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Abstract— In this work, we propose a compositional ap-
proach for the construction of approximations for intercon-
nected systems evolving on Riemannian manifolds. This allows
for larger classes of systems than the ones considered in existing
works defined only over Euclidean spaces. In the proposed
framework, the approximation, itself a control system (possibly
with a lower dimension), can be used as a substitute of the
original system in the controller design process. We employ
a notion of so-called simulation function, constructed using a
(pseudo) Riemannian metric defined over the tangent bundle
of the state space, to quantify the error between concrete
interconnected control systems and their approximations. We
provide a small-gain type condition that enables the construc-
tion of an abstraction for the interconnected control system
compositionally.

I. INTRODUCTION

Controller synthesis for large-scale interconnected systems
to achieve some complex specifications in a reliable and
cost effective way is a formidable task. One line of research
which has been explored to surmount this challenge is to
use a simpler (e.g. lower dimension) (in)finite approximation
(referred to as abstraction) of the given system as a substitute
in the controller design process. Instead of synthesizing a
controller to enforce the complex specifications over the
output of the original system directly, one can synthesize
a controller to enforce that specification on the output of the
abstraction, and then refine that controller to the one for the
original system. The original complex system and abstraction
are related such that the error between their output behaviors
can be quantified.

Instead of constructing abstractions of the complex sys-
tem as a whole (monolithic approach), one can leverage
the fact that many large-scale complex systems can be
regarded as interconnected systems consisting of smaller
control subsystems. This motivates a compositional approach
for the construction of the abstractions in which abstractions
of the original interconnected systems can be provided by
constructing abstractions of the subsystems and their inter-
connections. Recently, there have been several results on
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the compositional construction of (in)finite abstractions of
deterministic control systems including [1], [2], [3], and of
a class of stochastic hybrid systems [4], [5].

All the aformentioned results in the context of (in)finite
abstractions consider systems evolving over the Euclidean
spaces. The state-space of many systems are Riemannian
manifolds [6], and therefore, their analysis requires tools
from differential geometry [7]. In this work, we propose tech-
niques for compositional construction of infinite abstractions
for interconnected control systems evolving over smooth
Riemannian manifolds. We introduce a notion of so-called
simulation functions constructed from (pseudo) Riemannian
metric defined over the Cartesian product of the tangent
bundle of the interconnected control system and that of its
abstraction. Given a network of control subsystems and the
simulation functions between them and their abstractions,
we derive sufficient conditions based on small-gain type
reasoning [8], guaranteeing that a network of abstractions
quantitatively approximates the original network of concrete
subsystems.

II. CONTROL SYSTEMS

A. Notation

The sets of non-negative integer and real numbers are
denoted by N and R, respectively. Those symbols are sub-
scripted to restrict them in the usual way, e.g. R>0 denotes
the positive real numbers. The symbol Rn×m denotes the
vector space of real matrices with n rows and m columns.
For a, b ∈ R with a ≤ b, the closed interval in R is
denoted by [a, b]. For a, b ∈ N and a ≤ b, we use [a; b] to
denote the corresponding interval in N. Given N ∈ N≥1,
vectors xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use
x = [x1; . . . ;xN ] to denote the concatenated vector in Rn
with n =

∑N
i=1 ni. Given a vector x ∈ Rn, we denote by

‖x‖ the Euclidean norm of x. Given matrices M1, . . . ,Mn,
the notation diag(M1, . . . ,Mn) represents a block diagonal
matrix with diagonal matrix entries M1, . . . ,Mn. Given a
function f : R≥0 → Rn, the (essential) supremum of f is
denoted by ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A continuous
function γ : R≥0 → R≥0, is said to belong to class K if it
is strictly increasing and γ(0) = 0; γ is said to belong to
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R≥0 × R≥0 → R≥0 is said to belong to class
KL if, for each fixed t, the map β(r, t) belongs to class
K with respect to r, and for each fixed non zero r, the
map β(r, t) is decreasing with respect to t and β(r, t) → 0
as t → ∞. An (n-dimensional) manifold Mn is a pair
(Mn,A+) where Mn is a set and A+ is a maximal atlas



into Rn, such that the topology induced by A+ is Hausdorff
and second countable. We denote the tangent space of Mn

at x ∈ Mn by TxMn, and the tangent bundle of Mn by
TMn =

⋃
x∈Mn

{x} × TxMn. A curve on the manifold
is a mapping γ : I ⊂ R → Mn. A distance (or metric)
d : Mn ×Mn → R≥0 on a manifold Mn is a continuous
positive function that satisfies d(x, y) = 0 if and only if
x = y for each x, y ∈ Mn, and d(x, z) ≤ d(x, y) + d(y, z)
for each x, y, z ∈Mn. A (pseudo) Riemannian metric [9] on
a smooth manifold Mn is a smoothly varying inner product
on the tangent bundle TMn of manifold Mn. Given Mn,
and a matrix valued map G :Mn → Rn×n such that G(x)
is a positive (semi) definite matrix for each x ∈ Mn, the
(pseudo) Riemannian metric corresponding to the (pseudo)
Riemannian structure G is given by δxTG(x)δy for each x ∈
Mn, δx ∈ TxMn and δy ∈ TxMn. Given two points x, y ∈
Mn, a smooth curve γ : [0, 1] →Mn such that γ(0) = x,
and γ(1) = y, and a (pseudo) Riemannian structure G
defined on Mn, we define the (pseudo) Riemannian energy
functional as EG(γ) =

∫ 1

0
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds. For two

points z1, z2 ∈ Mn, Γ(z1, z2) denotes the set of piecewise
continuous curves connecting z1 and z2: Γ(z1, z2) = {γ :
[0, 1] →Mn|γ is piecewise continuous , γ(0) = z1, γ(1) =
z2}. Given two points x, y ∈ Mn, a Riemannian structure

G defined on Mn, arg min
γ∈Γ(x,y)

∫ 1

0

√
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds is

called a geodesic curve between x and y with respect to G.

B. Control Systems

Now, we define the class of control systems investigated
in this paper.

Definition 2.1: The class of control systems studied in this
paper is a tuple Σ = (Mn,Rm,Rp,U ,W, f,Rq, h), where
• Mn is an n-dimensional state manifold containing

the origin, while Rm,Rp, and Rq, are the external
input, internal input, and output (Euclidean) spaces of
dimension m, p, and q respectively;

• U andW are subsets of sets of all measurable functions
of time taking values in Rm and Rp, respectively;

• f : Mn × Rp × Rm → Mn is the continuously
differentiable state evolution map. We assume that
f(0, 0, 0) = 0;

• h :Mn → Rq is the continuously differentiable output
map;

A control system Σ satisfies

Σ :

{
ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ(t) = h(ξ(t)),
(II.1)

for any υ ∈ U and any ω ∈ W , where a locally absolutely
continuous curve ξ : R≥0 →Mn is called a state trajectory
of Σ, ζ : R≥0 → Rq is called an output trajectory of Σ. We
also write ξaυω(t) to denote the value of the state trajectory
at time t ∈ R≥0 under the input trajectories υ and ω from
initial condition ξaυω(0) = a, where a ∈ Mn. We denote
by ζaυω the output trajectories corresponding to the state
trajectory ξaυω .

Definition 2.2: Given any

Σ = (Mn,Rm,Rp,U ,W, f,Rq, h),

the variational control system of Σ is given by the tuple

δΣ = (TMn,Rm,Rp,U ,W, δf,Rq, δh),

where for every [x; δx] ∈ TMn, u ∈ Rm, δu ∈ Rm, w ∈
Rp, and δw ∈ Rp:

δf(x, δx, u, δu, w, δw) :=
∂f

∂x
(x, u, w)δx+

∂f

∂u
(x, u, w)δu

+
∂f

∂w
(x, u, w)δw

δh(x, δx) :=
∂h

∂x
(x)δx.

Remark 2.3: If the control system Σ does not have inter-
nal inputs, the definition of the control system in Definition
2.1 reduces to the tuple

Σ = (Mn,Rm,U , f,Rq, h).

Correspondingly, the equation (II.1) describing the state and
output trajectories reduces to:

Σ :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)).
(II.2)

We use the notion of control system in (II.2) later to refer
to an overall interconnected control system. The variational
control system of Σ can be defined similar to Definition 2.2.

Definition 2.4: Let

Σ = (Mn,Rm,Rp,U ,W, f,Rq, h),

and
Σ̂ = (Mn̂,Rm̂,Rp, Û , Ŵ, f̂ ,Rq, ĥ),

be two control subsystems with the same internal input and
output space dimension. We define the augmented system

Σ̃ = (Mñ,Rm̃,R2p, Ũ , W̃, f̃ ,Rq, h̃),

where Mñ =Mn ×Mn̂, Ũ = U × Û , W̃ =W ×Ŵ , m̃ =
m+ m̂, and for each x ∈ Mn, x̂ ∈ Mn̂, u ∈ Rm, û ∈ Rm̂,
w ∈ Rp, and ŵ ∈ Rp:

f̃(x̃, ũ, w̃) :=

[
f(x, u, w)

f̂(x̂, û, ŵ)

]
,

h̃(x̃) := h(x)− ĥ(x̂),

where x̃ = [x; x̂], ũ = [u; û], and w̃ = [w; ŵ].
Definition 2.5: Let Σ = (Mn,Rm,U , f,Rq, h) and Σ̂ =

(Mn̂,Rm̂, Û , f̂ ,Rq, ĥ) be two control systems with the same
output space dimension. We define the augmented system
Σ̃ = (Mñ,Rm̃, Ũ , f̃ ,Rq, h̃), whereMñ =Mn×Mn̂, Ũ =
U × Û , m̃ = m + m̂, and for each x ∈ Mn, x̂ ∈ Mn̂,
u ∈ Rm, and û ∈ Rm̂:

f̃(x̃, ũ) :=

[
f(x, u)

f̂(x̂, û)

]
,

h̃(x̃) := h(x)− ĥ(x̂),

where x̃ = [x; x̂], and ũ = [u; û].



III. SIMULATION FUNCTIONS

In this section, we introduce a notion of so-called simu-
lation functions, which is used to quantify the closeness of
output trajectories of the concrete systems and the ones of
their abstractions.

Definition 3.1: Consider two control subsystems

Σ = (Mn,Rm,Rp,U ,W, f,Rq, h)

and
Σ̂ = (Mn̂,Rm̂,Rp, Û , Ŵ, f̂ ,Rq, ĥ)

and the corresponding augmented system

Σ̃ = (Mñ,Rm̃,R2p, Ũ , W̃, f̃ ,Rq, h̃)

as in Definition 2.4. Let

δΣ̃ = (TMñ,Rm̃,R2p, Ũ , W̃, δf̃ ,Rq, δh̃)

be the variational control system of Σ̃ as defined in Definition
2.2. Suppose there exists some positive constants α and
λ, a matrix valued function G : Mñ → Rñ×ñ such that
G(x̃) is a positive (semi) definite matrix for all x̃ ∈ Mñ,
functions ψext ∈ K∞ ∪ {0}, ψint ∈ K∞ ∪ {0} and a
continuously differentiable function1 k :Mñ×Rm̂×Rp →
Rm which satisfies k(0, 0, 0) = 0, such that the following
two conditions hold:2

• For any x̃ ∈Mñ:

G(x̃) � α

(
∂h̃

∂x̃

)T (
∂h̃

∂x̃

)
. (III.1)

• For any [x̃; δx̃] ∈ TMñ, û ∈ Rm̂, δû ∈ Rm̂,
ŵ ∈ Rp, δŵ ∈ Rp, if we choose u using the map
u = k(x̃, û, ŵ), then for all w ∈ Rp, δw ∈ Rp:

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ, w̃)

)
δx̃

+ 2δw̃T
∂f̃

∂w̃

T

G(x̃)δx̃+ 2δũT
∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃+ ψint(‖δw − δŵ‖) + ψext(‖δû‖),
(III.2)

where, δũ = [δu; δû], δu = ∂k
∂x̃δx̃ + ∂k

∂ûδû + ∂k
∂ŵ δŵ,

w̃ = [w; ŵ], and δw̃ = [δw; δŵ].
then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

γ̃′(s)TG(γ̃(s))γ̃′(s)ds,

is called a simulation function from Σ̂ to Σ with respect to
the (pseudo) Riemannian structure G. We call Σ̂ (preferably
with n̂ < n) an abstraction of Σ if there exists a simulation
function from Σ̂ to Σ.

The next theorem shows the usefulness of the existence
of a simulation function in quantifying the closeness of two
control subsystems.

1We refer to k as the interface map.
2Here, for brevity, we do not write the arguments of the partial derivatives

explicitly.

Theorem 3.2: Let Σ = (Mn,Rm,Rp,U ,W, f,Rq, h)
and Σ̂ = (Mn̂,Rm̂,Rp, Û , Ŵ, f̂ ,Rq, ĥ) be two control sys-
tems. Suppose VG, associated with the (pseudo) Riemannian
structure G and the interface map k, is a simulation function
from Σ̂ to Σ, then there exists β ∈ KL, ψ̄ext ∈ K∞ ∪ {0},
ψ̄int ∈ K∞ ∪ {0} such that for any x ∈ Rn, x̂ ∈ Rn̂, υ̂ ∈ Û
and ω̂ ∈ Ŵ , if we choose υ ∈ U using k, then the following
inequality holds for any t ∈ R≥0 and any ω ∈ W:

‖ζxυω(t)− ζ̂x̂υ̂ω̂(t)‖ ≤ β(VG(x, x̂), t) + ψ̄ext(‖υ̂‖∞)

+ ψ̄int(‖ω − ω̂‖∞). (III.3)
Proof: Consider two points x̃ = [x; x̂] ∈ Mñ and

0 ∈ Mñ, and a geodesic χ : [0, 1] → Rñ, with respect to
the (pseudo) Riemannian structure G, such that χ(0) = 0,
and χ(1) = x̃. The energy functional corresponding to this
geodesic is given by

VG(x̃) = EG(x̃, 0) =

∫ 1

0

χ′(s)TG(χ(s))χ′(s)ds.

Let ξ̃x̃ν̃ω̃ = [ξxνω; ξ̂x̂ν̂ω̂] be the solution trajectory of Σ̃
for any initial condition x̃ ∈ Mñ, under the external input
trajectory ν̃ = [ν; ν̂], where ν(t) = k(ξ̃x̃ν̃ω̃(t), ν̂(t), ω̂(t)),
for all t ∈ R≥0, for any ν̂ ∈ Û , and under internal input
trajectory ω̃ = [ω; ω̂], where ω ∈ W , and ω̂ ∈ Ŵ .

For a fixed t ∈ R≥0, consider the straight line η̂(s, t)
= sν̂(t) in s, where s ∈ [0, 1]. For any fixed t ∈ R≥0,
the curve η̂(·, t) : [0, 1] → Rm̂ is a geodesic, with respect
to the Euclidean metric, on Rm̂ joining η̂(0, t) = 0 and
η̂(1, t) = ν̂(t). For a fixed t ∈ R≥0, consider the straight

line η̃w(s, t) =
[
ηw(s, t)
η̂w(s, t)

]
= s

[
ω(t)
ω̂(t)

]
in s, where s ∈ [0, 1].

For any fixed t ∈ R≥0, the curve η̃w(·, t) : [0, 1] → R2p

is a geodesic, with respect to the Euclidean metric, on R2p

joining η̃w(0, t) = 0 and η̃w(1, t) =

[
ω(t)
ω̂(t)

]
.

For any s ∈ [0, 1], let φ̃(s, ·) : R≥0 → Rñ
be the solution trajectory of Σ̃ from initial condition
χ(s) under the external input η̃u(s, ·), where η̃u(s, t) =[
k(φ̃(s, t), η̂(s, t), η̂w(s, t))

η̂(s, t)

]
, and the internal input η̃w(s, ·),

where η̃w(s, t) = s

[
ω(t)
ω̂(t)

]
∀t ∈ R≥0. Note that φ̃(0, t) = 0,

and φ̃(1, t) = ξ̃x̃ν̃ω̃(t).
For brevity, we denote ∂

∂s φ̃(s, t) =: ρ̃(s, t). Note that

∂

∂t
ρ̃(s, t) =

∂2

∂t∂s
φ̃(s, t) =

∂2

∂s∂t
φ̃(s, t)

=
∂

∂s
f̃(φ̃(s, t), η̃u(s, t), η̃w(s, t))

=
∂f̃

∂x̃

∂

∂s
φ̃(s, t) +

∂f̃

∂ũ

∂

∂s
η̃u(s, t) +

∂f̃

∂w̃

∂

∂s
η̃w(s, t)

=
∂f̃

∂x̃
ρ̃(s, t) +

∂f̃

∂ũ

[
∂k
∂x̃ ρ̃(s, t) + ∂k

∂û ν̂(t) + ∂k
∂ŵ ω̂(t)

ν̂(t)

]
+
∂f̃

∂w̃

[
ω(t)
ω̂(t)

]
.



Define

l(t) =

∫ 1

0

ρ̃(s, t)TG(φ(s, t))ρ̃(s, t)ds,

i.e. l(t) is the energy functional of the curve φ̃(·, t), with
respect to G. We have

d

dt
l(t) =

∫ 1

0

∂

∂t
ρ̃(s, t)TG(φ̃(s, t))ρ̃(s, t)ds

=

∫ 1

0

ρ̃T

(
∂f̃

∂x̃

T

G+G
∂f̃

∂x̃
+
∂G

∂x̃
f

)
ρ̃ds

+ 2

∫ 1

0

[
∂k
∂x̃ ρ̃+ ∂k

∂û ν̂ + ∂k
∂ŵ ω̂

ν̂

]T
∂f̃

∂ũ

T

Gρ̃ds

+ 2

∫ 1

0

[
ω
ω̂

]T
∂f̃

∂w̃

T

Gρ̃ds,

where, again, we dropped explicit arguments for clarity in
the last expression. From (III.2), one has:

d

dt
l(t) ≤ −λ

∫ 1

0

ρ̃(s, t)TG(φ̃(s, t))ρ̃(s, t)ds

+

∫ 1

0

ψext

(∣∣∣∣∣∣∣∣∂η̂(s, t)

∂s

∣∣∣∣∣∣∣∣) ds
+

∫ 1

0

ψint

(∣∣∣∣∣∣∣∣ ∂∂sηw(s, t)− ∂

∂s
η̂w(s, t)

∣∣∣∣∣∣∣∣) ds
≤ −λ

∫ 1

0

ρ̃(s, t)TG(φ̃(s, t))ρ̃(s, t)ds

+ ψint(‖ω(t)− ω̂(t)‖)
∫ 1

0

ds

+ ψext(‖ν̂(t)‖)
∫ 1

0

ds

≤ −λl(t) + ψext(‖ν̂‖∞) + ψint(‖ω − ω̂‖∞).

It follows from the comparison lemma [10] that

l(t) ≤ e−λtl(0) +
1

λ
ψext(‖ν̂‖∞) +

1

λ
ψint(‖ω − ω̂‖∞).

Note that l(0) = VG(ξxνω(0), ξ̂x̂ν̂ω̂(0)) = VG(x̃). Now
using the fact that for any t ∈ R≥0, l(t) is not neces-
sarily the minimum energy functional corresponding to a
geodesic because φ̃(s, t) is not necessarily a geodesic, i.e.
VG(ξxνω(t), ξ̂x̂ν̂ω̂(t)) ≤ l(t), one has:

VG(ξxνω(t), ξ̂x̂ν̂ω̂(t)) ≤ e−λtVG(ξxνω(0), ξ̂x̂ν̂ω̂(0))

+
1

λ
ψext(‖ν̂‖∞) +

1

λ
ψint(‖ω − ω̂‖∞). (III.4)

For every x ∈ Rn, x̂ ∈ Rn̂, we use (III.1) and the Schwarz

inequality to obtain:

α‖h1(x)− ĥ1(x̂)‖2 = α‖h̃(x̃)‖2

≤ α

∫ 1

0

√
χ′(s)T

∂h̃1

∂x̃
(χ(s))T

∂h̃1

∂x̃
(χ(s))χ′(s)ds

2

≤
(∫ 1

0

√
χ′(s)TG(χ(s))χ′(s)ds

)2

≤
∫ 1

0

χ′(s)TG(χ(s))χ′(s)ds = VG(x̃), (III.5)

where x̃ = [x; x̂]. Combining (III.5) with (III.4), one
can conclude that (III.3) is satisfied with β(r, s) =√

r
αe−

λ
2 s, ψ̄ext(r) =

√
1
αλψext(r), and ψ̄int(r) =√

1
αλψint(r),∀s, r ∈ R≥0.

IV. INTERCONNECTED SYSTEMS

Here, we define the interconnection between the control
subsystems by defining the relationship between the outputs
and internal inputs. Consider N ∈ N≥1 control subsystems

Σi = (Mni ,Rmi ,Rpi ,Ui,Wi, fi,Rqi , hi),

i ∈ [1;N ], with partitioned internal inputs and outputs

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], wij ∈ Rpij

yi = [yi1; . . . ; yiN ], yij ∈ Rqij (IV.1)

and the output function

hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (IV.2)

We interpret the outputs yii as external ones, whereas the
outputs yij with i 6= j are internal ones which are used to
define the interconnected control system. In particular, we
assume that the dimension of wij is equal to the dimension
of yji i.e. the following dimension constraints hold:

pij = qji, ∀i, j ∈ [1;N ], i 6= j. (IV.3)

If there is no connection from the control system Σi to
Σj , then we assume that the connecting output function is
identically zero for all arguments i.e. hij ≡ 0. Now we
provide the definition of the interconnected control system.

Definition 4.1: Consider N ∈ N≥1 control subsystems

Σi = (Mni ,Rmi ,Rpi ,Ui,Wi, fi,Rqi , hi),

i ∈ [1;N ], with the input-output configuration given by
(IV.1), (IV.2) and (IV.3). The interconnected control system

Σ = (Mn,Rm,U , f,Rq, h),

denoted by I(Σ1, . . . ,ΣN ), follows by Mn = ΠN
i=1Mni ,

m =
∑N
i=1mi, q =

∑N
i=1 qii and the functions

f(x, u) =
[
f1(x1, u1, w1); . . . ; fN (xN , uN , wN )

]
,

h(x) = [h11(x); . . . ;hNN (xN )],

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], and the in-
terconnection variables constrained by wij = yji, for all
i, j ∈ [1;N ], i 6= j.



V. COMPOSITIONALITY RESULT

In this section we provide sufficient conditions under
which an interconnection of abstractions of control systems,
is an abstraction of the original interconnected system. We
assume that we are given N ∈ N control systems

Σi = (Mni ,Rmi ,Rpi ,Ui,Wi, fi,Rqi , hi),

where i ∈ [1;N ], together with the corresponding abstrac-
tions

Σ̂i = (Mn̂i ,Rm̂i ,Rpi , Ûi, Ŵi, f̂i,Rqi , ĥi),

where i ∈ [1;N ] and with simulation function VGi , associ-
ated with the (pseudo) Riemannian structure Gi, from Σ̂i to
Σi. We use αi, λi, ψiext, and ψiint to denote the correspond-
ing constants and functions appearing in Definition 3.1. We
require the following assumptions in order to provide the
compositionality result:

Assumption 1: For any i, j ∈ [1;N ], i 6= j, there exists a
positive constant δij such that for any s ∈ R≥0:

hji ≡ 0 =⇒ δij = 0 and

hji 6≡ 0 =⇒ ψiint

(
(N − 1)

√
s

αj

)
≤ δijs.

For notational simplicity we define the matrix ∆ ∈ RN×N
with its components given by ∆ii = 0 for i ∈ [1;N ] and
∆ij = δij for i, j ∈ [1;N ], i 6= j. The next theorem
provides a compositionality approach on the construction of
abstractions of interconnected control systems and that of the
corresponding simulation functions.

Theorem 5.1: Consider the interconnected control system
Σ = I(Σ1, . . . ,ΣN ), induced by N control subsystems Σi.
Suppose each subsystem Σi admits an abstraction Σ̂i with
the corresponding simulation function VGi with respect to
(pseudo) Riemannian metric Gi. If Assumption 1 holds and
there exists a vector µ = [µ1; . . . ;µN ], where µi ≥ 1 ∀i ∈
[1;N ], such that the inequality

µT (−Λ + ∆) < 0 (V.1)

is satisfied3, where Λ = diag{λ1, . . . , λN}, then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

γ̃′(s)TG(γ̃(s))γ̃′(s)ds,

is a simulation function from the interconnected control
system Σ̂ = I(Σ̂1, . . . , Σ̂N ) to Σ, where

G(x̃) =


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 ,
x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i] ∈ Mni ×Mn̂i ∀i ∈
[1;N ].

3We interpret the inequality component-wise i.e. for x ∈ RN we have
x < 0 iff every entry xi < 0, i ∈ {1, . . . , N}

Proof: For any xi ∈ Mni , and x̂i ∈ Mn̂i , i ∈ [1;N ],
define

h̃(x̃) :=

 h̃1(x̃1)
...

h̃N (x̃N )

 :=

 h1(x1)− ĥ1(x̂1)
...

hN (xN )− ĥN (x̂N )

 ,
where x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i], ∀i ∈ [1;N ]. One
has:

∂h̃

∂x̃
(x̃) =


∂h̃1

∂x̃1
(x̃1) 0 . . . 0

0 ∂h̃2

∂x̃2
(x̃2) . . . 0

...
. . .

...
0 . . . 0 ∂h̃N

∂x̃N
(x̃N )

 ,
and

α

(
∂h̃

∂x̃

)T
∂h̃

∂x̃

� diag

α1

(
∂h̃1

∂x̃1

)T
∂h̃1

∂x̃1
, . . . , αN

(
∂h̃N
∂x̃N

)T
∂h̃N
∂x̃N


�


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 = G(x̃),

where α = min{α1, . . . , αN}. Thus, the condition (III.1) is
satisfied with α = α. Now we prove inequality (III.2). For
all i ∈ [1;N ], consider any x̃i = [xi; x̂i] ∈ Mni ×Mn̂i ,
δxi = [δxi; δx̂i] ∈ TxiMni × Tx̂iMn̂i , ûi ∈ Rm̂i , and
any δûi ∈ Rm̂i . Under the map ui = ki(x̃i, ûi, ŵi), (III.2)
is satisfied for each pair of subsystems Σi and Σ̂i, with
the internal inputs given by wij = yji = hji(xj), and
ŵij = ŷji = ĥji(x̂j). The corresponding differential internal
inputs are given δwij = δyji =

∂hji
∂xj

δxj , and δŵij = δŷji =
∂ĥji
∂x̂j

δx̂j . We consider the time derivative of the function
S(x̃, δx̃) = δx̃TG(x̃)δx̃ along the solution trajectory and
employ the conditions (V.1) which results in the chain of
inequalities (V.2), where we use the triangle inequality and
the following inequality [11]

ψiint(r1 + · · ·+ rN−1) ≤
N−1∑
i=1

ψiint((N − 1)ri).

We define the vector δû = [δû1; . . . ; δûN ], and the function

ψext(s) :=

max
~s≥0

∑N
i=1 µiψiext(si)

s.t. ‖~s‖ = s.
,

where ~s = [s1; . . . ; sN ] ∈ RN , ψext ∈ K∞∪{0}. Therefore,
one has:

Ṡ ≤ −λδx̃TG(x̃)δx̃+ ψext(‖δû‖),

where λ is the minimum element of the vector

−µT (−Λ + ∆),



Ṡ =
d

dt
µi

N∑
i=1

δx̃Ti Gi(x̃i)δx̃i ≤
N∑
i=1

µi
(
−λiδx̃Ti Gi(x̃i)δx̃i + ψiext(‖δûi‖) + ψiint(‖δwi − δŵi‖)

)
≤

N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

ψiint

(
(N − 1)‖δwij − δŵij‖

)+

N∑
i=1

µiψiext(‖δûi‖)

=

N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

ψiint

(
(N − 1)‖δyji − δŷji‖

)+

N∑
i=1

µiψiext(‖δûi‖)

=

N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

ψiint

(
(N − 1)

∣∣∣∣∣
∣∣∣∣∣∂hj∂xj

δxj −
∂ĥj
∂x̂j

δx̂j

∣∣∣∣∣
∣∣∣∣∣
)+

N∑
i=1

µiψiext(‖δûi‖)

=

N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

ψiint

(
(N − 1)

∣∣∣∣∣
∣∣∣∣∣∂h̃j∂x̃j

δx̃j

∣∣∣∣∣
∣∣∣∣∣
)+

N∑
i=1

µiψiext(‖δûi‖)

≤
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

ψiint

(
1
√
αj

(N − 1)
√
δx̃Tj Gj(x̃j)δx̃j

)+

N∑
i=1

µiψiext(‖δûi‖)

≤
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +

N∑
j=1,j 6=i

δijδx̃
T
j Gj(x̃j)δx̃j

+

N∑
i=1

µiψiext(‖δûi‖)

= µT (−Λ + ∆)[δx̃T1 G(x̃1)δx̃1; . . . ; δx̃TNG(x̃N )δx̃N ] +

N∑
i=1

µiψiext(‖δûi‖) (V.2)

which satisfies inequality (III.2) with ψint ≡ 0. Hence we
conclude that

V (x, x̂) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

γ̃′(s)TG(γ̃(s))γ̃′(s)ds,

is a simulation function from Σ̂ to Σ.

VI. CONCLUSION

In this work, using tools from differential geometry,
we derived sufficient conditions based on small-gain type
reasoning under which abstractions of interconnected sys-
tems evolving on smooth Riemannian manifolds can be
constructed compositionally. In future work, we will look
at deriving constructive conditions which facilitate the con-
struction of abstractions for various classes of nonlinear
systems evolving on smooth Riemannian manifolds together
with the corresponding simulation functions and interface
maps, hence, generalizing the results in [12], which is only
applicable to linear systems over Euclidean spaces.
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