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Abstract— In this paper, we provide a systematic approach
for the design of stabilizing feedback controllers for nonlinear
control systems using the Koopman operator framework. The
Koopman operator approach provides a linear representation
for a nonlinear dynamical system and a bilinear representation
for a nonlinear control system. The problem of feedback
stabilization of a nonlinear control system is then transformed
to the stabilization of a bilinear control system. We propose
a control Lyapunov function (CLF)-based approach for the
design of stabilizing feedback controllers for the bilinear system.
The search for finding a CLF for the bilinear control system
is formulated as a convex optimization problem. This leads
to a schematic procedure for designing CLF-based stabilizing
feedback controllers for the bilinear system and hence the
original nonlinear system. Another advantage of the proposed
controller design approach outlined in this paper is that it
does not require explicit knowledge of system dynamics. In
particular, the bilinear representation of a nonlinear control
system in the Koopman eigenfunction space can be obtained
from time-series data. Simulation results are presented to verify
the main results on the design of stabilizing feedback controllers
and the data-driven aspect of the proposed approach.

I. INTRODUCTION

Providing a systematic procedure for the design of stabilizing
feedback control for a general nonlinear system will have a
significant impact on a variety of application domains. The
lack of proper structure for a general nonlinear system makes
this design problem challenging. There have been several
attempts to provide such a systematic approach, including
convex optimization-based Sum of Square (SoS) program-
ming [1], [2] and differential geometric-based feedback
linearization control [3], [4]. The introduction of operator
theoretic methods from the ergodic theory of dynamical
systems provides another opportunity for the development
of systematic methods for the design of feedback controllers
[5]. The operator theoretic methods provide a linear rep-
resentation for a nonlinear dynamical system. This linear
representation of the nonlinear system is made possible
by shifting focus from state space to space of functions
using two linear and dual operators, namely, the Perron-
Frobenius (P-F) and Koopman operators. The work involving
the third author [6]–[8] was the first to propose a systematic
linear programming-based approach involving transfer P-F
operator for the optimal control of nonlinear systems. This
contribution was made possible by exploiting not only the
linearity but also the positivity and Markov properties of the
P-F operator.
More recently, there has been increased research activity on
the use of Koopman operator for the analysis and control
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of nonlinear systems [9]–[15]. This recent work is mainly
driven by the ability to approximate the spectrum (i.e.,
eigenvalues and eigenfunctions) of the Koopman operator
from time-series data [16]–[19]. The data-driven approach
for computing the spectrum of the Koopman operator is
attractive as it opens up the possibility of employing operator
theoretic methods for data-driven control. In fact, research
works in [12], [14], [20], [21] are proposing to develop
Koopman operator-based data-driven methods for the design
of optimal control and model predictive control for non-
linear and partial differential equations as well. However,
the eigenfunctions of the Koopman operator provide only
a bilinear representation for the nonlinear control system,
and the control of a bilinear system remains a challenging
problem. This is in contrast to the linear programming-based
framework provided for the optimal control of nonlinear
systems using transfer P-F operator in [8], [22], where not
only linearity but positivity and Markov property of the P-F
operator were exploited.
In this paper, we study the more basic problem of de-
signing stabilizing feedback control for a nonlinear system.
We use the control Lyapunov function (CLF) approach
from nonlinear system theory for the design of stabilizing
feedback control [23]. While the search for CLFs for a
general nonlinear system is a difficult problem, we use a
bilinear representation of a nonlinear control system in the
Koopman eigenfunction space to search for a CLF for the
bilinear system. By restricting the search of CLFs to a
class of quadratic Lyapunov functions, we provide a convex
programming-based approach for determining the CLF [24].
The existence of a CLF provides multiple choices for stabi-
lizing feedback controllers. Simulation results are presented
using two different feedback control inputs obtained using
the CLF. Another contribution of this paper is in the use
of time-series data to obtain a bilinear representation of the
nonlinear control system. Hence the approach outlined in this
paper can be viewed as a data-driven approach for the design
of stabilizing feedback control.

II. PRELIMINARIES

In this section, we present some preliminaries on the Koop-
man operator and control Lyapunov function-based approach
on the design of stabilizing feedback controllers for nonlinear
systems.

A. Koopman Operator
Consider a continuous-time dynamical system of the form

ẋ = f(x) (1)

where x ∈ X ⊂ Rn and the vector field f is assumed to
be continuously differentiable. Let φt(x) be the solution of
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the system (1) starting from initial condition x and at time
t. Let O be the space of all observables ϕ : X → C.
Definition 1 (Koopman operator): The Koopman semigroup
of operators Ut : O → O associated with system (1) is
defined by

[Utϕ](x) = ϕ(φt(x)). (2)

It is easy to observe that the Koopman operator is linear on
the space of observables although the underlying dynamical
system is nonlinear. In particular, we have

[Ut(αϕ1 + ϕ2)](x) = α[Utϕ1](x) + [Utϕ2](x).

Under the assumption that the function ϕ is continuously
differentiable, the semigroup [Utϕ](x) = ρ(x, t) can be
obtained as the solution of the following partial differential
equation

∂ρ

∂t
= f · ∇ρ =: AKρ

with initial condition ρ(x, 0) = ϕ(x). From the semigroup
theory it is known [5] that the operator AK is the infinitesi-
mal generator for the Koopman operator, i.e.,

AKρ = lim
t→0

Utρ− ρ
t

.

The linear nature of Koopman operator allows us to define
the eigenfunctions and eigenvalues of this operator as fol-
lows.
Definition 2 (Koopman eigenfunctions): The eigenfunction
of Koopman operator is a function ψλ ∈ O that satisfies

[Utψλ](x) = eλtψλ(x) (3)

for some λ ∈ C. The λ is the associated eigenvalue of the
Koopman eigenfunction and is assumed to belong to the
point spectrum.
The spectrum of the Koopman operator is far more complex
than simple point spectrum and could include continuous
spectrum [9]. The eigenfunctions can also be expressed in
terms of the infinitesimal generator of the Koopman operator
AK as follows, AKψλ = λψλ. The eigenfunctions of
Koopman operator corresponding to the point spectrum are
smooth functions and can be used as coordinates for linear
representation of nonlinear systems.

B. Feedback Stabilization and Control Lyapunov Functions

For the simplicity of presentation, we will consider only the
case of single input in this paper. All the results carry over
to the multi-input case in a straightforward manner. Consider
a single input control affine system of the form

ẋ = f(x) + g(x)u, (4)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ R
denotes the single input of the system, and f, g : Rn → Rn
are assumed to be continuously differentiable mappings.
We assume that f(0) = 0 and the origin is an unstable
equilibrium point of the uncontrolled system ẋ = f(x).
The state feedback stabilization problem associated with
system (4) seeks a possible feedback control law

u = k(x)

with k : Rn → R such that x = 0 is asymptotically stable
within some domain D ⊂ Rn for the closed-loop system

ẋ = f(x) + g(x)k(x). (5)

One of the possible approaches for the design of stabilizing
feedback controllers for the nonlinear system (4) is via
control Lyapunov functions that are defined as follows.
Definition 3: Let D ⊂ Rn be a neighborhood that contains
the equilibrium x = 0. A control Lyapunov function (CLF)
is a continuously differentiable positive definite function V :
D → R+ such that for all x ∈ D \ {0} we have

inf
u

[
Vxf(x) + Vxg(x)u

]
:= inf

u

[
∂V

∂x
· f(x) +

∂V

∂x
· g(x)u

]
< 0.

It has been shown in [25], [26] that the existence of a CLF
for system (4) is equivalent to the existence of a stabilizing
control law u = k(x) which is almost smooth everywhere
except possibly at the origin x = 0.
Theorem 1 (see [4], Theorem 2): There exists an almost
smooth feedback u = k(x), i.e., k is continuously differen-
tiable for all x ∈ Rn \ {0} and continuous at x = 0, which
globally asymptotically stabilizes the equilibrium x = 0 for
system (4) if and only if there exists a radially unbounded
CLF V (x) such that

1) For all x 6= 0, Vxg(x) = 0 implies Vxf(x) < 0;
2) For each ε > 0, there is a δ > 0 such that ‖x‖ < δ

implies the existence of a |u| < ε satisfying Vxf(x) +
Vxg(x)u < 0.

In the theorem above, condition 2) is known as the small
control property, and it is necessary to guarantee continuity
of the feedback at x 6= 0. If both conditions 1) and 2) hold,
an almost smooth feedback can be given by the so-called
Sontag’s formula

k(x) :=

{
−Vxf+

√
(Vxf)2+(Vxg)4

Vxg
if Vxg(x) 6= 0

0 otherwise.
(6)

Besides Sontag’s formula, we also have several other possible
choices to design a stabilizing feedback control law based
on the CLF given in Theorem 1. For instance, if we are
not constrained to any specifications on the continuity or
amplitude of the feedback, we may simply choose

k(x) := −K sign
[
Vxg(x)

]
(7)

k(x) := −KVxg(x) (8)

with some constant gain K > 0. Then, differentiating the
CLF with respect to time along trajectories of the closed-
loop (5) yields

V̇ = Vxf(x)−K
∣∣Vxg(x)

∣∣
V̇ = Vxf(x)−K[Vxg(x)]2.

Hence, by the stabilizability property of condition 1), there
must exist some K large enough such that V̇ < 0 for all
x 6= 0, because whenever Vxf(x) ≥ 0 we have Vxg(x) 6= 0.
On the other hand, the CLFs also enjoy some optimality
property using the principle of inverse optimal control. In



particular, consider the following optimal control problem

minimize
u

∫ ∞
0

(q(x) + u>u)dt (9)

subject to ẋ = f(x) + g(x)u

for some continuous, positive semidefinite function q : Rn →
R. Then the modified Sontag’s formula

k(x) :=

{
−Vxf+

√
(Vxf)2+q(Vxg)2

Vxg
if Vxg(x) 6= 0

0 otherwise
(10)

builds a strong connection with the optimal control. In
particular, if the CLF has level curves that agree in shape
with those of the value function associated with cost (9),
then the modified Sontag’s formula (10) will reduce to the
optimal controller [27], [28].

III. NONLINEAR STABILIZATION AND KOOPMAN
OPERATOR

The control Lyapunov function provides a powerful tool for
the design of a stabilizing feedback controller which also en-
joys some optimality property using the principle of inverse
optimality. However, one of the main challenges is providing
a systematic procedure to find CLFs. For a general nonlinear
system finding a CLF remains a challenging problem. We
propose to exploit the linear nature of Koopman operator to-
wards providing a systematic procedure for computing CLFs
for nonlinear systems. The main idea is to first transform a
nonlinear control system into a bilinear control system using
eigenfunctions of the Koopman operator as coordinates. For
the bilinear control system, one can search for a CLF in
the class of quadratic Lyapunov functions. The search for
quadratic CLFs for bilinear systems can be formulated as an
optimization problem.
For the simplicity of presentation we will consider in this pa-
per the case of single input control system (4). We transform
the system Eq. (4) in bilinear form using eigenfunctions of
the Koopman operator as coordinates. Towards this goal we
let

Ψ(x) := [ψ1(x), . . . , ψN (x)]>

be the Koopman eigenfunctions with eigenvalues λi ∈ C,
for i = 1, . . . , N , and hence ψi’s are in general complex-
valued functions. Utilizing the technique from [29], we can
transform these complex eigenfunctions to real as follows.
Define

Ψ̂(x) := [ψ̂1(x), . . . , ψ̂N (x)]>

where ψ̂i := ψi if ψi is a real-valued eigenfunction and
ψ̂i := 2Re(ψ), ψ̂i+1 := −2Im(ψi), if i and i + 1 are
complex conjugate eigenfunction pairs. Consider now the
transformation as Ψ̂ : Rn → RN as

z = Ψ̂(x).

Then in this new coordinates system Eq. (4) takes the
following form

ż = Az +
∂Ψ̂

∂x
g(x)u. (11)

We now make the following assumption.

Assumption 4: We assume that ∂Ψ̂
∂x g lies in the span of Ψ̂,

i.e., there exists a constant matrix B ∈ RN×N such that

∂Ψ̂

∂x
g = BΨ̂.

Remark 5: Generally speaking, whether Assumption 4 holds
or not depends on how functions ψ̂1, · · · , ψ̂N and g look
like. From our simulation results in Section V, where for all
the control system examples we set g as a constant vector
and use a series of monomials to express ψ̂1, · · · , ψ̂N , we
observe that Assumption 4 is always true.
Remark 6: In case that Assumption 4 fails, numerically we
may estimate the B matrix via a least squares optimiza-
tion that is formulated based on the time-series data of
ψ̂1, · · · , ψ̂N and g. Under these circumstances, we can write
∂Ψ̂
∂x g = BΨ̂ + ∆ for some ∆ ∈ RN as the estimation error.
If we are able to further characterize the quantity of ‖∆‖,
then the control of dynamics (11) can be reformulated as a
robust control problem. We will leave the study of such a
robust control problem for future research.
Using Assumption 4, system Eq. (11) can be written as the
following bilinear control system

ż = Az + uBz. (12)

Now that we have transformed the original nonlinear system
(4) into a bilinear form via the Koopman eigenfunctions
as coordinates, the complexity of designing a stabilizing
feedback can be significantly reduced.
In particular, due to the bilinear structure of the system (12),
one can search for a CLF from a class of quadratic positive
definite functions with the form V (z) = zTPz. In the sequel,
if there exists a quadratic CLF for the bilinear system (12),
then we will say that system (12) is quadratic stabilizable.
Theorem 2: System (12) is quadratic stabilizable if and only
if there exists an N ×N symmetric positive definite P such
that for all non-zero z ∈ RN with z>(PA + A>P )z ≥ 0,
we have z>(PB +B>P )z 6= 0.

Proof: Sufficiency (⇐): Suppose there is a symmetric,
positive definite P that satisfies the condition of Theorem 2.
We can use it to construct V (z) = z>Pz as our Lyapunov
candidate function, and the derivative of V with respect to
time along trajectories of (12) is given by

V̇ = z>P ż + ż>Pz

= z>(PA+A>P )z + uz>(PB +B>P )z.

Since for all z 6= 0 we have z>(PB + B>P )z 6= 0 when
z>(PA + A>P )z ≥ 0, we can always find a control input
u(z) such that

V̇ < 0, ∀z ∈ RN \ {0}.

Therefore, V (z) is indeed a CLF for system (12).
Necessity (⇒): We will prove this by contradiction. Suppose
that system (12) has a CLF in the form of V (z) = z>Pz,
where P does not satisfy the condition of Theorem 2. That
is, there exists some z̄ 6= 0 such that z̄>(PA+A>P )z̄ ≥ 0
but z̄>(PB +B>P )z̄ = 0. In this case, we have

V̇ (z̄) = z̄>(PA+A>P )z̄ ≥ 0



for any input u, which contradicts the definition of a CLF.
This completes the proof.
Below we formulate a convex optimization problem that at-
tempts to obtain a positive definite P satisfying the condition
of Theorem 2, which is

minimize
t>0, P=PT

t− γTrace(PB)

subject to tI − (PA+A>P ) � 0

cmaxI � P � cminI (13)

where cmax > cmin > 0, respectively, are two given positive
scalars forming bounds for the largest and the least eigen-
values of P . The variable t here represents an epigraph form
for the largest eigenvalue of PA+A>P .
Optimization (13) has combined two objectives. On the one
hand, we minimize the largest eigenvalue of PA + A>P .
On the other hand, we try to maximize the least singular
value of PB+B>P the same time. Noticing that it may be
difficult to maximize the least singular value of PB+B>P
directly, we maximize the trace of PB instead and employ
a parameter γ > 0 to balance these two objectives.
Remark 7: When an optimal P ? is solved from (13), we still
need to check whether it satisfies the condition of Theorem 2
or not. So if one P ? fails the condition check, then we may
tune the parameter γ and solve the above optimization again
until we obtain a correct P ?. Nevertheless, we observe from
simulations (see the multiple examples in our simulation
section) that when we choose a γ = 2, optimization (13)
will always yield an optimal P ? that satisfies the condition
of Theorem 2.
Remark 8: We also need to point out that, compared to
searching for a nonlinear CLF for the original nonlinear
system (4), the procedure for seeking a quadratic CLF
for bilinear system (12) becomes quite easier and more
systematic. Furthermore, a quadratic CLF for the bilinear
system is, in fact, non-quadratic (i.e., contains higher order
nonlinear terms) for system (4).
Once a quadratic control Lyapunov function V (z) = z>Pz
is found for bilinear system (12), we have several choices for
designing a stabilizing feedback control law. For instance,
applying the control law (7) or (8) we can construct

k(z) = −β sign
[
z>(PB +B>P )z

]
k(z) = −βz>(PB +B>P )z.

Moreover, given a positive semidefinite cost q(z) ≥ 0, we
may also apply the inverse optimality property to design an
optimal control via Sontag’s formula (10).

IV. DATA-DRIVEN APPROXIMATION OF KOOPMAN
EIGENFUNCTIONS

In this paper, we will use Extended Dynamic Mode De-
composition (EDMD) algorithm for the approximation of
Koopman eigenfunctions [18]. Given the continuous time
system, ẋ = f(x), one can generate the time-series data
from the simulation or the experiment as follows

X = [x1, x2, . . . , xM ], Y = [y1, y2, . . . , yM ] (14)

where xi ∈ X and yi = T (xi) = f(xi)∆t+xi ∈ X . Now let
H = {h1, h2, . . . , hN} be the set of dictionary functions or

observables. The dictionary functions are assumed to belong
to hi ∈ L2(X,B, µ) = G, where µ is some positive measure,
not necessarily the invariant measure of T . Let GH denote
the span of H such that GH ⊂ G. The choice of dictionary
functions is very crucial and it should be rich enough to
approximate the leading eigenfunctions of the Koopman
operator. Define vector-valued function H : X → CN

H(x) :=
[
h1(x) h2(x) · · · hN (x)

]>
. (15)

In this application, H is the mapping from state space to
function space. Any two functions φ and φ̂ ∈ GH can be
written as

φ =

N∑
k=1

akhk = H>a, φ̂ =

N∑
k=1

âkhk = H>â (16)

for some coefficients a and â ∈ CN . Let

φ̂(x) = [U∆tφ](x) + r

where r ∈ G is a residual function that appears because GH
is not necessarily invariant to the action of the Koopman
operator. To find the optimal mapping which can minimize
this residual, let K be the finite dimensional approximation
of the Koopman operator U∆t. Then the matrix K is obtained
as a solution of least square problem as follows

minimize
K

‖GK−A‖F (17)

where

G =
1

M

M∑
m=1

H(xm)>H(xm)

A =
1

M

M∑
m=1

H(xm)>H(ym) (18)

with K,G,A ∈ CN×N . The optimization problem (17) can
be solved explicitly with a solution in the following form

KEDMD = G†A (19)

where G† denotes the psedoinverse of matrix G. Under
the assumption that the leading Koopman eigenfunctions are
contained within GH, the eigenvalues of K are approxima-
tions of the Koopman eigenvalues. The right eigenvectors
of K can be used then to generate the approximation of
Koopman eigenfunctions. In particular, the approximation of
Koopman eigenfunction is given by

ψj = H>vj , j = 1, . . . , N (20)

where vj is the j-th right eigenvector of K, and ψj is the
approximation of the eigenfunction of Koopman operator
corresponding to the j-th eigenvalue.
For the simulation examples in this paper, we choose the
monomials of most degree D as the Koopman dictionary
functions. In bilinear system (12), A ∈ RN×N can be
written as a block diagonal matrix of Koopman eigenvalues
λ1, λ2, . . . , λN such that A(i,i) = λi if ψi is real, and[

A(i,i) A(i,i+1)

A(i+1,i) A(i+1,i+1)

]
= |λi|

[
cos(∠λi) sin(∠λi)
− sin(∠λi) cos(∠λi)

]



if ψi and ψi+1 are complex conjugate pairs. Since the real-
valued Koopman eigenfunctions satisfy Ψ̂(x) = V >H(x),
we can approximate B ∈ RN×N as

∂Ψ̂

∂x
g(x) = V >

∂H

∂x
g(x)

= BΨ̂(x) = BV >H(x) = B̃H(x).

Since ∂H
∂x lies in the span of monomial basis functions

H(x), and the eigenvector matrix V is invertible, the coef-
ficient matrix B̃ can be found exactly, then B = B̃(V >)−1.
Once A and B matrices are obtained, the controller design
problem can be resolved by solving the optimal P satisfying
optimization (13).

V. SIMULATION RESULTS

In this section, we will present the simulation results for
stabilization and optimal control with a variety of unstable
continuous-time dynamical systems.
Simple pendulum oscillator
Consider a controlled 2D pendulum oscillator system given
as follows

ẋ1 = x2 (21)
ẋ2 = 0.01x2 − sin(x1) + u

where x = [θ θ̇] ∈ R2 and u ∈ R is the single input.
The nonlinear system without control has a unique unstable
equilibrium point at the origin. In this example, we will use
the control input defined in the formula (8) with K = 10.
The dictionary function H(x) is chosen as monomials of
most degree D = 5 (i.e., 21 monomials).
For the comparison with the standard approaches, the classic
LQR controller is chosen to stabilize the linearized pendulum

system at the origin point. By choosing Q =

[
1 0
0 0

]
and R = 1, the optimal K matrix is obtained as, K =
[0.4142 0.9202]. For the closed-loop simulation, we ran-
domly choose initial points within [−1, 1]×[−1, 1] and solve
the closed-loop system with ode45 solver in MATLAB.
Both LQR controller and our controller are applied to the
nonlinear pendulum system based on the feedback control
u = −Kx.
In Fig. 1, the closed-loop trajectory with the LQR controller
is converging to the origin in 8 seconds, while the closed-
loop trajectory with the data-driven designed controller (8)
arrives at the origin within 4 seconds. The controller designed
by our approach also performs a shorter controlled path to
the origin as shown in Fig. 1.
Van der Pol oscillator
The Van der Pol oscillator is described by the following
equations

ẋ1 = x2 (22)
ẋ2 = (1− x2

1)x2 − x1 + u

where x ∈ R2 and u ∈ R is the single input. With u = 0, the
vector field of the Van der Pol oscillator has a limit cycle and
an unstable equilibrium point at the origin. In this example,
we will apply different types of control u based on the CLF.
For the approximation of Koopman operator and eigenfunc-
tions, we are using the time-series data with Tfinal = 10,

0 2 4 6 8
-2

0

2

0 2 4 6 8
-2

0

2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5
Open-loop
Close-loop-LQR
Close-loop-Ctrl(8)

Fig. 1: Closed-loop and open-loop trajectories for the 2D
pendulum system

Fig. 2: Closed-loop and open-loop trajectories for the Van
der Pol oscillator with u in (8)

∆t = 0.0001 (i.e., 105 time-series data samples). In this
example, we are using the monomials of most degree D = 5
(i.e., 21 monomials) as the dictionary functions H(x).
For the closed-loop simulation, we randomly choose the
initial points within [−3, 3] × [−4, 4] and solve the closed-
loop system with ode45 solver in MATLAB. By using the
controller 1 defined in equation (8) with K = 10, the closed-
loop trajectory is stabilized to the origin within 10 secs,
while the open-loop trajectory from the same initial condition
converges to the limit cycle, as shown in the Fig. 2.
Without change of initial conditions, the closed-loop simu-
lation applied with controller 2 defined in the formula (10)
is shown in Fig. 3. The closed-loop trajectory converges to
the origin within 1 second.
Lorenz attractor
The control dynamics for the Lorentz system is given by

ẋ1 = σ(x2 − x1) (23)
ẋ2 = x1(ρ− x3)− x2 + u

ẋ3 = x1x2 − βx3

where x ∈ R3 and u ∈ R is the single input. When ρ = 28,
σ = 10, β = 8

3 , the Lorenz system has chaotic solutions,
which means almost all initial points tend to an invariant set
except the origin. In this 3D example, the monomial of most
degree 5 is used as the dictionary functions. It is a more
challenging problem to stabilize a 3D system to the origin
with control u in (8).
For the approximation of Koopman operator and eigenfunc-
tions, the time-series data and time interval are chosen as



Fig. 3: Closed-loop and open-loop trajectories for the Van
der Pol oscillator with u in (10)

Fig. 4: Closed-loop and open-loop trajectories for the Lorenz
attractor with controller u in (8)

Tfinal = 5 and ∆t = 0.001. For the closed-loop simulation,
we randomly initialize the points within [−5, 5]× [−5, 5]×
[0, 20] and solve the closed-loop system with ode15s solver
in MATLAB. In Fig. 4, the open-loop trajectories tend to the
invariant set of Lorenz attractor without control. It is shown
that all the closed-loop trajectories with the controller are
converging to the origin within 2 seconds, which means the
controlled system is stabilized perfectly.

VI. CONCLUSION

In this paper, we provided a systematic approach for the
design of stabilizing feedback control for nonlinear systems.
The proposed systematic approach relied on a bilinear rep-
resentation of the nonlinear control system in the Koopman
eigenfunction space. The stabilization problem for the bilin-
ear control system was solved using the control Lyapunov
function approach. A convex optimization-based formulation
was proposed for the search of quadratic CLFs for the
bilinear system. Simulation results were also presented and
verify the main findings of the paper.
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