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Probability-Guaranteed Set-Membership State Estimation for
Polynomially Uncertain Linear Time-Invariant Systems

Yiming Wan1, Vicenç Puig2, Carlos Ocampo-Martinez2, Ye Wang2, and Richard D. Braatz3

Abstract— Conventional deterministic set-membership (SM)
estimation is limited to unknown-but-bounded uncertainties.
In order to exploit distributional information of probabilistic
uncertainties, a probability-guaranteed SM state estimation ap-
proach is proposed for uncertain linear time-invariant systems.
This approach takes into account polynomial dependence on
probabilistic uncertain parameters as well as additive stochastic
noises. The purpose is to compute, at each time instant, a
bounded set that contains the actual state with a guaranteed
probability. The proposed approach relies on the extended
form of an observer representation over a sliding window.
For the offline observer synthesis, a polynomial-chaos-based
method is proposed to minimize the averaged H2 estimation
performance with respect to probabilistic uncertain parameters.
It explicitly accounts for the polynomial uncertainty structure,
whilst most literature relies on conservative affine or polytopic
overbounding. Online state estimation restructures the extended
observer form, and constructs a Gaussian mixture model to
approximate the state distribution. This enables computation-
ally efficient ellipsoidal calculus to derive SM estimates with a
predefined confidence level. The proposed approach preserves
time invariance of the uncertain parameters and fully exploits
the polynomial uncertainty structure, to achieve tighter SM
bounds. This improvement is illustrated by a numerical example
with a comparison to a deterministic zonotopic method.

I. INTRODUCTION

Any practically useful state estimation method needs to
deal with imprecise system models and inaccurate sensor
measurements. Set-membership (SM) state estimation aims
at computing a compact set of states that are consistent
with the available measurements, the system model, and
the unknown-but-bounded uncertainties. Convex sets such
as intervals, ellipsoids, and zonotopes have been exploited to
represent SM uncertainties and estimates [9], [13]. This con-
ventional deterministic SM approach can be highly conser-
vative, because it takes into account all possible uncertainty
realizations even though the worst-case scenario occurs with
vanishingly low probability.

Compared to unknown-but-bounded uncertainties, the
probabilistic uncertainty description characterizes not only
the support but also the likelihood of different uncertainty
realizations. This observation motivates combining SM and
probabilistic approaches to compute a probability-guaranteed
SM state estimate, i.e., a compact set of states that contains
the actual state with a guaranteed probability [3], [4], [17].
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Such combined approaches in literature assume arbitrarily
fast time-varying (TV) parametric uncertainties with an affine
or polytopic structure, which could introduce conservative
uncertainty overbounding as physical parameters may not
vary arbitrarily.

In constrast, this paper proposes a probability-guaranteed
SM state estimation approach for uncertain linear time-
invariant (TI) systems. This approach takes into account
polynomial dependence on probabilistic TI uncertain param-
eters as well as additive stochastic noises. The SM state esti-
mates are constructed by exploiting the extended form of an
observer representation over a sliding window. In the offline
design phase, a polynomial-chaos-based observer synthesis
method is used to minimize the averaged H2 performance
with respect to the probabilistic parametric uncertainties.
It explicitly accounts for the polynomial uncertainty struc-
ture, whilst most literature relies on conservative affine or
polytopic overbounding. Online state estimation relies on
restructuring the extended observer form into a TV linear
affine transformation of an uncertainty vector. This enables
efficient computation in approximating state distributions
with Gaussian mixtures (GMs), and deriving probability-
guaranteed SM estimates with ellipsoidal calculus.

This paper is organized as follows. The problem statement
is presented in Section II. Section III describes the closed-
loop representation and its extended form. Section IV pro-
poses the offline observer synthesis, and Section V presents
the online SM estimation. A simulation example and some
conclusions are reported in Sections VI and VII, respectively.

II. PROBLEM STATEMENT

Consider the uncertain discrete-time linear TI system

xt+1 = A(θ)xt + wt, (1a)
yt = C(θ)xt + vt, (1b)

where t ∈ Z+, x ∈ Rnx is the state, y ∈ Rny is the measured
output, θ ∈ Rnθ is the vector of uncertain TI parameters, and
w and v are the stochastic process and measurement noises,
respectively.

Assumption 1: The system matrices A(θ) and C(θ) in (1)
are TI, with known polynomial dependence on θ.

Assumption 2: θ has a bounded support Θ. Its elements
are mutually independent random variables with known
probability density functions (PDFs).

Assumption 3: wt and vt are zero-mean white noises with
known PDFs; and θ, w, and v are mutually independent.

Assumptions 1 and 2 are not restrictive, because (i) non-
polynomial nonlinear dependence on θ can be accurately



approximated by polynomials or piecewise polynomials [15];
and (ii) the correlated entries of θ can be handled by
transforming θ into a new random vector θ′ whose elements
are mutually independent. The PDF of θ can be obtained by
either offline identification from data [10], or the a priori
knowledge that specifies the relative importance of different
points in the uncertainty region Θ.

Remark 1: The TI random parameter θ is inherently dif-
ferent from TV stochastic parameters that are statistically
independent with respect to time. For (1), given the current
state xt, the future state xt+i is correlated with the past state
xt−j since both depend on θ. Hence, the Markov property
does not hold for uncertainty propagation in (1), whilst it
indeed holds from systems with TV stochastic parameters as
in [11], [19] and the references therein.

A probability-guaranteed SM state estimation problem is
addressed in this article. Given the system model (1), the
observations, and the probabilistic distributional information
about θ, wt, and vt, the proposed approach aims at construct-
ing, at each time instant t, a set Xt that contains the actual
state with a guaranteed confidence level γ (0 < γ < 1), i.e.,

Pr{xt ∈ Xt} ≥ γ, (2)

with Pr denoting the probability.

III. CLOSED-LOOP SYSTEM REPRESENTATION

This section constructs a closed-loop representation of the
system (1).

By inserting (1b) into (1a), the closed-loop system repre-
sentation is obtained as

xt+1 = A(θ)xt + wt + L(yt − C(θ)xt − vt)
= Acl(θ)xt + Lyt + wt − Lvt,

(3)

where L denotes the observer gain to be determined, and

Acl(θ) = A(θ)− LC(θ). (4)

Such a closed-loop representation is actually a superposition
of the observer

x̂t+1 = Acl(θ)x̂t + Lyt (5)

and its error dynamics

x̃t+1 = Acl(θ)x̃t + wt − Lvt, (6)

where x̂t and x̃t = xt − x̂t represent the state estimate and
its estimation error, respectively. The observer (5) cannot be
directly used to compute the estimate x̂t since it depends on
the unknown parameter θ. Instead, the closed-loop represen-
tation (3) will be exploited to derive the SM state estimator
in the following, and the error dynamics (6) will be used to
design the observer gain L in Section IV.

Assume that the observer gain L stabilizes Acl(θ) in (4)
for all θ ∈ Θ. From the closed-loop representation (3), an
extended form

xt = Amcl (θ)xt−m +Hy(θ)ym,t−1 +Hw(θ)wm,t−1

−Hy(θ)vm,t−1

(7)

can be derived over a sliding time window [t − m, t − 1],
where

Hy(θ) =
[
Am−1

cl (θ)L Am−2
cl (θ)L · · · L

]
,

Hw(θ) =
[
Am−1

cl (θ) Am−2
cl (θ) · · · I

]
,

sm,t−1 =
[
s>t−m s>t−m+1 · · · s>t−1

]>
,

(8)

and s represents y, w, and v, respectively. Since the spectral
radius of the stabilized Acl(θ) is smaller than 1, the initial
term Amcl (θ)xt−m is negligible when using a sufficiently
large m. Hence (7) can be approximated by

xt ≈ Hy(θ)ym,t−1 +Hw(θ)wm,t−1 −Hy(θ)vm,t−1. (9)

The selection of m involves a tradeoff between the error of
neglecting Amcl (θ)xt−m and the computational complexity of
using (9) to construct SM estimates online.

According to Assumption 1, Hy(θ) defined in (8) is a
polynomial matrix that can be expressed as

Hy(θ) = Ĥy,0 +

N∑
i=1

Ĥy,iψi(θ), (10)

where {ψi(θ), 1 ≤ i ≤ N} are the N monomial bases
included in Hy(θ), and {Ĥy,i} are the coefficient matrices of
Hy(θ) with respect to these monomial bases. Accordingly,
Hy(θ)ym,t−1 can be rewritten as

Hy(θ)ym,t−1 = Ĥy,0ym,t−1 +

N∑
i=1

Ĥy,iym,t−1ψi(θ)

= Ĥy,0ym,t−1 + Ym,t−1ΨN (θ),

(11)

with

Ym,t−1 =
[
Ĥy,1ym,t−1 · · · Ĥy,Nym,t−1

]
, (12)

ΨN (θ) =
[
ψ1(θ) ψ2(θ) · · · ψN (θ)

]>
. (13)

With the above derivations and the definition

η(θ,wm,vm) := Hw(θ)wm,t−1 −Hy(θ)vm,t−1, (14)

(9) can be rewritten in a linear affine form:

xt = Ĥy,0ym,t−1 +
[
Ym,t−1 I

]︸ ︷︷ ︸
Zm,t−1

[
ΨN (θ)

η(θ,wm,vm)

]
︸ ︷︷ ︸

λ(θ,wm,vm)

. (15)

In the second term of (15), the TV coefficient Zm,t−1 is
determined by online measurements, whereas the uncertainty
vector λ(θ,wm,vm) has TI polynomial dependence on θ,
wm, and vm due to Assumptions 2–3 and the definitions
(13)–(15). This structure is critical for the probability-
guaranteed SM estimation in Section V.

IV. A POLYNOMIAL CHAOS APPROACH TO OBSERVER
GAIN DESIGN

The closed-loop representation (3) consists of (i) the
implicit state estimate x̂ from the observer (5); and (ii) the
estimation errors attributed to the error dynamics (6). This
section is devoted to designing the observer gain L such that
the error dynamics (6) is stable and has a minimal averaged



H2 performance. For this purpose, the conventional robust
synthesis approach is not applicable since the error dynamics
(6) has polynomial dependence on θ. Therefore, a polynomial
chaos (PC) based synthesis approach is proposed next.

A. Preliminaries on polynomial chaos expansion

For a random vector θ, a function g(θ) : Rnθ → R with
a finite second-order moment admits a polynomial chaos
expansion (PCE) [18],1

g(θ) =

∞∑
i=0

giφi(θ), (16)

where {gi} denotes the expansion coefficients and {φi(θ)}
denotes the multivariate PC bases. By using the Askey
scheme of orthogonal polynomial bases, this expansion expo-
nentially converges in the L2 sense, which results in accurate
approximations even with a relatively small number of terms
for mild assumptions on the system dynamics [18]. These
basis functions are orthogonal with respect to the PDF f(θ)
of θ ∈ Θ, i.e.,

〈φi(θ), φj(θ)〉 =

∫
Θ

φi(θ)φj(θ)f(θ) dθ = Eθ{φi(θ)φj(θ)}

=

{
1, if i = j

0, otherwise.
(17)

Throughout this article, {φi(θ)} are normalized as in (17).
By exploiting the normalized orthogonality, each PCE co-
efficient gi is computed by gi = 〈g(θ), φi(θ)〉, which can
be calculated via numerical integration [18]. In particular,
φ0(θ) = 1, and the means of g(θ) and φi(θ) are

Eθ{g(θ)} = 〈g(θ), φ0(θ)〉 = g0,

Eθ{φi(θ)} = 〈φi(θ), φ0(θ)〉 =

{
1, for i = 0

0, for i > 0.
(18)

In practical computations, a PCE (16) with an infinite

degree is truncated as g(θ) ≈ ĝ(θ) =
Np∑
i=0

giφi(θ) to a finite

degree p, whose number of terms is Np + 1 = (nθ+p)!
nθ!p! .

B. PCE-expanded error dynamics

In the following, the error dynamics (6) is rewritten as

x̃t+1(θ) = Acl(θ)x̃t(θ) + wt − Lvt, (19)

in order to emphasize the dependence of x̃t on θ. Let x̃i,t(θ)
denote the ith component of the estimation error x̃t(θ). Its
truncated PCE with a sufficiently large degree p is expressed
as x̃i,t(θ) =

∑Np
j=0 x̃

(j)
i,t φj(θ), where {x̃(j)

i,t } is the set of PCE
coefficients. Define

x̃PCE
i,t =

[
x̃

(0)
i,t x̃

(1)
i,t · · · x̃

(Np)
i,t

]>
,

φ(θ) =
[
φ0(θ) φ1(θ) · · · φNp(θ)

]>
, (20)

x̃PCE
t =

[
x̃PCE

1,t · · · x̃PCE
nx,t

]
,

1 Some publications refer to this expansion as being a generalized polynomial
chaos expansion, to denote that the PDF of θ is not restricted to be Gaussian.

then the truncated PCE of the estimation error x̃t(θ) is

x̃t(θ) = (x̃PCE
t )>φ(θ) =

(
φ>(θ)⊗ Inx

)
︸ ︷︷ ︸

Φ>x (θ)

vec
(
(x̃PCE
t )>

)︸ ︷︷ ︸
X̃t

,

(21)
where ⊗ and vec(·) represent the Kronecker product and the
vectorization of a matrix, respectively. In the last equation of
(21), the property vec(EFG) = (G>⊗E)vec(F ) is applied.

Inserting (21) into (19) and left-multiplying by Φx(θ)
leads to

Φx(θ)Φ>x (θ)X̃t+1 = Φx(θ)Acl(θ)Φ
>
x (θ)X̃t + Φx(θ)Bclηt,

(22)
where Bcl =

[
Inx −L

]
and ηt =

[
w>t v>t

]>
. Taking the

mathematical expectation with respect to θ on both sides of
(22) results in the PCE-expanded system

X̃t+1 = AclX̃t + Bclηt (23)

which describes the dynamics of the PCE coefficient vector
X̃t, with

Acl = A− LC, A = Eθ{Φx(θ)A(θ)Φ>x (θ)},
L = INp+1 ⊗ L, C = Eθ{Φy(θ)C(θ)Φ>x (θ)},

Bcl = Eθ{Φx(θ)Bcl} =
[
B>cl 0 · · · 0

]>
,

Φy(θ) = φ>(θ)⊗ Iny .

(24)

The derivations of L and C in (24) exploit the property
Φx(θ)L = LΦy(θ), whose proof is referred to Proposition 3
in [1], while Bcl in (24) is obtained according to (18).

C. PCE-based synthesis

From (21), the averaged H2 estimation performance with
respect to θ for the error dynamics (19) is

lim
t→∞

Eθ,η{x̃>t (θ)x̃t(θ)} = lim
t→∞

Eθ,η{X̃>t Φx(θ)Φ>x (θ)X̃t}

= lim
t→∞

Eη{X̃>t X̃t}, (25)

since Eθ{Φx(θ)Φ>x (θ)} = Inx(Np+1). Therefore, minimizing
the averaged H2 performance lim

t→∞
Eθ,η{x̃>t (θ)x̃t(θ)} is

approximated by minimizing lim
t→∞

Eη{X̃>t X̃t} for the PCE-
expanded system (23).

Proposition 1: The optimization

min
P,L,S

trace{P} (26a)

s.t. P −AclPA>cl − BclQB>cl > 0, P > 0, (26b)

S −Acl(θ)SA
>
cl (θ) > 0, S > 0, ∀θ ∈ Θ, (26c)

is formulated to minimize lim
t→∞

Eη{X̃>t X̃t} while ensur-
ing quadratic stability of the error dynamics (19), where
Q = diag{Qw, Qv} represents the covariance matrix of[
w>t v>t

]>
.

With Proposition 1, the H2 synthesis problem for the error
dynamics (19) has been transformed into (26). The cost func-
tion (26a) and the first constraint (26b) are standard in H2

synthesis for the PCE-expanded system (23). Although (26b)
ensures stability of (23), it is insufficient to imply stability of



the original error dynamics (19), due to the PCE truncation
errors introduced in deriving (23) to approximate (19). To
deal with this issue, (26c) is additionally imposed such that
the quadratic Lyapunov function V (x̃t(θ)) = x̃>t (θ)Sx̃t(θ)
decreases with time, which enforces quadratic stability of the
error dynamics (19). Similar strategies have been used in the
PCE-based control synthesis [7], [16].

Let co{(Ai, Ci)} denote the convex hull of the indicated
vertices (Ai, Ci) such that (A(θ), C(θ)) ∈ co{(Ai, Ci)} for
any θ ∈ Θ. Using standard procedures, the synthesis problem
(26) is then transformed into

min
P,L,S

trace{P} (27a)

s.t.

 P Π Bcl

Π> P 0
B>cl 0 Q−1

 > 0, P > 0, S > 0, (27b)

[
S Γi

Γ>i S

]
> 0, i = 1, · · · , q, (27c)

where q denotes the number of vertices in the polytopic
uncertainty, and Π and Γi are defined as

Π = (A− LC)P, Γi = (Ai − LCi)S.

Equation (27c) is a sufficient condition for ensuring (26c),
and Π and Γi are bilinear terms with regard to P , S, and L.
These bilinear terms cannot be converted into linear terms via
conventional change-of-variables due to the block-diagonal
structure of L = INp+1 ⊗ L [5], [14].

V. PROBABILITY-GUARANTEED SET-MEMBERSHIP
STATE ESTIMATION

In this section, the probability-guaranteed SM state esti-
mate is determined by exploiting the linear affine structure
of (15) and the GM distribution.

Since λ(θ,wm,vm) has TI polynomial dependence on θ,
wm, and vm as analyzed in Section III, its PDF is also TI
and can be approximated offline by a mixture of Gaussians,

p(λ) =

K∑
k=1

πkN (λ;µ
(k)
λ ,Σ

(k)
λ ), (28)

where K is the number of Gaussian components, the mixing
coefficients {πk} satisfy 0 ≤ πk ≤ 1 and

∑K
k=1 πk =

1, and µ
(k)
λ and Σ

(k)
λ represent the mean and covariance

matrix of each Gaussian component, respectively. The offline
procedure for constructing the GM distribution (28) is: (i)
generate a sufficient number of samples {θ(i),w

(i)
m ,v

(i)
m },

and compute λ(i) = λ(θ(i),w
(i)
m ,v

(i)
m ) according to (13)–

(15); and (ii) estimate the GM parameters {πk, µ(k)
λ ,Σ

(k)
λ }

in (28) for the sample distribution of {λ(i)} using the
expectation-maximization (EM) algorithm [2]. Note that K
can be determined by comparing multiple models with
different K’s using Akaike information criterion [2].

Both the EM algorithm and the subsequent analysis rely on
formulating Gaussian mixtures in (28) in terms of a discrete
latent variable z [2]. Let z denote a K-dimensional binary
random vector with each element zk satisfying zk ∈ {0, 1}

and
∑K
k=1 zk = 1, i.e., a particular element zk is equal to

1 and all the other elements are null. In order to express
the GM distribution p(λ) as a marginal distribution ob-
tained from the joint distribution p(λ, z), define the marginal
distribution p(z) and the conditional distribution p(λ|z) as
p(zk = 1) = πk and p(λ|zk = 1) = N (λ;µ

(k)
λ ,Σ

(k)
λ ),

respectively. Therefore, the joint distribution is given by
p(λ, z) = p(z)p(λ|z), and the GM distribution p(λ) in (28)
is then equivalently expressed as

p(λ) =
∑
z

p(z)p(λ|z) =

K∑
k=1

p(zk = 1)p(λ|zk = 1).

This expression explicitly associates every realization of λ
with a discrete value of z, i.e., a realization of λ is generated
from a conditional Gaussian distribution p(λ|zk = 1).

From the online measurement ym,t−1, Ym,t−1 in (12) can
be computed from the coefficient matrices {Ĥy,i} in (10),
and Zm,t−1 is constructed from its definition in (15). With
zk = 1, the conditional distribution of the state in (15) is
then derived as

p(xt|zk = 1) = N (xt;µ
(k)
x,t ,Σ

(k)
x,t ),

µ
(k)
x,t = Zm,t−1µ

(k)
λ , Σ

(k)
x,t = Zm,t−1Σ

(k)
λ Z>m,t−1,

(29)

by performing a linear transformation Zm,t−1λ on the
conditional Gaussian component p(λ|zk = 1). Hence, the
distribution of the state can be also approximated by a
Gaussian mixture

p(xt) =

K∑
k=1

πkN (xt;µ
(k)
x,t ,Σ

(k)
x,t ). (30)

Next, the SM estimate Xt is determined such that (2) holds
for the GM distribution of the state in (30).

Theorem 1: Given the GM distribution of the state in (30),
Pr{xt ∈ Xt} ≥ γ holds if the SM estimate Xt is constructed
as

Xt =

K⋃
k=1

X (k)
t , (31)

where X (k)
t is an ellipsoidal confidence set,

X (k)
t =

{
x
∣∣∣(x− µ(k)

x,t )
>(Σ

(k)
x,t )
−1(x− µ(k)

x,t ) < χ2
nx(γ)

}
,

(32)
defined for the kth Gaussian component p(xt|zk = 1),
and χ2

nx(γ) ∈ R represents the value whose cumulative
probability under the chi-square distribution with nx degrees
of freedom is specified by γ.

Proof: With zk = 1, xt follows the conditional
Gaussian distribution p(xt|zk = 1), and Pr{xt ∈ Xt|zk =

1} ≥ Pr{xt ∈ X (k)
t |zk = 1} ≥ γ holds for Xt and X (k)

t

defined in (31) and (32). Then, it follows that

Pr{xt ∈ Xt} =

K∑
k=1

Pr{xt ∈ Xt|zk = 1}Pr{zk = 1}

≥ γ
K∑
k=1

Pr{zk = 1} = γ.



Remark 2: Due to the possible overlaps among the ellip-
soid sets {X (k)

t }, the actually achieved probability Pr{xt ∈
Xt} can be larger than the predefined confidence level γ.

The proposed approach is summarized in Algorithm 1.

Algorithm 1 Probability-guaranteed SM state estimation
Offline procedures:

1) Select the confidence level γ in (2).
2) Design the observer gain L by solving (27) and select

the length m of the time window in (9).
3) Determine the monomial bases {ψi(θ), i = 0, · · · , N−

1} and the coefficient matrices {Ĥy,i} in (10).
4) Compute the GM approximation (28) to the distribu-

tion of λ(θ,wm,vm) using the EM algorithm.
Online procedures at each time instant t:

1) Compute Ym,t−1 in (12) from the coefficient matrices
{Ĥy,i} in (10) and the online measurement ym,t−1;
and construct Zm,t−1 in (15).

2) Determine {µ(k)
x,t ,Σ

(k)
x,t} in (29) for each Gaussian

component of the state distribution.
3) Construct the SM state estimate Xt in (31) and (32).
4) Compute the interval [xi,t, x̄i,t] for each state element

xi,t by setting xi,t = mink liµ
(k)
x,t −

√
liΣ

(k)
x,t l
>
i and

x̄i,t = maxk liµ
(k)
x,t +

√
liΣ

(k)
x,t l
>
i , where li is a nx-

dimensional row vector whose ith element is 1 and all
the other elements are zero.

VI. SIMULATION EXAMPLE

Consider the uncertain system (1) with

A(θ) =

[
0.9 + 0.2θ3 −0.4

0.1 0.5 + 0.2θ2

]
, C =

[
0.2 0.1

]
,

where the uncertain parameter θ is uniformly distributed over
the interval [−1, 1]. The white noises wt and vt are uniformly
distributed over [−0.2, 0.2] and [−0.06, 0.06], respectively.

First, the proposed approach is applied by implementing
Algorithm 1. In the offline procedures, to account for the
uniformly distributed parameter θ in the observer synthesis,
the Legendre polynomial bases are adopted with a degree 3,
and the resulting observer gain is L =

[
2.3828 0.3574

]>
by solving (27) using the PENBMI solver [6]. In (15), the
estimation window length is determined to be m = 15 by
applying Proposition 1 in [12], such that ‖Amcl (θ)‖∞ ≤
0.002. Then, the vector ΨN (θ) of the nominal bases is
ΨN (θ) =

[
θ2 θ3 · · · θ38 θ39 θ42

]>
for this exam-

ple. For computing the GM approximation to the distribution
of λ(θ,wm,vm) ∈ R41, 105 random samples are generated,
and the EM algorithm is implemented using the MATLAB
built-in function fitgmdist. The obtained GM distribution
of λ has 3 Gaussian components. Figure 1 depicts a two-
dimensional projection of λ onto the subspace of

[
λ2 λ41

]
,

where λi is the ith element of λ. The confidence level γ
is set to be 95%. The online SM estimates are represented
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Fig. 1. The GM approximation to the distribution of [λ2 λ41], where
λi is the ith element of λ ∈ R41. The scatter plots are random samples of
[λ2 λ41]. The contour plot shows the obtained GM distribution of [λ2 λ41].
The red circles represent the means of the 3 Gaussian components.
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Fig. 2. Proposed SM state estimates at time k = 20 and k = 21 when
the uncertain system (1) is simulated with θ = 0.94.

by the union set of 3 ellipsoids derived from 3 Gaussian
components respectively, as illustrated in Figure 2 for the
uncertain system simulated with θ = 0.94. From these SM
estimates, the intervals of two state elements are determined
as shown in Figure 3.

To compare with the proposed method, the zonotopic
approach in [9] is also implemented which utilizes only the
bounds of θ, wt, and vt. To limit the complexity of a state
bounding zonotope, zonotope reduction is performed such
that the maximal number of zonotope generators is 20, where
the definition of a generator is referred to Section 1.1.4 of
[8]. For a particular realization θ = 0.94, the state interval
bounds derived from the zonotopic method are looser than
those of the proposed method, as seen in Figure 3.

To further evaluate the statistical estimation performance,
100 Monte Carlo simulation runs are implemented, with 100
time steps in each run. The tightness of the interval bounds
{[xi,t, x̄i,t], 1 ≤ i ≤ nx} for the actual state {xi,t, 1 ≤
i ≤ nx} is evaluated by the distributions of x̄i,t − xi,t
and xi,t − xi,t, as illustrated in Figure 4. Our proposed
method achieves much tighter interval bounds. The more
conservative results from the zonotopic method in [9] are
due to using a polytopic overbounding for the polynomial
uncertainty structure and adopting the TV assumption for the
uncertain parameters. An SM estimate is considered valid if
the actual state element xi,t belongs to [xi,t, x̄i,t]. For this
simulation example, the rate of valid SM estimates from
our proposed method is 99.36%, which is higher than the
predefined confidence level 95% due to the reason in Remark
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Fig. 3. State interval bounds from our proposed method and the zonotopic
method in [9] when the unknown system (1) is simulated with θ = 0.94.
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Fig. 4. Distributions of the errors of the state interval bounds [xi,t, x̄i,t]
from our proposed method and the zonotopic method in [9].

2. Note also that the 3.59% of the obtained zonotopic esti-
mates do not include the actual states. This has a controversy
to the expectation that a deterministic zonotopic approach
guarantees 100% valid SM estimates by accounting for all
possible realizations of uncertainties. The reason is attributed
to another limitation of the zonotopic approach in [9]: it is
restricted to quadratically stable uncertain systems, whilst the
simulated system is unstable at certain values of θ.

In a MATLAB environment (2.5 GHz processor and 6
GB RAM), our proposed method and the zonotopic approach
spend 3.5 and 0.7 milliseconds in the worst case, respectively,
for each sampling interval. This shows that our proposed
method has heavier computational load as it processes a
batch of measurements over a sliding window.

VII. CONCLUSIONS

A probability-guaranteed set-membership state estimation
approach is proposed for uncertain linear time-invariant
systems with probabilistic uncertainties. It includes (i) an
offline observer synthesis that minimizes the averaged H2

performance using polynomial chaos, and (ii) an extended
observer form with a time-varying linear affine structure
derived for online computing the Gaussian mixture distribu-
tion of state. The set-membership estimate is then obtained

by efficient ellipsoidal calculus. The proposed approach
achieves tighter set-membership estimates due to respecting
time invariance of uncertain parameters and exploiting the
polynomial uncertainty structure.
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