matrix Â1

in practice. Generally, this matrix is complex, as the gradient
of the flow is expected to involve some rotation. We do
not work within the field C as we apply algorithms for
bounding eigenvalues of real matrices. Instead, we compute
the equivalent real matrix Â1, such that the resulting product
Â1FÂ

−1
1 is block-diagonal (having two dimensional blocks

corresponding to complex eigenvalues). For example, for

F =

[
1 1
−4 1

]
, we have Â1(F ) =

[
0 0.4472

0.8944 0

]
, and

Â1FÂ
−1
1 =

[
1−2
2 1

]
.

We illustrate the Thm. 2 optimality condition in Figure 3
(Left).

IV. CONSERVATIVE CONTINUOUS-TIME REACHTUBES

We present a simple ellipsoidal construction for tightly
over-estimating the continuous-time segments of a reachtube.
For a given ellipsoidal bound for the set of initial states of
radius δ0, if the radius of this bound is bloated as in Figure 3
(Right), up to a computable bound ∆0, such that:

δ0 + max
x∈BM0

(x0,∆0)

s∈[0,h]

‖h · f(t0 + s, x)‖M0
≤ ∆0,



Fig. 3: (Left) Illustration of optimality condition of Thm. 2

for F =

[
1 1
−4 1

]
, F has conjugate pair of complex

eigenvalues 1 ± i
√

2. SVD decomposition of F reveals it
rotates and transforms unit disc into blue ellipse, where
the radii are equal to the singular values (σ1 = 4.1926,
σ2 = 1.1926), resp. SVD of Â1FÂ

−1
1 reveals, however, that

two singular values are equal σ1 = σ2 = 2.2361. Recall
SF is equal to σ1; although the two “balls” have the same
volume, the circular one results in a significantly smaller SF
(2.2361 versus 4.1926). (Right) The larger ball BM0(x0,∆0)
depicted in blue, is a conservative over-estimate for the
reachtube continuous segment Reach ([t0, t0 + h],X ), that
is, it is such that χ[t0,t0+h]

t0 (BM0
(x0, δ0)) ⊂ BM0

(x0,∆0).

where h is a time increment and f is the dynamics of
the Cauchy problem (1), then the resulting ellipsoid be-
comes a tight overestimate of the whole continuous segment
χ

[t0,t0+h]
t0 (x) ⊂ Rn, representing the set of all values χtt0(x)

of the solution flow of (1), for all times t∈ [t0, t0 + h].

Lemma 1: Given the Cauchy problem (1) with x0 ∈ Rn
the initial state, t0 the current time, h the current time-step,
and χtt0(x) the solution flow, let ∆> 0 and M � 0 be a
matrix defining the metric space being used. Then:

max
x∈BM (x0,∆)

s∈[0,h]

‖h · f(t0 + s, x)‖M ≤ ∆

⇒ χ
[t0,t0+h]
t0 (x0) ⊆ BM (x0,∆)

Proof: Let C([t0, t0 + h],Rn) denote the space of
continuous and differentiable functions defined over the
interval [t0, t0 + h] and domain Rn. Define the operator
Tx0

: C([t0, t0 + h],Rn)→ C([t0, t0 + h],Rn) as follows:

Tx0
(χ)(h′) = x0 +

∫ h′
0
f(t0 + s, χt0 + s

t0 (x0)) ds, h′ ∈ [0, h].

Let C([t0, t0 + h], BM (x0,∆))⊂C([t0, t0 +h],Rn) be the
subspace of continuous, differentiable, and bounded func-
tions having their range contained within BM (x0,∆). We
show that Tx0 maps C([t0, t0+h], BM (x0,∆)) into itself. Let
χ ∈ C([t0, t0 + h], BM (x0,∆)). Then ‖Tx0

(χ)(h′)− x0‖M

is bounded as follows:∥∥∥∥∥
∫ h′

0

f(t0 + s, χt0 + s
t0 (x0)) ds

∥∥∥∥∥
M

≤∫ h′

0

∥∥f(t0 + s, χt0 + s
t0 (x0))

∥∥
M
ds ≤

max
x∈BM (x0,∆)
s∈[0,h′]

‖h′ · f(t0 + s, x)‖M ≤

max
x∈BM (x0,∆)

s∈[0,h]

‖h · f(t0 + s, x)‖M .

The inequalities are due to the fact that χ ∈ C([t0, t0 +
h], BM (x0,∆)). The second and the third ones allow us to
compute the integral explicitly. Now using the assumption
maxx∈BM (x0,∆)

s∈[0,h]

‖h · f(t0 + s, x)‖M ≤ ∆, we can infer that:

Tx0
(χ)(h′) ∈ BM (x0,∆) for all h′ ∈ [0, h].

As χ was arbitrary, Tx0
(C([t0, t0 + h], BM (x0,∆))) is a

subset of the class of continuous functions C([t0, t0 +
h], BM (x0,∆)). For instance, the standard Schauder’s fixed-
point theorem argument shows that the solution of (1) with
the initial condition (t0, x0) – a fixed point of T , satisfies
χt0+h′

t0 (x0) ∈ BM (x0,∆),∀h′ ∈ [0, h].
Theorem 3 (Optimization for a tight overestimate):

Consider the Cauchy problem (1), and let χtt0(x) denote the
flow generated by (1). Let x0 ∈ Rn be an initial state, t0 be
the current time, h be the current time-step, and M0 � 0 be
a matrix defining a metric. Let BM0

(x0, δ0) be given (output
from the LRT algorithm). Then for all x̄ ∈ BM0

(x0, δ0):

δ0 + max
x∈BM0

(x0,∆0)

s∈[0,h]

‖h · f(t0 + s, x)‖M0
≤ ∆0 ⇒

χ
[t0,t0+h]
t0 (x̄) ⊂ BM0

(x0,∆0) (15)
Proof: Pick any x̄ ∈ BM0

(x0, δ0). Rewriting the current
assumption as

max
x∈BM0

(x̄,∆0−δ0)

s∈[0,h]

‖h · f(t0 + s, x)‖M0
≤

max
x∈BM0

(x0,∆0)

s∈[0,h]

‖h · f(t0 + s, x)‖M0
≤ ∆0 − δ0,

the first inequality holds from BM0
(x̄,∆0 − δ0) ⊂

BM0
(x0,∆0). From Lemma 1 it immediately follows that

χ
[t0,t0+h]
t0 (x̄) ⊂ BM0

(x̄,∆0 − δ0) ⊂ BM0
(x0,∆0).

The following Corollary is obtained by performing minor
changes to the proof of Theorem 3.

Corollary 1 (Applying Thm. 3 backwards in time):
Given the ODE system (1), with x0 ∈ Rn the initial state,
t0 the current time, h the current time-step, and χtt0(x) the
solution flow, let ∆0> 0 and M0 � 0 define the metric
space used. Then for all x̄ ∈ BM0

(x0, δ0):

δ0 + max
x∈BM0

(x0,∆0)

s∈[0,h]

‖h · f(t0− s, x)‖M0
≤ ∆0 ⇒

χ
[t0−h,t0]
t0 (x̄) ⊆ BM0

(x0,∆0). (16)



Remark 2: An important consequence of Theorem 3 and
Corollary 1 is that for time invariant systems, condi-
tions (15),(16) imply

δ0 + max
x∈BM0

(x0,∆0)
‖h · f(x)‖M0

≤ ∆0 ⇒

χ
[t0−h,t0]
t0 (x̄) and χ[t0,t0+h]

t0 (x̄) ⊂ BM0
(x0,∆0). (17)

Hence, ball BM0
(x0,∆0) covers both the forward and back-

ward orbits locally for all times [t0 − h, t0 + h] that initiate
within BM0

(x0, δ0).

V. NONCONVEX OPTIMIZATION IN CLRT

A. Bounding the Maximal Vector Field in Metric M0

In Theorem 3 of Section VI, we give a computable con-
dition for determining a tight overestimate of a continuous
reachtube segment, based on the set of initial states in a
ball BM0

(x0, δ0), in some metric M0 � 0. More precisely,
a conservative radius (denoted by ∆0) of the continuous
reachtube segment overestimate needs to satisfy:

max
x∈BM0

(x0,∆0)

s∈[0,h]

‖h · f(t0 + s, x)‖M0
≤ ∆0 − δ0. (18)

Verifying conservativeness of ∆0 requires bounding the
maximal vector field value in a metric given by M0, as in
the left-hand side of (18). We emphasize that any convex
optimization program (COP) for verifying this condition will
not be sound, as we neither assume convexity of f in (1),
nor does it follow from our approach.

An interesting problem in this case is to see if f restricted
to times from time-step adaptation scheme based on IST is
locally convex. If f is still nonconvex, one may need to
further decrease the time-step such that f becomes convex in
this small range, and a COP can be used to find ∆0 satisfying
(18).

Due to a possible lack of convexity, we restate the global
optimization problem of bounding the left-hand side of (18)
as one of ε-satisfiability over the reals [13], [14]. (Normally
referred to as δ-satisfiability, we use the name ε-satisfiability
to avoid confusion with δ0, denoting a ball radius in our
context.) For an initial guess for ∆0− δ0, given for example
by COP, we define the following quantified formula:

∃x∈BM0
(x0,∆0)∃s∈[0,h]‖h · f(t0 + s, x)‖M0

> ∆0− δ0.
(19)

We provide below an interpretation of the ε-satisfiability
answers for (19), where the first answer tells us that ∆0− δ0
is a good bound: UNSAT means that ∀x∈BM0

(x0,∆0),
∀s∈ [0, h], the inequality ‖h · f(t0 + s, x)‖M0

≤ ∆0 − δ0
holds, and hence (18) is satisfied. ε-SAT means that an ε-
weakening is satisfiable, i.e., ∃x ∈ BM0(x0,∆0), ∃s ∈ [0, h],
|‖h · f(t0 + s, x)‖M0 − ε| > ∆0− δ0.

VI. THE CLRT REACHABILITY ALGORITHM

Notation. By [x] we denote a product of intervals (a box),
i.e., a compact and connected set [x] ⊂ Rn. We will use the
same notation for interval matrices.

Definition 2: Given an initial set X , initial time t0, and
target time t1 ≥ t0, we call the following compact sets:
• W⊂Rn a tight reach-set enclosure if ∀x∈X . χt1t0(x) ∈
W .

• F ⊂Rn×n a conservative gradient enclosure if
∀x∈X . ∇xχt1t0(x) ∈ F .

Given a set X ⊂Rn and a time t0, we call a state x∈Rn
reachable within time interval [t1, t2] if there is an initial
state x0 ∈X at time t0 and a time t ∈ [t1, t2], such that x =
χtt0(x0). The set of all reachable states in interval [t1, t2] is
called the reach set and is denoted by Reach((t0,X ), [t1, t2]).

Definition 3 ([11] Def. 2.4): Given an initial set X , initial
time t0, and time bound T , a ((t0, X), T )-reachtube of (1)
is a sequence of time-stamped sets (R1, t1), . . . , (Rk, tk)
satisfying the following properties: (1) t0 ≤ t1 ≤ · · · ≤
tk = T , (2) Reach((t0,X ), [ti−1, ti]) ⊂ Ri,∀i = 1, . . . , k.
We shall henceforth simply use the name reachtube overesti-
mate of the flow defined by ODE system (1). We now present
the CLRT algorithm for computing tight over-estimations
for segments (Ri, ti), with Reach((t0,X ), [ti−1, ti])⊂Ri,
whose union makes up the complete ((t0, X), T )-reachtube
of (1). CLRT therefore computes the whole reachtube over-
estimate of the flow defined by (1). LRT computes discrete-
time slices of the CLRT reachtube.
Input:ODE system (1); Parameters:Time horizon T , initial
time t0, number of discrete-time steps k, and initial time
increment h=T/k (observe that h may change during
execution of the algorithm due to the IST condition); Metric:
Positive-definite symmetric matrix M0 � 0 for initial norm.
Initial region: Bounds [x0]⊂Rn for the center, and the radius
δ0> 0, for the ball BM0(x0, δ0) with norm M0 at initial time
t0. IST threshold: εIST > 0 – threshold used to check for
smallness of the IST displacement gradient tensor. Increment
for ε-satisfiability: Cδ > 1 – increment used for iterative
validation of upper bound for maximal speed within bounds
using ε-satisfiability. Norm switch threshold CM > 0 –
threshold value used to decide if the metric space used should
be updated to a new M̂1.
Output: {[xj ]}kj=1⊂Rn×k: Interval enclosures for ball cen-
ters xj at time t0 + jh. {Mj}kj=1: Norms defining metric
spaces for the ball enclosures. {∆j}kj=1 ∈Rk+: Radii of the
ball enclosures at xj , for j = 1, . . . , k.1

Begin CLRT2

1) Begin IST
a) Compute overestimates for the (deformation) gra-

dient tensor [∇xχt1t0 ([B([x0], δ0)])], and for the
displacement gradient tensor [∇Xu(X, t)].

b) Adjust the time increment h by halving it until
‖[∇Xu(X, t)]‖ < εIST is satisfied.

c) Set t1 = t0 +h.

1Observe that the radius is valid for the Mj norm, BMj
([xj ],∆j) ⊂ Rn

for j = 1, . . . , k is a conservative output, that is, BMj
([xj ],∆j) is an

over-approximation for the set of states reachable at times [t0, t1] starting
from any state (t0, x), such that ∀x ∈ X : Reach((t0,X ), [tj , tj+1]) ⊂
BMj

([xj ],∆j), for j = 1, . . . , k.
2For notational brevity, we use 0 and 1 in the subscript to denote j and

(j + 1), respectively.



2) End IST, Begin improved LRT (see section III)
a) Compute an enclosure for [x1], i.e. the center of

the reachtube at t1, and for the gradient of the
flow initiating at [x0], i.e. [Dxχ

t1
t0([x0])].

b) Compute the optimal deformation metric
M̂1(F ) = Â1(F )T Â1(F ) (see Def. 1) for
F = mid [Dxχ

t1
t0([x0])].

c) If it holds that M0-SF > CM · M̂1-SF, set M1 =
M̂1. Otherwise, set M1 = M0.

d) Compute an upper bound for M0,1-SF (12) (de-
noted Λ), and compute the discrete-time reach-
tube overestimate at time t1:

B1 = BM1([x1],Λ·δ0), Reach((t0,X ), t1) ⊂ B1.

3) End improved LRT, Begin continuous part
a) Initialize ∆0 = δ0 · Cδ .
b) Solve a nonlinear convex optimization problem

to compute δ̃, an approximate maximum of the
left-hand side of (18), and set ∆̂0 = δ0 + δ̃.

c) Update δ̃ to satisfy an upper bound for the global
maximum of the left-hand side of (18) as follows:
i) check following SMT formula using dReal:

∃x∈BM0
(x0,∆̂0)∃s∈[0,h]‖h · f(t0 + s, x)‖M0

> ∆̂0− δ0 = δ̃.

ii) If dReal returns UNSAT, then δ̃ is an upper
bound for the global maximum. Otherwise,
set δ̃ = δ̃ ·Cδ , and ∆̂0 = δ0 + δ̃, go to step i.

d) If we set ∆0 = ∆̂0, then (18) holds, and thus ∆0

is an appropriate radius for the continuous tube.
Otherwise, we set ∆0 = ∆0 · Cδ and go to step
(b).

4) End continuous part
5) For next interval, reset the initial time to t1, and

consider the enclosure for the new initial set as
BM1([x1], δ1).

6) Save BM0
([x0],∆0) satisfying

Reach((t0, BM0([x0], δ0)), [t0, t1]) ⊂ BM0([x0],∆0).

7) If t1 ≥ T terminate. Otherwise, go back to 1.
End CLRT

Proposition 1: Assume that the rigorous tool used by LRT
produces conservative gradient enclosures for (1), and that
LRT terminates on the provided inputs. Let [t0, T ] be the
whole time interval, which is traversed by CLRT in k steps.
Then, the output of the CLRT is a tight reachtube over-
approximation of (1) for all times in [t0, T ]; i.e., for tk+1 =
T : Reach((t0,X ), [tj , tj+1]) ⊂ BMj

([xj ],∆j), for j =
1, . . . , k

Proof: The proof follows from [8, Theorem LRT-
Conservativity], Theorems 2 and 3, and the soundness of
the ε-satisfiability algorithm.

CLRT is also an efficient algorithm. This follows from the
use of IST to derive the proper time increments h, and the
use of nonlinear COP to finding initial estimates ∆̂0, which
are passed to the ε-satisfiability algorithm.

Fig. 4: Comparison of continuous-time reachtubes for Dubins
car example with nonlinear steering function ẋ = cos θ, ẏ =
sin θ, θ̇ = x sin t. See also Table I, row D3. Projection of
computed bounds onto x, y is shown. The left figure presents
all tube segments for times within [5, 10], whereas the
right figure shows one segment per 20 sequential segments
computed by the algorithms. Set of initial states has center
at (0, 0, 0.7854) and radius 0.01.

VII. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented a prototype of CLRT in C++. Our imple-
mentation is based on interval arithmetic; i.e., all variables
used in the algorithm are over intervals, and all computa-
tions performed are executed using interval arithmetic. The
prototype runs the CLRT algorithm in two passes. In the
first pass, overestimates for discrete segments of reachtube
are generated using the LRT algorithm. In the second pass,
we run the procedure for constructing continuous tight over-
estimates, in each time interval from the discrete ones. In
the first pass, we also compute optimal norms by using the
analytical formulas from Def. 1.

To compute an upper bound Λ for the square-root of the
maximal eigenvalue of all symmetric matrices in some inter-
val bounds, we implemented in C++ several algorithms [15],
[25], [24] and used the tightest result available. Source
code, numerical data, and readme file describing compilation
procedure for LRT are available online [16].

Table I summarizes CLRT’s performance on a set of
benchmarks (see [8] for details). Fig. 4 presents a visual
comparison of computed bounds for benchmark D(3). The
table illustrates that CLRT performs much better in all
cases except Mitchell Schaeffer model and biology model.
Typically our algorithm works better for stable systems,
whereas CAPD is specialized for chaotic system or a system
containing unstable regime in its dynamics.

VIII. RELATED WORK

Computing the exact reachable set of (1) is hard, as
these systems do not admit a closed-form solution. Instead,
a conservative (over-approximating) reachtube is computed
to determine if an unsafe region can possibly be reached.
Existing tools and techniques for conservative reachtube
computation can be classified into three categories according
to the time-space approximation they perform : (1) Taylor-
expansion in time, variational-expansion in space (wrapping-
effect reduction) of the solution set, e.g., CAPD [5], [27],
VNode-LP [22], [21], CORA [2]. (2) Taylor-expansion



TABLE I: Performance comparison CAPD. We use following
labels: B(2)- Brusselator, I(2)- Inverse Van der Pol oscillator,
D(3)- Dubins Car, F(2)- Forced Van der Pol oscillator, M(2)-
Mitchell Schaeffer cardiac-cell model, R(4)- Robot arm,
O(7)- Biology model, P(12)-Polynomial system (number in
parenthese denotes dimension). T: time horizon, dt: time step,
ID: initial diameter in each dimension, TV: total volume of
reachtubes in T, AV: average volume of reachtubes in T.

BM
T ID CLRT CAPD

TV AV TV AV

B(2) 10 0.02 0.21 2 × 10−4 0.59 6×−4

I(2) 10 0.02 0.13 6 × 10−5 0.15 7 × 10−5

D(3) 10 0.02 0.24 1 × 10−4 2.8 1 × 10−3

M(2) 10 0.002 0.005 2 × 10−5 0.003 2 × 10−6

R(4) 10 0.02 1.2 1 × 10−12 6.2 1 × 10−10

O(7) 5 10−4 7 × 10−16 7 × 10−19 6 × 10−20 6 × 10−23

P(12) 0.5 10−4 10−34 10−36 6 × 1026 6 × 10−26

in time and space of the solution set, e.g., Cosy Infin-
ity [18], [4], [19], Flow* [6], [7]. (3) Bloating-factor-based
and discrepancy-function-based [11], [12]. Other approaches
to compute conservative reachtubes include the Hamilton-
Jacobi-based method [20], [3] and the recently developed
Runge-Kutta-based method [1]. In this paper, we present an
alternative (and orthogonal) technique based on a stretching
factor that is derived from an over-approximation of the
gradient of the solution-flows (also known as the sensitivity
matrix) and the deformation tensor.

IX. CONCLUSIONS AND FUTURE WORK

We presented CLRT, a new algorithm for computing
tight reachtubes for solution flows of nonlinear systems.
CLRT synergistically combines a number of techniques, e.g.
finite and infinitesimal strain theory, computation of tightest
deformation metric using explicit analytical formulas, δ-
satisfiability, and nonconvex optimization.

Future work includes distributing a C++ implementation
of CLRT, and extending our approach to Hybrid dynamical
systems and PDEs. The implementation of our tool will sig-
nificantly improve its performance on large-scale nonlinear
and continuous dynamical systems.
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